Influence of Key Parameters on the Fractal Dimension and Impact on Gas-Bearing Capacity: A Case Study from the Lower Shihezi Formation, Ordos Basin
Abstract
1. Introduction
2. Geological Background
3. Samples and Methods
3.1. Samples
3.2. Experimental Methods
3.2.1. Porosity and Permeability
3.2.2. CTS and SEM
3.2.3. XRD
3.2.4. Gas Displacement Water Tests and NMR Measurements
3.2.5. HPMI
3.3. Analytical Theory
3.3.1. Determination of Movable Volume and Gas Distribution Under Different Pressures
3.3.2. Method of Transforming NMR T2 Spectrum into Pore–Throat Size Distribution
3.3.3. Fractal Theory
4. Results
4.1. Porosity, Permeability, Mineral, and Pore–Throat Characteristics
4.2. HPMI Results
4.3. NMR Results
4.4. Fractal Characteristics of Pore–Throats in Tight Sandstone Reservoirs
4.5. Pore–Throat Size Distribution and Gas Distribution Results
5. Discussion
5.1. The Influence of Total Pore–Throat Parameters on Fractal Dimension and Reservoir Gas-Bearing Capacity
5.2. The Influence of Pore–Throat Parameters at Different Scales on Fractal Dimension and Reservoir Gas-Bearing Capacity
6. Future Work
7. Conclusions
- (1)
- The results indicate that the pore–throat system of the Lower Shihezi Formation tight sandstone reservoir in Hangjin Banner, Ordos Basin, exhibits a distinct three-stage distribution pattern, which can be divided into mesopores, micropores, and nanopores. Different pore–throat sizes play distinct roles within the reservoir: mesopores are the primary contributors to effective porosity and gas storage capacity, while micropores and nanopores mainly influence gas retention and diffusion, contributing less to the reservoir’s overall gas-bearing capacity.
- (2)
- Fractal analysis results show that mineral composition and pore–throat structure lead to variations in fractal dimension, thereby influencing the gas-bearing capacity of the reservoir. Overall, a higher clay mineral content is the primary factor responsible for the increase in fractal dimension, indicating enhanced complexity and heterogeneity of the pore–throat system, which, in turn, deteriorates reservoir physical properties and hinders hydrocarbon migration and accumulation. The pore–throat structural parameters (Rm, Sk, and Smax) exert a significant impact on fractal characteristics: larger values of these parameters reflect a more homogeneous pore–throat system with better connectivity and a lower fractal dimension, conditions that facilitate gas migration and accumulation and ultimately enhance the reservoir’s gas storage capacity.
- (3)
- The mechanisms controlling gas occurrence vary significantly across different pore–throat scales. At different scales, only physical parameters corresponding to micropores exhibit strong control over the fractal dimension. Quartz content mainly affects the fractal dimension of mesopores, reflecting the supporting and framework-preserving effects of quartz grains, which are favorable for gas storage. In contrast, clay mineral content primarily controls the fractal dimension of nanopores, indicating that clay filling increases nanopore structural complexity. Meanwhile, pore–throat structural parameters exert the most significant influence on the fractal dimensions of mesopores and micropores. Larger values of Rm, Sk, and Smax correspond to lower fractal dimensions and better connectivity, thereby increasing the upper limit of the reservoir’s gas-bearing capacity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| HPMI | High-pressure mercury intrusion |
| NMR | Nuclear magnetic resonance |
| SEM | Scanning electron microscopy |
| XRD | X-ray diffraction |
| D | fractal dimension |
| Pmv | Movable volume |
| Smv | Movable volume saturation |
| Pog | Gas-occupied porosity |
| Sg | Gas saturation |
| Sc | Sorting coefficient |
| Hc | Homogeneity coefficient |
| Pt | Threshold pressure |
| Rmax | Maximum pore-throat radius |
| Rm | Median pore-throat radius |
| We | Mercury withdrawal efficiency |
| Smax | Maximum mercury saturation |
References
- Clarkson, C.R.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.B.; Mastalerz, M.; Bustin, R.M.; Radliński, A.P.; Blach, T.P. Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Sun, L.; Fang, C.; Li, F.; Zhu, R.; He, D. Petroleum Exploration and Development Practices of Sedimentary Basins in China and Research Progress of Sedimentology. Pet. Explor. Dev. 2010, 37, 385–396. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, G.; Yang, Z.; Tao, S.; Hou, L.; Zhu, R.; Yuan, X.; Ran, Q.; Li, D.; Wang, Z. Concepts, Characteristics, Potential and Technology of Unconventional Hydrocarbons: On Unconventional Petroleum Geology. Pet. Explor. Dev. 2013, 40, 413–428. [Google Scholar] [CrossRef]
- Bluck, B.J. Structure of Coarse Grained Braided Stream Alluvium. Earth Environ. Sci. Trans. R. Soc. Edinb. 1979, 70, 181–221. [Google Scholar] [CrossRef]
- Lunt, I.A.; Bridge, J.S. Evolution and Deposits of a Gravelly Braid Bar, Sagavanirktok River, Alaska. Sedimentology 2004, 51, 415–432. [Google Scholar] [CrossRef]
- Miall, A.D. A Review of the Braided-River Depositional Environment. Earth-Sci. Rev. 1977, 13, 1–62. [Google Scholar] [CrossRef]
- Stroker, T.M.; Harris, N.B.; Elliott, W.C.; Wampler, J.M. Diagenesis of a Tight Gas Sand Reservoir: Upper Cretaceous Mesaverde Group, Piceance Basin, Colorado. Mar. Pet. Geol. 2013, 40, 48–68. [Google Scholar] [CrossRef]
- Tobin, R.C.; McClain, T.; Lieber, R.B.; Ozkan, A.; Banfield, L.A.; Marchand, A.M.E.; McRae, L.E. Reservoir Quality Modeling of Tight-Gas Sands in Wamsutter Field: Integration of Diagenesis, Petroleum Systems, and Production Data. AAPG Bull. 2010, 94, 1229–1266. [Google Scholar] [CrossRef]
- Zhao, D.; Hou, J.; Sarma, H.; Guo, W.; Liu, Y.; Xie, P.; Dou, L.; Chen, R.; Zhang, Z. Pore Throat Heterogeneity of Different Lithofacies and Diagenetic Effects in Gravelly Braided River Deposits: Implications for Understanding the Formation Process of High-Quality Reservoirs. Geoenergy Sci. Eng. 2023, 221, 111309. [Google Scholar] [CrossRef]
- Guo, P.; Zhou, R.; Tian, Z.; Wang, Y.; Yan, L.; Zhao, J.; Yu, C. Gas and Water Distribution Characteristics of Water-Driven Gas Process in Tight Sandstone Gas Reservoirs: A Microscale Study by Molecular Simulation and Experiment. Energy Rep. 2022, 8, 7025–7036. [Google Scholar] [CrossRef]
- Wang, W.; Li, T.; Xiao, D.; Wang, B.; Yang, Y.; Zhang, Y.; La, W.; He, J. Geological Conditions and Controls on Accumulation of Tight Sandstone Gas, Deep Part of the Shengbei Sub-Sag, Turpan-Hami Basin, NW China. Mar. Pet. Geol. 2023, 158, 106513. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Meng, C.; Guan, B.; Zheng, X.; Zhou, L.; Xin, Y.; Han, C. Pore Structure Characteristics and Formation Mechanisms Analysis of Tight Gas Sandstones. Prog. Geophys. 2015, 30, 217–227. [Google Scholar]
- Liu, G.; Wang, Y.; Yin, H.; Ding, Y.; Lan, Y.; Yang, D. Determination of Gas-Water Seepage Characteristics with Consideration of Dynamic Pore-Throat Structure in a Tight Sandstone Gas Formation. Mar. Pet. Geol. 2022, 136, 105440. [Google Scholar] [CrossRef]
- Sima, L.; Wang, C.; Wang, L.; Wu, F.; Ma, L.; Wang, Z. Effect of Pore Structure on the Seepage Characteristics of Tight Sandstone Reservoirs: A Case Study of Upper Jurassic Penglaizhen Fm Reservoirs in the Western Sichuan Basin. Nat. Gas Ind. B 2017, 4, 17–24. [Google Scholar] [CrossRef]
- Wang, X.; Song, Y.; Guo, X.; Chang, Q.; Kong, Y.; Zheng, M.; Qin, Z.; Yang, X. Pore-Throat Structure Characteristics of Tight Reservoirs of the Middle Permian Lucaogou Formation in the Jimsar Sag, Junggar Basin, Northwest China. J. Pet. Sci. Eng. 2022, 208, 109245. [Google Scholar] [CrossRef]
- Fu, H.; Wang, X.; Zhang, L.; Gao, R.; Li, Z.; Xu, T.; Zhu, X.; Xu, W.; Li, Q. Investigation of the Factors That Control the Development of Pore Structure in Lacustrine Shale: A Case Study of Block X in the Ordos Basin, China. J. Nat. Gas Sci. Eng. 2015, 26, 1422–1432. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Wang, Z.; Chen, J.; Pang, X.; Wang, S.; Zhou, Z.; He, Z.; Qin, Z.; Fan, X. A Review on Pore Structure Characterization in Tight Sandstones. Earth-Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Liu, G.; Yin, H.; Lan, Y.; Fei, S.; Yang, D. Experimental Determination of Dynamic Pore-Throat Structure Characteristics in a Tight Gas Sandstone Formation with Consideration of Effective Stress. Mar. Pet. Geol. 2020, 113, 104170. [Google Scholar] [CrossRef]
- Feng, D.; Liu, C.; Feng, X.; Wang, X.; Awan, R.S.; Yang, X.; Xu, N.; Wu, Y.; Wu, Y.; Zang, Q. Movable Fluid Evaluation of Tight Sandstone Reservoirs in Lacustrine Delta Front Setting: Occurrence Characteristics, Multiple Control Factors, and Prediction Model. Mar. Pet. Geol. 2023, 155, 106393. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Wang, B.; Ruan, J.; Yan, N.; Chen, H.; Wang, Q.; Jia, G.; Wang, R.; Liu, H.; et al. Effects of Pore-Throat Structures on the Fluid Mobility in Chang 7 Tight Sandstone Reservoirs of Longdong Area, Ordos Basin. Mar. Pet. Geol. 2022, 135, 105407. [Google Scholar] [CrossRef]
- Qiao, J.; Zeng, J.; Xia, Y.; Cai, J.; Chen, D.; Jiang, S.; Han, G.; Cao, Z.; Feng, X.; Feng, S. A Three Dimensional Visualized Physical Simulation for Natural Gas Charging in the Micro-Nano Pore System. Pet. Explor. Dev. 2022, 49, 349–362. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Liu, J.; Wang, Y.; Guo, L.; Wu, Z.; Tian, Y. A Fractal Characteristics Analysis of the Pore Throat Structure in Low-Permeability Sandstone Reservoirs: A Case Study of the Yanchang Formation, Southeast Ordos Basin. Fractal Fract. 2025, 9, 224. [Google Scholar] [CrossRef]
- Cui, H.; Zhu, S.; Wang, J.; Gao, Y.; Wan, C.; Tong, H. Physical Properties, Pore-Throat Structure, Fractal Characteristics and Their Effects on the Gas-Bearing Capacity of Tight Sandstone: A Case Study from the Northern Tianhuan Depression, Ordos Basin, China. Nat. Resour. Res. 2022, 31, 1559–1584. [Google Scholar] [CrossRef]
- Wu, H.; Ji, Y.; Liu, R.; Zhang, C.; Chen, S. Pore Structure and Fractal Characteristics of a Tight Gas Sandstone: A Case Study of Sulige Area in the Ordos Basin, China. Energy Explor. Exploit. 2018, 36, 1438–1460. [Google Scholar] [CrossRef]
- Rosenbrand, E.; Fabricius, I.L.; Fisher, Q.; Grattoni, C. Permeability in Rotliegend Gas Sandstones to Gas and Brine as Predicted from NMR, Mercury Injection and Image Analysis. Mar. Pet. Geol. 2015, 64, 189–202. [Google Scholar] [CrossRef]
- Yin, X.; Shu, J.; Li, Y.; Gao, W.; Lu, J.; Wu, P.; Ma, L. Impact of Pore Structure and Clay Content on the Water-Gas Relative Permeability Curve within Tight Sandstones: A Case Study from the LS Block, Eastern Ordos Basin, China. J. Nat. Gas Sci. Eng. 2020, 81, 103418. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, X.; Hu, C.; Wei, L.; Jiang, Z.; Yang, S.; Fan, Y.; Xue, Z.; Yu, H. Characterizing the Pore Structure of Low Permeability Eocene Liushagang Formation Reservoir Rocks from Beibuwan Basin in Northern South China Sea. Mar. Pet. Geol. 2019, 99, 107–121. [Google Scholar] [CrossRef]
- Xiao, X.M.; Zhao, B.Q.; Thu, Z.L.; Song, Z.G.; Wilkins, R.W.T. Upper Paleozoic Petroleum System, Ordos Basin, China. Mar. Pet. Geol. 2005, 22, 945–963. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Ma, L. Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos Basin: A Multicycle Cratonic Basin in Central China. AAPG Bull. 2005, 89, 255–269. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Wang, F.Y.; Wang, H.C. Characteristics of Paleozoic Gas System in Ordos Basin. Nat. Gas Ind. 2000, 20, 7–11. [Google Scholar]
- Wang, T.; Hou, M.; Chen, H.-D.; Hou, Z.; Chen, A.; Su, Z.-T. Coupling Relationship between Yinshan Episodic Orogenic Movement of Hercynian Tectonic Cycle and Filling Cycle of the North Ordos Basin in China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2014, 41, 310–317. [Google Scholar]
- Wang, R.; Shi, W.; Xie, X.; Zhang, W.; Qin, S.; Liu, K.; Busbey, A.B. Clay Mineral Content, Type, and Their Effects on Pore Throat Structure and Reservoir Properties: Insight from the Permian Tight Sandstones in the Hangjinqi Area, North Ordos Basin, China. Mar. Pet. Geol. 2020, 115, 104281. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Tian, J.; Liang, Q.; Cao, T. Effects of Deposition and Diagenesis on Sandstone Reservoir Quality: A Case Study of Permian Sandstones Formed in a Braided River Sedimentary System, Northern Ordos Basin, Northern China. J. Asian Earth Sci. 2021, 213, 104745. [Google Scholar] [CrossRef]
- Xu, Q.; Shi, W.; Xie, X.; Busbey, A.B.; Xu, L.; Wu, R.; Liu, K. Inversion and Propagation of the Late Paleozoic Porjianghaizi Fault (North Ordos Basin, China): Controls on Sedimentation and Gas Accumulations. Mar. Pet. Geol. 2018, 91, 706–722. [Google Scholar] [CrossRef]
- Haskett, S.E.; Narahara, G.M.; Holditch, S.A. A Method for Simultaneous Determination of Permeability and Porosity in Low-Permeability Cores. SPE Form. Eval. 1988, 3, 651–658. [Google Scholar] [CrossRef]
- SY/T 5336-2006; Practices for Core Analysis. National Standard of the People’s Republic of China: Beijing, China, 2006.
- SY/T 5368-2016; Identification of Rock Flakes. National Standard of the People’s Republic of China: Beijing, China, 2016.
- Soeder, D.J.; Chowdiah, P. Pore Geometry in High- and Low-Permeability Sandstones, Travis Peak Formation, East Texas. SPE Form. Eval. 1990, 5, 421–430. [Google Scholar] [CrossRef]
- Bjørlykke, K.; Brendsdal, A. Diagenesis of the Brent Sandstone in the Statfjord Field, North Sea. In Roles of Organic Matter in Sediment Diagenesis; Gautier, D.L., Ed.; SEPM Society for Sedimentary Geology: Claremore, OK, USA, 1985; Volume 38. [Google Scholar] [CrossRef]
- Schmitt, M.; Halisch, M.; Müller, C.; Fernandes, C.P. Classification and Quantification of Pore Shapes in Sandstone Reservoir Rocks with 3-D X-Ray Micro-Computed Tomography. Solid Earth 2016, 7, 285–300. [Google Scholar] [CrossRef]
- Su, Y.; Zha, M.; Jiang, L.; Ding, X.; Qu, J.; Jin, J.; Iglauer, S. Pore Structure and Fluid Distribution of Tight Sandstone by the Combined Use of SEM, MICP and X-Ray Micro-CT. J. Pet. Sci. Eng. 2022, 208, 109241. [Google Scholar] [CrossRef]
- SY/T 5163-2018; Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-Ray Diffraction. National Standard of the People’s Republic of China: Beijing, China, 2018.
- SY/T 5346-2005; Rock Capillary Pressure Measurement. National Standard of the People’s Republic of China: Beijing, China, 2005.
- Washburn, E.W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17, 273–283. [Google Scholar] [CrossRef]
- Timur, A. Pulsed Nuclear Magnetic Resonance Studies of Porosity, Movable Fluid, and Permeability of Sandstones. J. Pet. Technol. 1969, 21, 775–786. [Google Scholar] [CrossRef]
- Kenyon, W. Nuclear Magnetic Resonance as a Petrophysical Measurement. Nucl. Geophys. 1991, 6, 153–172. [Google Scholar]
- Brownstein, K.R.; Tarr, C.E. Importance of Classical Diffusion in NMR Studies of Water in Biological Cells. Phys. Rev. A 1979, 19, 2446–2453. [Google Scholar] [CrossRef]
- Mao, Z.-Q.; He, Y.-D.; Ren, X.-J. An Improved Method of Using NMR T2 Distribution to Evaluate Pore Size Distribution. Chin. J. Geophys. 2005, 48, 412–418. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, C.; Wang, K.; Zhao, Z.; Zhong, K. Characteristics of Micropores, Pore Throats, and Movable Fluids in the Tight Sandstone Oil Reservoirs of the Yanchang Formation in the Southwestern Ordos Basin, China. AAPG Bull. 2019, 103, 2835–2859. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, W.; Tao, R.; Luo, B.; Chen, L.; Ren, D. Pore-Throat Structure and Fractal Characteristics of Tight Sandstones in Yanchang Formation, Ordos Basin. Mar. Pet. Geol. 2020, 120, 104573. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; He, X.; Feng, F.; Li, W.; Wang, M.; Zhu, W.; Zhu, Y. Fractal Characteristics and Influencing Factors of Pore Structure in Tight Sandstone: A Case Study from Chang 6 Member of the Southwestern Yishan Slope. Processes 2025, 13, 988. [Google Scholar] [CrossRef]
- Peng, J.; Han, H.; Xia, Q.; Li, B. Fractal Characteristic of Microscopic Pore Structure of Tight Sandstone Reservoirs in Kalpintag Formation in Shuntuoguole Area, Tarim Basin. Pet. Res. 2020, 5, 1–17. [Google Scholar] [CrossRef]





















| Minerals Content from XRD (%) | Clay Minerals Content from XRD (%) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sample ID | Well | Depth | Por | Perm | Quartz | Feldspar | Carbonate | Clay | Illite | Kaolinite | Chlorite | I/S |
| (m) | (%) | (mD) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | ||
| 1 | J142 | 3137.81 | 3.21 | 1.98 | 56.7 | 12.7 | 4 | 26.6 | 19 | 43 | 16 | 22 |
| 2 | J128 | 3104.09 | 3.72 | 2.94 | 52 | 14.0 | 13 | 21 | 32 | 51 | 5 | 12 |
| 3 | J126 | 2993.14 | 2.12 | 0.75 | 54.1 | 12.3 | 10 | 23.6 | 25 | 49 | 10 | 16 |
| 4 | J127 | 3022.75 | 13.39 | 7.84 | 58.8 | 12.1 | 9.6 | 19.5 | 2 | 45 | 43 | 10 |
| 5 | J114 | 3157 | 7.79 | 2.16 | 66 | 11.2 | 7.5 | 15.3 | 8 | 31 | 54 | 7 |
| 6 | J131 | 3049.91 | 14.56 | 8.62 | 70.9 | 12.4 | 6.3 | 10.4 | 7 | 33 | 45 | 15 |
| 7 | J134 | 3084.15 | 8.07 | 3.50 | 62.7 | 20.7 | 5.4 | 11.2 | 14 | 43 | 4 | 39 |
| 8 | J109 | 2977.45 | 8.95 | 4.53 | 59.7 | 23.1 | 5.2 | 12 | 21 | 40 | 16 | 23 |
| 9 | J149 | 3316.09 | 12.09 | 5.65 | 57.9 | 21.2 | 2.6 | 18.3 | 2 | 39 | 44 | 15 |
| 10 | J107 | 3200.80 | 10.19 | 2.98 | 58.3 | 13.6 | 13.9 | 14.2 | 5 | 50 | 32 | 13 |
| 11 | J110 | 3049.81 | 9.25 | 3.64 | 62.7 | 11.8 | 8.8 | 16.7 | 33 | 44 | 14 | 9 |
| 12 | J131 | 3050.68 | 14.55 | 7.34 | 67.2 | 12.7 | 8 | 12.1 | 19 | 45 | 27 | 9 |
| Average | 3095.31 | 8.99 | 4.33 | 60.63 | 14.8 | 7.8 | 16.7 | 15.5 | 42.75 | 25.8 | 15.8 | |
| Type | Sample ID | HPMI | NMR | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pt | Rmax | Rm | Ra | Sc | Hc | Smax | We | P50 | Pmv | Smv | ||
| (MPa) | (μm) | (μm) | (μm) | (%) | (%) | (MPa) | (%) | (%) | ||||
| Type I | 4 | 0.138 | 5.34 | 0.138 | 0.637 | 2.48 | 0.119 | 88.95 | 41.09 | 5.31 | 3.83 | 28.56 |
| 6 | 0.281 | 2.61 | 0.165 | 0.476 | 2.58 | 0.182 | 89.45 | 39.78 | 4.45 | 6.24 | 42.82 | |
| 9 | 0.138 | 5.34 | 0.175 | 0.708 | 2.76 | 0.133 | 88.13 | 37.72 | 4.20 | 2.84 | 23.48 | |
| 12 | 0.297 | 2.47 | 0.269 | 0.55 | 2.11 | 0.223 | 89.10 | 35.29 | 2.73 | 5.97 | 39.99 | |
| Average | 0.213 | 3.94 | 0.187 | 0.593 | 2.48 | 0.164 | 88.90 | 38.47 | 4.17 | 4.72 | 33.71 | |
| Type II | 11 | 0.451 | 1.63 | 0.109 | 0.284 | 2.23 | 0.174 | 84.94 | 37.13 | 6.77 | 3.10 | 33.74 |
| 5 | 0.297 | 2.47 | 0.067 | 0.386 | 2.57 | 0.156 | 83.33 | 40.95 | 11.02 | 2.43 | 31.13 | |
| 10 | 0.655 | 1.12 | 0.167 | 0.223 | 2.21 | 0.199 | 83.38 | 38.73 | 4.39 | 3.40 | 33.37 | |
| Average | 0.468 | 1.74 | 0.114 | 0.298 | 2.33 | 0.176 | 83.88 | 38.94 | 7.39 | 2.98 | 32.74 | |
| Type III | 7 | 0.437 | 1.35 | 0.037 | 0.759 | 3.25 | 0.142 | 82.83 | 31.69 | 20.01 | 2.32 | 29.78 |
| 8 | 0.439 | 1.33 | 0.026 | 0.741 | 3.09 | 0.139 | 80.96 | 25.47 | 28.79 | 1.99 | 22.17 | |
| Average | 0.438 | 1.34 | 0.031 | 0.75 | 3.17 | 0.14 | 81.9 | 28.58 | 24.4 | 2.15 | 25.98 | |
| Type IV | 1 | 0.297 | 2.48 | 0.01 | 0.297 | 2.85 | 0.12 | 77.35 | 34.61 | 73.76 | 0.42 | 13.05 |
| 2 | 0.451 | 1.63 | 0.017 | 0.225 | 2.57 | 0.138 | 77.61 | 43.50 | 44.45 | 1.18 | 31.71 | |
| 3 | 0.673 | 1.09 | 0.02 | 0.128 | 2.55 | 0.117 | 74.8 | 44.36 | 37.22 | 0.33 | 15.40 | |
| Average | 0.473 | 1.73 | 0.015 | 0.217 | 2.65 | 0.125 | 76.59 | 40.82 | 51.81 | 0.64 | 20.05 | |
| Sample | Mesopores | Micropores | Nanopores | D | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| D1 | ϕ1 (%) | K1 (mD) | D2 | ϕ2 (%) | K2 (mD) | D3 | ϕ3 (%) | K3 (mD) | |||
| I | 4 | 2.775 | 3.424 | 6.705 | 2.348 | 5.232 | 1.084 | 2.745 | 4.739 | 6.705 | 2.598 |
| 6 | 2.748 | 3.984 | 6.673 | 2.531 | 5.010 | 1.879 | 2.590 | 5.569 | 6.673 | 2.613 | |
| 9 | 2.753 | 3.574 | 4.771 | 2.660 | 3.812 | 0.849 | 2.584 | 4.710 | 4.771 | 2.658 | |
| 12 | 2.655 | 4.273 | 4.591 | 2.382 | 5.648 | 2.684 | 2.529 | 4.630 | 4.591 | 2.509 | |
| average | 2.733 | 3.814 | 5.685 | 2.480 | 4.925 | 1.624 | 2.612 | 4.912 | 5.685 | 2.594 | |
| II | 11 | 2.755 | 1.412 | 1.746 | 2.551 | 3.939 | 1.838 | 2.740 | 3.905 | 1.746 | 2.662 |
| 5 | 2.794 | 1.235 | 1.350 | 2.708 | 2.895 | 0.779 | 2.602 | 3.661 | 1.350 | 2.672 | |
| 10 | 2.770 | 1.122 | 0.542 | 2.361 | 4.679 | 2.392 | 2.660 | 4.391 | 0.542 | 2.535 | |
| average | 2.773 | 1.256 | 1.213 | 2.540 | 3.838 | 1.670 | 2.667 | 3.986 | 1.213 | 2.623 | |
| III | 7 | 2.849 | 2.472 | 3.295 | 2.834 | 1.330 | 0.210 | 2.429 | 4.268 | 3.295 | 2.624 |
| 8 | 2.884 | 2.534 | 4.255 | 2.823 | 1.290 | 0.259 | 2.547 | 5.135 | 4.255 | 2.682 | |
| average | 2.866 | 2.503 | 3.775 | 2.829 | 1.310 | 0.234 | 2.488 | 4.702 | 3.775 | 2.653 | |
| IV | 1 | 2.933 | 0.344 | 1.556 | 2.882 | 0.393 | 0.384 | 2.780 | 2.482 | 1.556 | 2.809 |
| 2 | 2.884 | 0.288 | 1.161 | 2.790 | 0.954 | 1.682 | 2.710 | 2.486 | 1.161 | 2.611 | |
| 3 | 2.865 | 0.136 | 0.110 | 2.739 | 0.587 | 0.608 | 2.717 | 1.407 | 0.110 | 2.732 | |
| average | 2.894 | 0.256 | 0.943 | 2.804 | 0.644 | 0.891 | 2.736 | 2.125 | 0.943 | 2.717 | |
| Type | Samples | Pog of Different Size Pore-Throat (%) | Total Pog (%) | Sg of Different Size Pore-Throat (%) | Total Sg (%) | ||||
|---|---|---|---|---|---|---|---|---|---|
| Nanopore | Micropores | Mesopores | Nanopore | Micropores | Mesopores | ||||
| I | 4 | 0.133 | 0.699 | 2.286 | 3.118 | 2.81% | 13.35% | 66.77% | 23.28% |
| 6 | 0.374 | 1.814 | 3.46 | 5.648 | 6.71% | 36.22% | 86.83% | 38.78% | |
| 9 | 0.562 | 0.177 | 1.978 | 2.717 | 11.92% | 4.66% | 55.34% | 22.46% | |
| 12 | 0.331 | 0.944 | 3.787 | 5.062 | 7.15% | 16.71% | 88.64% | 34.79% | |
| average | 0.35 | 0.909 | 2.878 | 4.136 | 7.15% | 17.73% | 74.40% | 29.83% | |
| II | 11 | 0.219 | 0.991 | 1.1 | 2.31 | 5.60% | 25.16% | 77.92% | 24.96% |
| 5 | 0.205 | 0.975 | 0.975 | 2.155 | 5.59% | 33.68% | 78.94% | 27.65% | |
| 10 | 0.409 | 2.024 | 0.548 | 2.981 | 9.31% | 43.26% | 48.82% | 29.25% | |
| average | 0.277 | 1.33 | 0.874 | 2.482 | 6.83% | 34.04% | 68.56% | 27.29% | |
| III | 7 | 0.526 | 0.183 | 1.574 | 2.283 | 12.32% | 13.75% | 63.66% | 28.28% |
| 8 | 0.252 | 0.242 | 1.287 | 1.781 | 4.91% | 18.72% | 50.82% | 19.88% | |
| average | 0.389 | 0.212 | 1.431 | 2.032 | 8.62% | 16.23% | 57.24% | 24.08% | |
| IV | 1 | 0.052 | 0.12 | 0.235 | 0.407 | 2.10% | 30.59% | 68.20% | 12.64% |
| 2 | 0.085 | 0.253 | 0.193 | 0.531 | 3.40% | 26.53% | 67.01% | 14.23% | |
| 3 | 0.075 | 0.157 | 0.073 | 0.305 | 5.33% | 26.76% | 53.62% | 14.32% | |
| average | 0.071 | 0.177 | 0.167 | 0.414 | 3.61% | 27.96% | 62.94% | 13.73% | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, L.; Liu, Y.; Chen, Q.; Zhang, Z.; Hou, J. Influence of Key Parameters on the Fractal Dimension and Impact on Gas-Bearing Capacity: A Case Study from the Lower Shihezi Formation, Ordos Basin. Fractal Fract. 2025, 9, 799. https://doi.org/10.3390/fractalfract9120799
Bao L, Liu Y, Chen Q, Zhang Z, Hou J. Influence of Key Parameters on the Fractal Dimension and Impact on Gas-Bearing Capacity: A Case Study from the Lower Shihezi Formation, Ordos Basin. Fractal and Fractional. 2025; 9(12):799. https://doi.org/10.3390/fractalfract9120799
Chicago/Turabian StyleBao, Lei, Yuming Liu, Qi Chen, Zhanyang Zhang, and Jiagen Hou. 2025. "Influence of Key Parameters on the Fractal Dimension and Impact on Gas-Bearing Capacity: A Case Study from the Lower Shihezi Formation, Ordos Basin" Fractal and Fractional 9, no. 12: 799. https://doi.org/10.3390/fractalfract9120799
APA StyleBao, L., Liu, Y., Chen, Q., Zhang, Z., & Hou, J. (2025). Influence of Key Parameters on the Fractal Dimension and Impact on Gas-Bearing Capacity: A Case Study from the Lower Shihezi Formation, Ordos Basin. Fractal and Fractional, 9(12), 799. https://doi.org/10.3390/fractalfract9120799

