Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = hybrid immunogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
67 pages, 4242 KiB  
Review
Bioengineering Outer-Membrane Vesicles for Vaccine Development: Strategies, Advances, and Perspectives
by Ayesha Zahid, Hazrat Ismail, Jennifer C. Wilson and I. Darren Grice
Vaccines 2025, 13(7), 767; https://doi.org/10.3390/vaccines13070767 - 20 Jul 2025
Viewed by 890
Abstract
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic [...] Read more.
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic immunogenicity, adjuvant properties, and scalability establish OMVs as potent tools for combating infectious diseases and cancer. Recent advancements in genetic engineering and biotechnology have further expanded the utility of OMVs, enabling the incorporation of multiple epitopes and antigens from diverse pathogens. These developments address critical challenges such as antigenic variability and co-infections, offering broader immune coverage and cost-effective solutions. This review explores the unique structural and immunological properties of OMVs, emphasizing their capacity to elicit robust immune responses. It critically examines established and emerging engineering strategies, including the genetic engineering of surface-displayed antigens, surface conjugation, glycoengineering, nanoparticle-based OMV engineering, hybrid OMVs, and in situ OMV production, among others. Furthermore, recent advancements in preclinical research on OMV-based vaccines, including synthetic OMVs, OMV-based nanorobots, and nanodiscs, as well as emerging isolation and purification methods, are discussed. Lastly, future directions are proposed, highlighting the potential integration of synthetic biology techniques to accelerate research on OMV engineering. Full article
(This article belongs to the Special Issue Bioengineering Strategies for Developing Vaccines)
Show Figures

Graphical abstract

17 pages, 2173 KiB  
Article
Unveiling the Solvent Effect: DMSO Interaction with Human Nerve Growth Factor and Its Implications for Drug Discovery
by Francesca Paoletti, Tjaša Goričan, Alberto Cassetta, Jože Grdadolnik, Mykola Toporash, Doriano Lamba, Simona Golič Grdadolnik and Sonia Covaceuszach
Molecules 2025, 30(14), 3030; https://doi.org/10.3390/molecules30143030 - 19 Jul 2025
Viewed by 343
Abstract
Background: The Nerve Growth Factor (NGF) is essential for neuronal survival and function and represents a key therapeutic target for pain and inflammation-related disorders, as well as for neurodegenerative diseases. Small-molecule antagonists of human NGF (hNGF) offer advantages over monoclonal antibodies, including oral [...] Read more.
Background: The Nerve Growth Factor (NGF) is essential for neuronal survival and function and represents a key therapeutic target for pain and inflammation-related disorders, as well as for neurodegenerative diseases. Small-molecule antagonists of human NGF (hNGF) offer advantages over monoclonal antibodies, including oral availability and reduced immunogenicity. However, their development is often hindered by solubility challenges, necessitating the use of solvents like dimethyl sulfoxide (DMSO). This study investigates whether DMSO directly interacts with hNGF and affects its receptor-binding properties. Methods: Integrative/hybrid computational and experimental biophysical approaches were used to assess DMSO-NGF interaction by combining machine-learning tools and Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FT-IR) spectroscopy, Differential Scanning Fluorimetry (DSF) and Grating-Coupled Interferometry (GCI). These techniques evaluated binding affinity, conformational stability, and receptor-binding dynamics. Results: Our findings demonstrate that DMSO binds hNGF with low affinity in a specific yet non-disruptive manner. Importantly, DMSO does not induce significant conformational changes in hNGF nor affect its interactions with its receptors. Conclusions: These results highlight the importance of considering solvent–protein interactions in drug discovery, as these low-affinity yet specific interactions can affect experimental outcomes and potentially alter the small molecules binding to the target proteins. By characterizing DMSO-NGF interactions, this study provides valuable insights for the development of NGF-targeting small molecules, supporting their potential as effective alternatives to monoclonal antibodies for treating pain, inflammation, and neurodegenerative diseases. Full article
Show Figures

Graphical abstract

30 pages, 2283 KiB  
Review
Protein Engineering Paving the Way for Next-Generation Therapies in Cancer
by Zahra Naderiyan and Alireza Shoari
Int. J. Transl. Med. 2025, 5(3), 28; https://doi.org/10.3390/ijtm5030028 - 6 Jul 2025
Viewed by 925
Abstract
Cancer continues to be a leading cause of global mortality, necessitating innovative therapeutic strategies to address its complexity and heterogeneity. Protein engineering has emerged as a transformative approach in developing cancer biotherapeutics, enabling the creation of highly specific, potent, and adaptable treatments. This [...] Read more.
Cancer continues to be a leading cause of global mortality, necessitating innovative therapeutic strategies to address its complexity and heterogeneity. Protein engineering has emerged as a transformative approach in developing cancer biotherapeutics, enabling the creation of highly specific, potent, and adaptable treatments. This paper provides a comprehensive review of the state-of-the-art in protein engineering, highlighting key techniques such as directed evolution, rational design, and hybrid approaches that underpin the development of monoclonal antibodies, bispecific antibodies, and novel fusion proteins. Case studies of FDA-approved therapies, including engineered monoclonal antibodies like trastuzumab and bispecific T-cell engagers such as blinatumomab, are discussed to illustrate the impact of these advancements. Furthermore, emerging trends, including AI-driven protein design and synthetic biology applications, are explored alongside their potential to revolutionize future cancer treatments. Challenges such as immunogenicity, stability, and scalability are critically evaluated, offering insights into potential solutions and future research directions. By synthesizing advancements in protein science and oncology, this paper aims to guide researchers and clinicians in harnessing the full potential of engineered proteins for cancer therapy. Full article
Show Figures

Figure 1

36 pages, 2142 KiB  
Review
Bioinspired Nanoplatforms: Polydopamine and Exosomes for Targeted Antimicrobial Therapy
by Barathan Muttiah and Alfizah Hanafiah
Polymers 2025, 17(12), 1670; https://doi.org/10.3390/polym17121670 - 16 Jun 2025
Viewed by 709
Abstract
Global growth in antimicrobial resistance (AMR) has accelerated the need for novel therapy beyond the scope of conventional antibiotics. In the last decade, polydopamine (PDA), a mussel-inspired polymer with redox capability, remarkable adhesion, and biocompatibility, has emerged as a universal antimicrobial coating with [...] Read more.
Global growth in antimicrobial resistance (AMR) has accelerated the need for novel therapy beyond the scope of conventional antibiotics. In the last decade, polydopamine (PDA), a mussel-inspired polymer with redox capability, remarkable adhesion, and biocompatibility, has emerged as a universal antimicrobial coating with widespread uses. At the same time, extracellular vesicles (EVs) and particularly exosomes have gained prominence for their intrinsic cargo delivery and immune-modulating properties. Here, we summarize the synergistic value of PDA and exosome integration into multifunctional antimicrobial nanoplatforms. We discuss the inherent antimicrobial activity of PDA and exosomes; the advantages of PDA coating, including increased exosome stability, ROS generation, and surface functionalization; and current methodologies towards designing PDA-exosome hybrids. This review also mentions other antimicrobial polymers and nanocomposites that may be employed for exosome modification, such as quaternized chitosan, zwitterionic polymers, and polymer–metal composites. Most significant challenges, such as the maintenance of exosome integrity, coating uniformity, biocompatibility, scalability, and immunogenicity, are addressed. Finally, future research directions are highlighted, with emphasis on intelligent, stimulus-responsive coatings, AMP incorporation, and clinical translation. Collectively, this review underscores the promise of PDA-coated exosomes as potential antimicrobial therapeutics against AMR with potential applications in wound healing, implant protection, and targeted infection control. Full article
(This article belongs to the Special Issue Polymer Innovations in Biomedicine)
Show Figures

Figure 1

20 pages, 2626 KiB  
Article
Development of an Influenza/COVID-19 Combination mRNA Vaccine Containing a Novel Multivalent Antigen Design That Enhances Immunogenicity of Influenza Virus B Hemagglutinins
by Elena Thornhill-Wadolowski, Dana L. Ruter, Feng Yan, Mayur Gajera, Evan Kurt, Labannya Samanta, Kimberlin Leigh, Jianbo Zhu, Zhijun Guo, Zihao Wang, Yuanqing Liu, Jaewoo Lee and Marcin Bugno
Vaccines 2025, 13(6), 628; https://doi.org/10.3390/vaccines13060628 - 11 Jun 2025
Viewed by 1976
Abstract
Background/Objectives: Developing next-generation mRNA-based seasonal influenza vaccines remains challenging, primarily because of the relatively low immunogenicity of influenza B hemagglutinin (HA) antigens. We describe a systematic vaccine development strategy that combined vector and antigen design optimization. Methods: Novel untranslated region (UTR) sequences and [...] Read more.
Background/Objectives: Developing next-generation mRNA-based seasonal influenza vaccines remains challenging, primarily because of the relatively low immunogenicity of influenza B hemagglutinin (HA) antigens. We describe a systematic vaccine development strategy that combined vector and antigen design optimization. Methods: Novel untranslated region (UTR) sequences and a hybrid poly(A) tail were used to increase plasmid stability and mRNA expression. Fusion proteins containing HA antigens linked by T4 foldon domains were engineered to enhance the immune responses against influenza B HA antigens and to permit the expression of multiple HA ectodomains from a single mRNA species. The vaccine performance was verified in a traditional encapsulated lipid nanoparticle (LNP) formulation that requires long-term storage at temperatures below −15 °C as well as in a proprietary thermo-stable LNP formulation developed for the long-term storage of the mRNA vaccine at 2–8 °C. Results: In preclinical studies, our next-generation seasonal influenza vaccine tested alone or as a combination influenza/COVID-19 mRNA vaccine elicited hemagglutination inhibition (HAI) titers significantly higher than Fluzone HD, a commercial inactivated influenza vaccine, across all 2024/2025 seasonal influenza strains, including the B/Victoria lineage strain. At the same time, the combination mRNA vaccine demonstrated superior neutralizing antibody titers to 2023/2024 Spikevax, a commercial COVID-19 comparator mRNA vaccine. Conclusions: Our data demonstrate that the multimerization of antigens expressed as complex fusion proteins is a powerful antigen design approach that may be broadly applied toward mRNA vaccine development. Full article
(This article belongs to the Section Nucleic Acid (DNA and mRNA) Vaccines)
Show Figures

Figure 1

31 pages, 4568 KiB  
Review
Stimuli-Responsive DNA Hydrogel Design Strategies for Biomedical Applications
by Minhyuk Lee, Minjae Lee, Sungjee Kim and Nokyoung Park
Biosensors 2025, 15(6), 355; https://doi.org/10.3390/bios15060355 - 4 Jun 2025
Viewed by 1031
Abstract
Hydrogels are three-dimensional network structures composed of hydrophilic polymers that can swell in water and are very similar to soft tissues such as connective tissue or the extracellular matrix. DNA hydrogels are particularly notable for biomedical applications due to their high biocompatibility, physiological [...] Read more.
Hydrogels are three-dimensional network structures composed of hydrophilic polymers that can swell in water and are very similar to soft tissues such as connective tissue or the extracellular matrix. DNA hydrogels are particularly notable for biomedical applications due to their high biocompatibility, physiological stability, molecular recognition, biodegradability, easy functionalization, and low immunogenicity. Based on these advantages, stimuli-responsive DNA hydrogels that have the property of reversibly changing their structure in response to various microenvironments or molecules are attracting attention as smart nanomaterials that can be applied to biosensing and material transfer, such as in the case of cells and drugs. As DNA nanotechnology advances, DNA can be hybridized with a variety of nanomaterials, from inorganic nanomaterials such as gold nanoparticles (AuNPs) and quantum dots (QDs) to synthetic polymers such as polyacrylamide (PAAm) and poly(N-isopropylacrylamide) (pNIPAM). These hybrid structures exhibit various optical and chemical properties. This review discusses recent advances and remaining challenges in biomedical applications of stimuli-responsive smart DNA hydrogel-based systems. It also highlights various types of hybridized DNA hydrogel, explores various response mechanism strategies of stimuli-responsive DNA hydrogel, and provides insights and prospects for biomedical applications such as biosensing and drug delivery. Full article
(This article belongs to the Special Issue Hydrogel-Based Biosensors: From Design to Applications)
Show Figures

Figure 1

19 pages, 827 KiB  
Review
Omicron Variant Could Be an Antigenic Shift of SARS-CoV-2
by Anju Kaushal
COVID 2025, 5(5), 73; https://doi.org/10.3390/covid5050073 - 14 May 2025
Viewed by 1011
Abstract
In the past 5 years, the COVID-19 pandemic has experienced frequently changing variants contextualizing immune evasion. The emergence of Omicron with >30–50 mutations on the spike gene has shown a sharp divergence from its relative VOCs, such as WT, Alpha, Beta, Gamma, and [...] Read more.
In the past 5 years, the COVID-19 pandemic has experienced frequently changing variants contextualizing immune evasion. The emergence of Omicron with >30–50 mutations on the spike gene has shown a sharp divergence from its relative VOCs, such as WT, Alpha, Beta, Gamma, and Delta. The requisition of prime boosting was essential within 3–6 months to improve the Nab response that had been not lasted for longer. Omicron subvariant BA.1.1 was less transmissible, but with an extra nine mutations in next variant BA.2 made it more transmissible. This remarkable heterogeneity was reported in ORF1ab or TRS sites, ORF7a, and 10 regions in the genomic sequences of Omicron BA.2 and its evolving subvariants BA.4.6, BF.7, BQ.2, BF. 7, BA.2.75.2, and BA.5 (BQ.1 and BQ.1.1). The mutational stability of subvariants XBB, XBB 1, XBB 1.5, and XBB 1.6 conferred a similar affinity towards ACE-2. This phenomenon has been reported in breakthrough infections and after booster vaccinations producing hybrid immunity. The reduced pathogenic nature of Omicron has implicated its adaptation either through immunocompromised individuals or other animal hosts. The binding capacity of RBD and ACE-2, including the proteolytic priming via TMPRSS2, reveals its (in-vitro) transmissibility behavior. RBD mutations signify transmissibility, S1/S2 enhances virulence, while S2 infers the effective immunogenic response. Initial mutations D614G, E484A, N501Y, Q493K, K417N, S477N, Y505H, and G496S were found to increase the Ab escape. Some mutations such as, R346K, L452R, and F486Vwere seen delivering immune pressure. HR2 region (S2) displayed mutations R436S, K444T, F486S, and D1199N with altered spike positions. Later on, the booster dose or breakthrough infections contributed to elevating the immune profile. Several other mutations in BA.1.1-N460K, R346T, K444T, and BA.2.75.2-F486S have also conferred the neutralization resistance. The least studied T-cell response in SARS-CoV-2 affects HLA- TCR interactions, thus, it plays a role in limiting the virus clearance. Antigenic cartographic analysis has also shown Omicron’s drift from its predecessor variants. The rapidly evolving SARS-CoV-2 variants and subvariants have driven the population-based immunity escape in fully immunized individuals within short period. This could be an indication that Omicron is heading towards endemicity and may evolve in future with subvariants could lead to outbreaks, which requires regular surveillance. Full article
(This article belongs to the Section Human or Animal Coronaviruses)
Show Figures

Figure 1

21 pages, 639 KiB  
Review
CRISPR/Cas9 Delivery Systems to Enhance Gene Editing Efficiency
by Ana Seijas, Diego Cora, Mercedes Novo, Wajih Al-Soufi, Laura Sánchez and Álvaro J. Arana
Int. J. Mol. Sci. 2025, 26(9), 4420; https://doi.org/10.3390/ijms26094420 - 6 May 2025
Cited by 1 | Viewed by 3707
Abstract
CRISPR/Cas9 has revolutionized genome editing by enabling precise and efficient genetic modifications across multiple biological systems. Despite its growing therapeutic potential, key challenges remain in mitigating off-target effects, minimizing immunogenicity, and improving the delivery of CRISPR components into target cells. This review provides [...] Read more.
CRISPR/Cas9 has revolutionized genome editing by enabling precise and efficient genetic modifications across multiple biological systems. Despite its growing therapeutic potential, key challenges remain in mitigating off-target effects, minimizing immunogenicity, and improving the delivery of CRISPR components into target cells. This review provides an integrated analysis of physical, viral, and non-viral delivery systems, highlighting recent advances in the use of lipid nanoparticles, polymeric carriers, and hybrid platforms. We also examine an often overlooked factor: the aggregation behavior of the Cas9 protein, which may interfere with cellular uptake, the encapsulation efficiency, and nuclear localization. By comparing delivery platforms and their reported editing outcomes, we identify critical physicochemical parameters that influence therapeutic success. Finally, we propose standardized methods to assess Cas9 encapsulation and aggregation and discuss translational barriers such as manufacturing scalability and regulatory requirements. These insights aim to guide the development of safer and more effective CRISPR/Cas9-based therapies. Full article
(This article belongs to the Special Issue CRISPR-Cas Systems and Genome Editing—2nd Edition)
Show Figures

Figure 1

16 pages, 2557 KiB  
Article
Immunogenicity of an Intranasal Dual (Core and Surface)-Antigen Vaccine Against Hepatitis B Virus Enhanced by Carboxyl-Vinyl Polymer Excipients
by Md Haroon Or Rashid, Fumihiko Yasui, Takahiro Sanada, Risa Kono, Tomoko Honda, Bouchra Kitab, Lipi Akter, Masashi Utsunomiya, Risa Sato, Osamu Yoshida, Yoichi Hiasa, Yasunori Oda, Yasumasa Goh, Takashi Miyazaki, Michinori Kohara and Kyoko Tsukiyama-Kohara
Vaccines 2025, 13(5), 464; https://doi.org/10.3390/vaccines13050464 - 25 Apr 2025
Viewed by 1348
Abstract
Background: Hepatitis B virus (HBV) is a major cause of morbidity and mortality globally, and chronic infections are associated with cirrhosis and hepatocellular carcinoma. Issues with conventional treatments and vaccines mean there is a need for new therapeutic vaccines, which must elicit a [...] Read more.
Background: Hepatitis B virus (HBV) is a major cause of morbidity and mortality globally, and chronic infections are associated with cirrhosis and hepatocellular carcinoma. Issues with conventional treatments and vaccines mean there is a need for new therapeutic vaccines, which must elicit a strong and sustainable immune response. Here, we evaluated the immunogenicity of dual-antigen vaccines containing hybrid surface (hy-LHBs) and core (HBc) antigens, combined with a carboxyl-vinyl polymer (CVP) as a mucoadhesive excipient, following intranasal administration in mice. Methods: Mice were intranasally administered a mixed vaccine (10 µg of hy-LHBs and 2.5 or 10 µg of HBc) with or without a CVP excipient, and they were assessed for their immune response (levels of IgGs or IgA antibodies in an ELISA, IFN-γ level in splenocytes in an ELISpot assay, and cytokine/chemokine levels in a BioPlex assay). A protein stability assay was also conducted for vaccine formulations with and without excipients. Results: Significantly enhanced IgG production was noted targeting hy-LHBs and (less markedly) HBc at 10 µg/antigen, but only a non-significant elevation was noted with the vaccine containing 2.5 µg HBc. The BioPlex assay showed a significant increase in IL-2 (#00-07, 0B), IL-12(p40)(#00), eotaxin (#00), MIP1α (#00, #00-07, 0B), and MCP-1 (#00-07, 0B) in mice that received treatment compared to those of untreated mice. The endpoint titers of IgG1 and IgG2a were measured, which were higher with CVP excipients than without. From the IgG2a/IgG1 ratio, a higher IgG1 response was induced by CVPs to hy-LHBs and a higher IgG2a response was induced to HBc. Th2-dominant phenotype to hy-LHBs was induced with CVP#00 in an ELISpot assay. The highest anti-hy-LHBs antibody titer was noted with the conventional CVP#00 excipient. Consistent with these results, a higher amount of neutralizing antibodies of HBV was induced with CVP#00 treatment and followed by #00-03 and #14-00. Conclusions: We consider that the addition of CVP excipients to vaccine formulation enhances immunogenicity and HBV antigen stability for intranasal vaccines. This effect was seen for both humoral and cell-mediated immune responses, indicating the potential of CVPs as excipients in intranasal HBV vaccines. Full article
(This article belongs to the Section Hepatitis Virus Vaccines)
Show Figures

Figure 1

33 pages, 1062 KiB  
Review
Engineered Exosomes as Smart Drug Carriers: Overcoming Biological Barriers in CNS and Cancer Therapy
by Tanvi Premchandani, Amol Tatode, Jayshree Taksande, Milind Umekar, Mohammad Qutub, Ujban Md Hussain and Priyanka Singanwad
Drugs Drug Candidates 2025, 4(2), 19; https://doi.org/10.3390/ddc4020019 - 24 Apr 2025
Cited by 6 | Viewed by 3644
Abstract
Engineered exosomes have emerged as transformative drug carriers, uniquely equipped to overcome biological barriers in central nervous system (CNS) disorders and cancer therapy. These natural extracellular vesicles, derived from cell membranes, offer inherent biocompatibility, low immunogenicity, and the ability to traverse physiological obstacles [...] Read more.
Engineered exosomes have emerged as transformative drug carriers, uniquely equipped to overcome biological barriers in central nervous system (CNS) disorders and cancer therapy. These natural extracellular vesicles, derived from cell membranes, offer inherent biocompatibility, low immunogenicity, and the ability to traverse physiological obstacles such as the blood–brain barrier (BBB) and dense tumor stroma. Recent advances in exosome engineering—including surface modification (e.g., ligand conjugation for receptor-mediated targeting) and cargo loading (siRNA, CRISPR-Cas systems, and chemotherapeutics)—have enhanced their precision and therapeutic utility. For CNS delivery, exosomes functionalized with brain-homing peptides (e.g., RVG or TfR ligands) have enabled the efficient transport of neuroprotective agents or gene-editing tools to treat Alzheimer’s disease or glioblastoma. In oncology, engineered exosomes loaded with tumor-suppressive miRNAs or immune checkpoint inhibitors exploit tumor microenvironment (TME) features, such as acidity or enzyme overexpression, for spatially controlled drug release. Furthermore, hybrid exosome–liposome systems and exosome–biomaterial composites are being explored to improve payload capacity and stability. Despite progress, challenges persist in scalable production, batch consistency, and regulatory standardization. This review critically evaluates engineering strategies, preclinical success, and translational hurdles while proposing innovations such as AI-driven exosome design and patient-derived exosome platforms for personalized therapy. By bridging nanotechnology and biomedicine, engineered exosomes can represent a paradigm shift in targeted drug delivery, offering safer and more effective solutions for historically intractable diseases. Full article
Show Figures

Figure 1

15 pages, 1375 KiB  
Article
COVALENCE STUDY: Immunogenicity and Reactogenicity of a COVID-19 mRNA Vaccine in an Open-Label Cohort of Long-Survivor Patients with Metastatic Lung Cancer
by Emanuele Vita, Federico Monaca, Luca Mastrantoni, Geny Piro, Giacomo Moretti, Ileana Sparagna, Alessio Stefani, Antonio Vitale, Giovanni Trovato, Mariantonietta Di Salvatore, Maurizio Sanguinetti, Andrea Urbani, Luca Richeldi, Carmine Carbone, Emilio Bria and Giampaolo Tortora
Vaccines 2025, 13(3), 273; https://doi.org/10.3390/vaccines13030273 - 5 Mar 2025
Viewed by 1544
Abstract
Background: As COVID-19 has become an epidemic, we conducted an open-label study aimed to identify immunogenicity and reactogenicity of boosters of the BNT162b2 vaccine in a real-world cohort of long-survivor metastatic lung cancer patients (LS-mLC pts). Methods and Analysis: According to the timing [...] Read more.
Background: As COVID-19 has become an epidemic, we conducted an open-label study aimed to identify immunogenicity and reactogenicity of boosters of the BNT162b2 vaccine in a real-world cohort of long-survivor metastatic lung cancer patients (LS-mLC pts). Methods and Analysis: According to the timing of the booster dose (BD) and SARS-CoV-2 infection (Cov-I) during anticancer treatment (ACT), between October 2021 and February 2022, we prospectively enrolled 166 cancer patients into five parallel cohorts. The primary endpoints were seroprevalence of IgG Anti-spike-RBD (anti-S IgG) at two pre-defined timepoints (T1: +30–90 days after BD; T2: +6 months +/− 4 weeks after BD). As an exploratory endpoint, we compared the median pre-vaccination value of four cytokines (IL-6, IL-2R, TNF-α, IL-10) with post-BD values in immunotherapy-treated pts (IO-pts). Results: The anti-S IgG seropositivity rate was 100% at T1 and 98.8% at T2. After 6 months, hybrid immunisation was associated with a higher median anti-S IgG titre compared to vaccine-alone-induced seroconversion (p < 0.0001). In uninfected pts, the median anti-S IgG titre was significantly lower in IO-pts compared to non-IO-pts (p = 0.02); no difference was found when comparing myelosuppressive or not ACT. Among the 68 IO-pts, 5 pts (7.3%) showed a significant increase (≥1.5 fold) of at least two cytokines in post-BD samples, without reporting ir-AEs. Conclusions: Boosters of the COVID-19 mRNA vaccine were effective and safe. In IO-pts without recent Cov-I, additional BDs should be considered to prolong serological immunity. Full article
(This article belongs to the Collection COVID-19 Vaccine Development and Vaccination)
Show Figures

Figure 1

27 pages, 5498 KiB  
Review
Revolutionizing mRNA Vaccines Through Innovative Formulation and Delivery Strategies
by Munazza Fatima, Timothy An and Kee-Jong Hong
Biomolecules 2025, 15(3), 359; https://doi.org/10.3390/biom15030359 - 1 Mar 2025
Cited by 2 | Viewed by 2622
Abstract
Modernization of existing methods for the delivery of mRNA is vital in advanced therapeutics. Traditionally, mRNA has faced obstacles of poor stability due to enzymatic degradation. This work examines cutting-edge formulation and emerging techniques for safer delivery of mRNA vaccines. Inspired by the [...] Read more.
Modernization of existing methods for the delivery of mRNA is vital in advanced therapeutics. Traditionally, mRNA has faced obstacles of poor stability due to enzymatic degradation. This work examines cutting-edge formulation and emerging techniques for safer delivery of mRNA vaccines. Inspired by the success of lipid nanoparticles (LNP) in delivering mRNA vaccines for COVID-19, a variety of other formulations have been developed to deliver mRNA vaccines for diverse infections. The meritorious features of nanoparticle-based mRNA delivery strategies, including LNP, polymeric, dendrimers, polysaccharide-based, peptide-derived, carbon and metal-based, DNA nanostructures, hybrid, and extracellular vesicles, have been examined. The impact of these delivery platforms on mRNA vaccine delivery efficacy, protection from enzymatic degradation, cellular uptake, controlled release, and immunogenicity has been discussed in detail. Even with significant developments, there are certain limitations to overcome, including toxicity concerns, limited information about immune pathways, the need to maintain a cold chain, and the necessity of optimizing administration methods. Continuous innovation is essential for improving delivery systems for mRNA vaccines. Future research directions have been proposed to address the existing challenges in mRNA delivery and to expand their potential prophylactic and therapeutic application. Full article
(This article belongs to the Special Issue Novel Materials for Biomedical Applications: 2nd Edition)
Show Figures

Figure 1

19 pages, 4329 KiB  
Article
Gold Nanoparticles Synthesized with Triple-Negative Breast Cancer Cell Lysate Enhance Antitumoral Immunity: A Novel Synthesis Method
by Raúl Rangel-López, Moisés Ármides Franco-Molina, Cristina Rodríguez-Padilla and Diana Ginette Zárate-Triviño
Pharmaceuticals 2025, 18(3), 330; https://doi.org/10.3390/ph18030330 - 26 Feb 2025
Viewed by 1068
Abstract
Background: Gold nanoparticles enhance immunity, promotes antigen uptake by antigen-presenting cells (APCs), and boost the response against tumor antigens; therefore, they are a promising delivery vehicle. Tumor lysates have shown favorable responses as inductors of anti-cancer immunity, but the effectiveness of these treatments [...] Read more.
Background: Gold nanoparticles enhance immunity, promotes antigen uptake by antigen-presenting cells (APCs), and boost the response against tumor antigens; therefore, they are a promising delivery vehicle. Tumor lysates have shown favorable responses as inductors of anti-cancer immunity, but the effectiveness of these treatments could be improved. Hybrid nanosystems gold nanoparticles with biomolecules have been show promising alternative on uptake, activation and response on immune system. Objectives: This study’s objective was to develop a method of synthesizing gold nanoparticles employing a triple-negative breast cancer (4T1) cell lysate (AuLtNps) as a reducing agent to increase immunogenicity against breast cancer cells. Methods: Nanoparticle formation, size, and ζ potential were confirmed by surface plasmon resonance, dynamic light scattering, and transmission electron microscopy. Protein concentration was quantified using a Pierce BCA assay. The cytotoxic effects of treatments on murine macrophages were assessed, along with nanoparticle and tumor lysate uptake via epifluorescence microscopy. Using a murine model, cytokine secretion profiles were determined, and the efficacy in inhibiting the implantation of a 4T1 model was evaluated. Results/Conclusions: AuLtNps exhibited higher protein content than tumor lysate alone, leading to increased uptake and phagocytosis in murine macrophages, as confirmed by epifluorescence microscopy. Cytokine secretion analysis showed a proinflammatory response, with increased CD8+ and CD22+ lymphocytes and upregulation of APC markers (CD14, CD80, CD86, and MHC II+). Splenocytes demonstrated specific lysis of up to 40% against 4T1 tumor cells. In a murine model, AuLtNPs effectively inhibited tumor implantation, achieving an improved 90-days survival rate, highlighting their potential as an immunotherapy for triple-negative breast cancer. Full article
Show Figures

Graphical abstract

23 pages, 1572 KiB  
Review
Fibroin-Hybrid Systems: Current Advances in Biomedical Applications
by Matheus Valentin Maia, Eryvaldo Sócrates Tabosa do Egito, Anne Sapin-Minet, Daniel Bragança Viana, Ashok Kakkar and Daniel Crístian Ferreira Soares
Molecules 2025, 30(2), 328; https://doi.org/10.3390/molecules30020328 - 15 Jan 2025
Cited by 2 | Viewed by 1245
Abstract
Fibroin, a protein extracted from silk, offers advantageous properties such as non-immunogenicity, biocompatibility, and ease of surface modification, which have been widely utilized for a variety of biomedical applications. However, in vivo studies have revealed critical challenges, including rapid enzymatic degradation and limited [...] Read more.
Fibroin, a protein extracted from silk, offers advantageous properties such as non-immunogenicity, biocompatibility, and ease of surface modification, which have been widely utilized for a variety of biomedical applications. However, in vivo studies have revealed critical challenges, including rapid enzymatic degradation and limited stability. To widen the scope of this natural biomacromolecule, the grafting of polymers onto the protein surface has been advanced as a platform to enhance protein stability and develop smart conjugates. This review article brings into focus applications of fibroin-hybrid systems prepared using chemical modification of the protein with polymers and inorganic compounds. A selection of recent preclinical evaluations of these hybrids is included to highlight the significance of this approach. Full article
(This article belongs to the Special Issue Featured Reviews in Nanochemistry)
Show Figures

Graphical abstract

14 pages, 1813 KiB  
Article
COVID-19 Vaccine Booster Dose Fails to Enhance Antibody Response to Omicron Variant in Reinfected Healthcare Workers
by Leire Fernández-Ciriza, Álvaro González, José Luis del Pozo, Alejandro Fernandez-Montero, Francisco Carmona-Torre, Paula Martínez de Aguirre, María del Mar Sarasa, Silvia Carlos and Gabriel Reina
Viruses 2025, 17(1), 78; https://doi.org/10.3390/v17010078 - 9 Jan 2025
Cited by 1 | Viewed by 1555
Abstract
The emergence of new variants and diverse vaccination regimens have raised uncertainty about vaccine effectiveness against SARS-CoV-2. This study aims to investigate the impact of Omicron primo-/reinfection and primary vaccination schedules on the immunogenicity of an mRNA-based booster dose over a six-month period. [...] Read more.
The emergence of new variants and diverse vaccination regimens have raised uncertainty about vaccine effectiveness against SARS-CoV-2. This study aims to investigate the impact of Omicron primo-/reinfection and primary vaccination schedules on the immunogenicity of an mRNA-based booster dose over a six-month period. We conducted a prospective cohort study to assess the durability and level of antibodies of 678 healthcare workers fully vaccinated against COVID-19. They were categorized based on their primary vaccination regimen. Blood samples were collected before the booster dose and 1 and 6 months after. Significant Anti-S-RBD differences were found between previously infected and naïve volunteers (p = 0.01). Considering the initial vaccine schedules, mRNA-based vaccines displayed significant higher antibody production and longer persistence among both infected and naïve participants. After the booster dose, participants primoinfected with the Omicron variant exhibited higher antibody concentrations than those who experienced reinfection, even after 6 months of follow-up (22,545 and 9460 U/mL, respectively). Moreover, these groups showed the most pronounced disparity in antibody titers ratios between infected and uninfected individuals. Overall, the booster dose failed to enhance humoral response in individuals reinfected with the Omicron variant after receiving it. Hybrid immunity and mRNA-based vaccine initial schedules showed higher levels and longer persistence of antibodies. Full article
(This article belongs to the Special Issue Evaluation of COVID-19 Booster Vaccine Effects)
Show Figures

Figure 1

Back to TopTop