Omicron Variant Could Be an Antigenic Shift of SARS-CoV-2
Abstract
:1. Introduction
2. Neutralization-Resistant Mutations
2.1. T-Cell Response and Its Implications
2.2. Antigenic Cartography
2.3. New Approaches
3. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. COVID-19 Epidemiological Update—24 December 2024. 2024. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update---24-december-2024 (accessed on 16 January 2025).
- Leach, D.; Morris, K.J.; Fiecas, M.B.; Tarr, G.A.M. Sociodemographic effects on pandemic fatigue are multifaceted and context specific: A longitudinal analysis of physical distancing adherence. J. Public Health Res. 2023, 12, 22799036231189308. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, P.; Zareipour, M.; Baljani, E.; Moradali, M.R. Social consequences of the COVID-19 Pandemic. A systematic Review. Invet. Educ. Enferm. 2022, 40, e10. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Sharma, A.R.; Mallik, B. Omicron (B.1.1.529)—A new heavily mutated variant: Mapped location and probable properties of its mutations with an emphasis on S-glycoprotein. Int. J. Biol. Macromol. 2022, 219, 980–997. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.H.; Porrot, F.; Staropoli, I.; Lemonine, F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022, 602, 671–675. [Google Scholar] [CrossRef]
- Chavda, V.P.; Bezbaruah, R.; Deka, K.; Nongrang, L.; Kalita, T. The Delta and Omicron variants of SARS CoV-2: What we know so far. Vaccines 2022, 10, 1926. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Ochoa-Azze, R.; Chang-Monteagudo, A.; Climent-Ruiz, Y.; Macías-Abraham, C.; Valenzuela-Silva, C.; de los Ángeles García-García, M.; Jerez-Barceló, Y.; Triana-Marrero, Y.; Ruiz-Villegas, L.; Dairon Rodríguez-Prieto, L.; et al. Safety and Immunogenicity of the FINLAY-FR-1A Vaccine in COVID-19 Convalescent Participants: An Open-Label Phase 2a and Double-Blind, Randomized, Placebo-Controlled, Phase 2b, Seamless, Clinical Trial. Lancet Respir. Med. 2022, 10, 785–795. [Google Scholar] [CrossRef]
- Dhawan, M.; Said, A.R.A.; Mitra, S.; Alhumaydhi, F.A.; Emran, T.B.; Walairatana, P. Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2? Biomed. Pharmacother. 2022, 154, 113522. [Google Scholar] [CrossRef]
- Gao, X.; Wang, F.; Liu, H.; Chai, J.; Tian, G.; Yao, L.; Chen, C.; Huo, P.; Wen, J.; Zhao, N.; et al. BF.7: A new Omicron subvariant characterized by rapid transmission. Clin. Microbiol. Infect. 2024, 30, 137–141. [Google Scholar] [CrossRef]
- WHO. Statement of Omicron Sublineage BA.2. 2022. Available online: https://www.who.int/news/item/22-02-2022-statement-on-omicron-sublineage-ba.2 (accessed on 22 February 2022).
- Qu, P.; Faraone, J.; Evans, J.; Zou, X.; Zheng, Y.M.; Carlin, C.; Bednash, J.S.; Lozanski, G.; Mallampalli, R.K.; Saif, L.J. Neutralization of the SARS-CoV-2 Omicron BA.4/5 and BA.2.12.1 Subvariants. N. Engl. J. Med. 2022, 386, 2526–2528. [Google Scholar] [CrossRef]
- Qu, P.; Evans, J.P.; Zheng, Y.M.; Carlin, C.; Saif, L.J.; Oltz, E.M.; Xu, K.; Gumina, R.J.; Liu, S.L. Evasion of neutralizing antibody responses by the SARS-CoV-2 BA.2.75 variant. Cell Host Microbe 2022, 30, 1518–1526.E4. [Google Scholar] [CrossRef] [PubMed]
- Qu, P.; Evans, J.P.; Faraone, J.; Zheng, Y.M.; Carlin, C.; Anghelina, M.; Stevens, P.; Fernandez, S.; Jones, D.; Lozanski, G.; et al. Distinct Neutralizing Antibody Escape of SARS-CoV-2 Omicron Subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. bioRxiv 2022. [Google Scholar] [CrossRef]
- Ahmad, S.U.; Kianib, B.H.; Abrarc, M.; Jana, Z.; Zafard, I.; Alie, Y.; Alanazif, A.M.; Malikg, A.; Ratherh, M.A.; Khanf, A.A. A comprehensive genomic study, mutation screening, phylogenetic and statistical analysis of SARS-CoV-2 and its variant omicron among different countries. J. Infect. Public Health 2022, 15, 878–891. [Google Scholar] [CrossRef]
- WHO. TAG-VE Statement on Omicron Sublineages BQ.1 and XBB. 2022. Available online: https://www.who.int/news/item/27-10-2022-tag-ve-statement-on-omicron-sublineages-bq.1-and-xbb (accessed on 27 October 2022).
- Katella, K. Omicron XBB.1.5 ‘Kraken’ Subvariant Is on the Rise: What to Know; Family Health. Yale Medicine: New Haven, CT, USA, 2023. Available online: https://www.yalemedicine.org/ (accessed on 10 February 2023).
- Scarpa, F.; Azzena, I.; Ciccozzi, A.; Giovanetti, M.; Locci, C.; Casu, M.; Fiori, P.L.; Borsetti, A.; Cella, E.; Quaranta, M.; et al. Integrative Genome-Based Survey of the SARS-CoV-2 Omicron XBB.1.16 Variant. Int. J. Mol. Sci. 2023, 24, 13573. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhattacharya, M.; Nag, S.; Dhama, K.; Chakraborty, C. A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses 2023, 15, 167. [Google Scholar] [CrossRef]
- Planas, D.; Staropoli, I.; Vincent, M.; Lemoine, F.; Donati, F.; Prot, M.; Parrot, F.; Guivel-Benhassine, F.; Jeyarajah, B.; Brisebarre, A.; et al. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. Nat. Commun. 2024, 15, 2254. [Google Scholar] [CrossRef]
- Kimura, I.; Yamasoba, D.; Tamura, T.; Nao, N.; Suzuki, T.; Oda, Y.; Mitoma, S.; Ito, J.; Nasseri, H.; Zahradnik, J.; et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5. Cell 2022, 185, 3992–4007.e16. [Google Scholar] [CrossRef]
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneii, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef]
- Dubey, A.; Choudhary, S.; Kumar, P.; Tomar, S. Emerging SARS-CoV-2 Variants: Genetic Variability and Clinical Implications. Curr. Microbiol. 2022, 79, 20. [Google Scholar] [CrossRef]
- Kumar, S.; Karuppanan, K.; Subramaniam, S. Omicron (BA.1) and Sub-Variants (BA.1, BA.2, and BA.3) of SARS-CoV-2 Spike Infectivity and Pathogenicity: A Comparative Sequence and Structural-based Computational Assessment. bioRxiv 2022. [Google Scholar] [CrossRef]
- Kombe, A.J.K.; Biteghe, F.A.N.; Ndoutoume, N.; Jin, T. CD8+ T-cell immune escape by SARS-CoV-2 variants of concern. Front. Immunol. Sec. Viral Immunol. 2022, 13, 962079. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Xu, Z.; Wang, M.; Hu, J.; Liu, Z.; Zhu, F.; Zheng, P.; Kombe, A.J.K.; Zhang, H.; Wu, S.; et al. Structural insights into immune escape at killer T-cell epitope by SARS-CoV-2 Spike Y453F. J. Biol. Chem. 2024, 300, 107563. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, A. Mutants and Variants of SARS-CoV-2 across the Globe: A Comprehensive Review. Acta Sci. Microbiol. 2020, 4, 93–113. [Google Scholar] [CrossRef]
- Park, Y.J.; Pinto, D.; Walls, A.C.; Liu, Z.; Marco, D.A.; Benigni, F.; Zatta, F.; Silacci-Fregni, C.; Bassi, J.; Sprouse, K.R.; et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science 2022, 378, 6620. [Google Scholar] [CrossRef]
- Wang, Q.; Iketani, S.; Li, Z.; Liu, L.; Guo, Y.; Huang, Y.; Bowen, A.D.; Wang, M.; Yu, J.; Valdez, R. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 2023, 186, 279–286.e8. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kruger, N.; Schulz, S.; Cossmann, A.; Rocha, C.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Moldenhauer, A.-S.; Winkler, M.; et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 2022, 185, 447–456. [Google Scholar] [CrossRef]
- Liu, L.; Iketani, S.; Guo, Y.; Chan, J.F.W.; Wang, M.; Liu, L.; Luo, Y.; Chu, H.; Huang, Y.; Nair, M.S.; et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 2022, 602, 676–681. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, S.; Ma, W.; Zhang, Y.; Wang, P. LETTER OPEN Robust neutralization of SARS-CoV-2 variants including JN.1 and BA.2.87.1 by trivalent XBB vaccine-induced antibodies. Signal Transduct. Target. Ther. 2024, 9, 123. [Google Scholar] [CrossRef]
- Tamura, T.; Ito, J.; Uriu, K.; Zahradnik, J.; Kida, I.; Anraku, Y.; Nasser, H.; Shofa, M.; Oda, Y.; Lytras, S.; et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat. Commun. 2023, 14, 2800. [Google Scholar] [CrossRef]
- Evans, J.P.; Zeng, C.; Qu, P.; Faraone, J.; Zheng, Y.M.; Carlin, C.; Bednash, J.S.; Zhou, T.; Lozanski, G.; Mallampalli, R.; et al. Neutralization of SARS-CoV-2 Omicron sub-lineages BA.1, BA.1.1, and BA.2. Cell Host Microbe 2022, 30, 1093–1102.e3. [Google Scholar] [CrossRef]
- Kurhade, C.; Zou, J.; Xia, H.; Cai, H.; Yang, Q.; Cutler, M.; Cooper, D.; Muik, A.; Jansen, K.U.; Xie, X.; et al. Neutralization of Omicron BA.1, BA.2, and BA.3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine. Nat. Commun. 2022, 13, 3602. [Google Scholar] [CrossRef] [PubMed]
- Gruell, H.; Vanshylla, K.; Tober-Lau, P.; Hillus, D.; Schommers, P.; Lehmann, C.; Kurth, F.; Sander, L.E.; Klein, F. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat. Med. 2022, 28, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zou, J.; Kurhade, C.; Cai, H.; Yang, Q.; Cutler, M.; Cooper, D.; Muik, A.; Jansen, K.U.; Xie, X.; et al. Neutralization and durability of 2 or 3 doses of the BNT162b2 vaccine against Omicron SARS-CoV-2. Cell Host Microbe 2022, 30, 485–488.e3. [Google Scholar] [CrossRef]
- Barut, G.T.; Halwe, N.J.; Taddeo, A.; Kelly, J.N.; Schon, J.; Ulrich, L. The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA.1 phenotype. Nat. Commun. 2022, 13, 5929. [Google Scholar] [CrossRef]
- Iketani, S.; Liu, L.; Guo, Y.; Liu, L.; Chan, J.F.W.; Huang, Y.; Wang, M.; Luo, Y.; Yu, J.; Chu, H.; et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 2022, 604, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Abdullahi, A.; Ferreira, I.A.T.M.; Goonawardane, N.; Saito, A.; Kimura, I.; Yamasoba, D.; Gerber, P.P.; Fatihi, S.; Rathore, S.; et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 2022, 603, 706–714. [Google Scholar] [CrossRef]
- Shuai, H.; Chan, J.F.W.; Hu, B.; Chai, Y.; Yuen, T.T.T.; Yin, F.; Huang, X.; Yoon, C. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 2022, 603, 693–699. [Google Scholar] [CrossRef]
- Correnol, J.M.; Alshammary, H.; Tcheou, J.; Singh, G.; Raskin, A.J.; Kawabata, H.; Sominsky, L.A.; Clark, J.J.; Adelsberg, D.C.; Bielak, D.A.; et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 2022, 602, 682–688. [Google Scholar] [CrossRef]
- Cele, S.; Jackson, L.; Khoury, D.S.; Khan, K.; Moyo-Gwete, T.; Tegally, H.; San, J.E.; Cromer, D.; Scheepers, C.; Amoako, D.G.; et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 2022, 602, 654–656. [Google Scholar] [CrossRef]
- Hale, M.; Netland, J.; Chen, Y.; Thouvenel, C.D.; Smith, K.N.; Rich, L.M.; Vanderwal, E.R.; Miranda, M.C.; Eggenberger, J.; Hao, L.; et al. IgM antibodies derived from memory B cells are potent cross-variant neutralizers of SARS-CoV-2. J. Exp. Med. 2022, 219, e20220849. [Google Scholar] [CrossRef]
- Huo, L.; Hsiang, T.Y.; Dalmat, R.R.; Ireton, R.; Morton, J.F.; Stokes, C.; Netland, J.; Hale, M.; Thouvenel, C.; Wald, A.; et al. Dynamics of SARS-CoV-2 VOC Neutralization and Novel mAb Reveal Protection against Omicron. Viruses 2023, 15, 530. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Lustig, G.; Romer, C.; Reedoy, K.; Jule, Z.; Karim, F.; Ganga, Y.; Bernstein, M.; Jackson, L.; Mahlangu, B.; et al. Evolution and neutralization escape of the SARS-CoV-2 BA.2.86 subvariant. Nat. Commun. 2023, 14, 8078. [Google Scholar] [CrossRef]
- Rössler, A.; Netzl, A.; Knabl, L.; Bante, D.; Wilks, S.H.; Borena, W.; Laer, D.; Smith, D.J.; Kimpel, J. Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography. Nat. Commun. 2023, 14, 5224. [Google Scholar] [CrossRef]
- Ito, J.; Suzuki, R.; Uriu, K.; Itakura, Y.; Zahradnik, J.; Kimura, K.T.; Deguchi, S.; Wang, L.; Lytra, S.; Tamura, T.; et al. Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant. Nat. Commun. 2023, 14, 2671. [Google Scholar] [CrossRef]
- Kaushal, A. Immune response and pathogenesis of COVID-19 and the strategies for developing target drugs. Acta Sci. Microbiol. 2020, 3, 92–102. [Google Scholar] [CrossRef]
- Agerer, B.; Koblischke, M.; Gudipati, V.; Montano-Gutierrez, L.F.; Smyth, M.; Popa, A.; Genger, J.W.; Endler, L.; Florian, D.M.; Mühlgrabner, V.; et al. SARS-CoV-2 mutations in MHC-i-restricted epitopes evade CD8(+) T cell responses. Sci. Immunol. 2021, 6, eabg6461. [Google Scholar] [CrossRef]
- Mathew, D.; Giles, J.R.; Baxter, A.E.; Oldridge, D.A.; Greenplate, A.R.; Wu, J.E.; Alanio, C.; Kuri-Cervantes, L.; Pampena, M.B.; D’Andrea, K.; et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 2020, 369, eabc8511. [Google Scholar] [CrossRef]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef]
- Sekine, T.; Perez-Potti, A.; Rivera-Ballesteros, O.; Strålin, K.; Gorin, J.-B.; Olsson, A.; Llewellyn-Lacey, S.; Kamal, H.; Bogdanovic, G.; Muschiol, S.; et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 2020, 183, 158–168.e14. [Google Scholar] [CrossRef]
- Peng, Y.; Mentzer, A.J.; Liu, G.; Yao, X.; Yin, Z.; Dong, D.; Dejnirattisai, W.; Rostron, T.; Supasa, P.; Liu, C.; et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 2020, 21, 1336–1345. [Google Scholar] [CrossRef]
- Mazzoni, A.; Vanni, A.; Spinicci, M.; Capone, M.; Lamacchia, G.; Salvati, L.; Coppi, M.; Antonelli, A.; Carnasciali, A.; Farahvachi, P.; et al. SARS-CoV-2 spike-specific CD4+T cell response is conserved against variants of concern, including omicron. Front Immunol. 2022, 13, 801431. [Google Scholar] [CrossRef] [PubMed]
- Rashid, F.; Suleman, M.; Shah, A.; Dzakah, E.E.; Wang, H.; Chen, S.; Tang, S. Mutations in SARS-CoV-2 ORF8 altered the bonding network with interferon regulatory factor 3 to evade host immune system. Front Microbiol. 2021, 12, 703145. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F. SARS-CoV-2 variants combining spike mutations and the absence of ORF8 may be more transmissible and require close monitoring. Biochem. Biophys. Res. Commun. 2021, 550, 8–14. [Google Scholar] [CrossRef]
- Smith, D.J.; Lapedes, A.S.; de Jong, J.C.; Bestebroer, T.M.; Rimmelzwaan, G.F.; Osterhaus, A.D.; Fouchier, R.A. Mapping the antigenic and genetic evolution of influenza virus. Science 2004, 305, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Rossler, A.; Netzl, A.; Lasrado, N.; Chaudhari, J.; Muhlemann, B.; Wilks, S.H.; Kimpel, J.; Smith, D.J.; Barouch, D.H. Non- human primate antigenic cartography of SARSCoV-2. Cell Rep. 2025, 44, 115140. [Google Scholar] [CrossRef]
- Muhlemann, B.; Trimpart, J.; Walper, F.; Schmidt, M.L.; Jansen, J.; Schroeder, S.; Jewarowski, L.M.; Beheim-Schwarzbach, J.; Bleicker, T.; Niemeyer, D.; et al. Antigenic cartography using variant-specific hamster sera reveals substantial antigenic variation among Omicron subvariants. Proc. Natl. Acad. Sci. USA 2024, 121, e2310917121. [Google Scholar] [CrossRef]
- Suntronwong, N.; Kanokudom, S.; Duangchinda, T.; Chantima, W.; Pakchotanon, P.; Klinfueng, S.; Puenpa, J.; Thatsanathorn, T.; Wanlapakorn, N.; Poovorawan, Y. Neutralization of Omicron subvariants and antigenic cartography following multiple COVID-19 vaccination and repeated omicron non JN.1 or JN.1 infections. Sci. Rep. 2025, 15, 1454. [Google Scholar] [CrossRef]
- Astakhova, E.A.; Morozov, A.A.; Byazrova, M.G.; Sukhova, M.M.; Mikhailov, A.A.; Minnegalieva, A.R.; Gorchakov, A.A.; Filatov, A.V. Antigenic Cartography Indicates That the Omicron BA.1 and BA.4/BA.5 Variants Remain Antigenically Distant to Ancestral SARS-CoV-2 after Sputnik V Vaccination Followed by Homologous (Sputnik V) or Heterologous (Comirnaty) Revaccination. Int. J. Mol. Sci. 2023, 24, 10493. [Google Scholar] [CrossRef]
- Mykytyn, A.Z.; Rissmann, M.; Kok, A.; Rosu, M.E.; Schipper, D.; Breugem, T.I.; van den Deol, P.B.; Chandler, F.; de Wit, T.B.M.; van Royen, M.E.; et al. Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Sci. Immunol. 2022, 7, 75. [Google Scholar] [CrossRef]
- Mykytyn, A.Z.; Rosu, M.E.; Kok, A.; Rissmann, M.; Amerongen, G.; Geurtsvankessel, C.; Vries, R.D.; Munnink, B.B.O.; Smith, D.J.; Koopmans, M.P.G.; et al. Antigenic mapping of emerging SARS-CoV-2 omicron variants BM.1.1.1, BQ.1.1, and XBB.1. Lancet Microbe Corresp. 2023, 4, e294–e295. [Google Scholar] [CrossRef]
- Mykytyn, A.Z.; Fouchier, R.A.M.; Haagmans, B.L. Antigenic evolution of SARS coronavirus. Curr. Opin. Virol. 2023, 62, 101349. [Google Scholar] [CrossRef] [PubMed]
- Sasisekharan, R. Preparing for the future- Nanobodies for COVID-19? N. Engl. J. Med. 2021, 384, 1568–1571. [Google Scholar] [CrossRef]
- Smith, G.J.D.; Vijaykrishna, D.; Bahl, J.; Lycett, S.J.; Worobey, M.; Pybus, O.G.; Ma, S.K.; Cheung, C.L.; Raghwani, J.; Bhatt, S.; et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459, 1122–1125. [Google Scholar] [CrossRef]
- Mao, T.; Israelow, B.; Suberi, A.; Zhou, L.; Reschke, M.; Pena-Hernandez, M.A.; Dong, H.; Homer, R.J.; Saltzman, W.M. Unadjuvanted intranasal spike vaccine booster elicits robust protective mucosal immunity against sarbecoviruses. bioRxiv 2022. [Google Scholar] [CrossRef]
- Langel, S.N.; Johnson, S.; Martinez, C.; Tedjakusuma, S.N.; Peinovich, N.; Dora, E.G.; Kuehl, P.J.; Irshad, H.; Barrett, E.G.; Werts, A.D.; et al. Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model. Sci. Transl. Med. 2022, 14, eabn6868. [Google Scholar] [CrossRef]
- Khaleeq, S.; Sengupta, N.; Kumar, S.; Patel, U.R.; Rajmani, R.S.; Reddy, P.; Pandey, S.; Singh, R.; Dutta, S.; Ringe, R.P.; et al. Neutralizing Efficacy of Encapsulin Nanoparticles against SARS-CoV2 Variants of Concern. Viruses 2023, 15, 346. [Google Scholar] [CrossRef]
- Cameroni, E.; Bowen, J.E.; Rosen, L.E.; Saliba, C.; Zepeda, S.K.; Culap, K.; Pinto, D.; VanBlargan, L.A.; Marco, A.D.; di Iulio, J.; et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 2021, 602, 664–670. [Google Scholar] [CrossRef]
- Pulliam, J.R.C.; von Schalkwyk, C.; Govender, N.; von Gottberg, A.; Cohen, C.; Groome, M.J.; Dushoff, J.; Mlisana, K.; Moultrie, H. Increased risk of SARS-CoV-2 reinfection associated with the emergence of Omicron in South Africa. Science 2021, 376, eabn4947. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.; Wang, Q.; Yang, Q.; Yin, L.; Ning, L.; Chen, Z.; Tang, J.; Deng, W.; He, P.; et al. Intranasal adenovirus-vectored Omicron vaccine induced nasal immunoglobulin A has superior neutralizing potency than serum antibodies. Signal Transduct. Target. Ther. 2024, 9, 190. [Google Scholar] [CrossRef]
- Slamanig, S.; Gonzalez-Dominguez, I.; Chang, L.A.; Lemus, N.; Lai, T.Y.; Martinez, L.; Singh, G.; Dolange, V.; Abdeljawad, A.; Kowdle, S.; et al. Intranasal SARS-CoV-2 Omicron variant vaccines elicit humoral and cellular mucosal immunity in female mice. Ebio Med. Lancet Discov. Sci. 2024, 105, 105185. [Google Scholar] [CrossRef]
- Turner, J.S.; O’Halloran, J.A.; Kalaidina, E.; Kim, W.; Schmitz, A.J.; Zhou, J.Q.; Lei, T.; Thapa, M.; Chen, R.E.; Case, J.B.; et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021, 596, 109–113. [Google Scholar] [CrossRef] [PubMed]
- DiLillo, D.J.; Tan, G.S.; Palese, P.; Ravetch, J.V. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat. Med. 2014, 20, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lin, W.; Dong, W.; Xu, J. Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. J. Biosaf. Biosecurity 2021, 4, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Edara, V.V.; Manning, K.E.; Ellis, M.; Moore, K.M.; Foster, S.L.; Floyd, K.; Davis-Gardner, M.E.; Mantus, G.; Nyhoff, L.E.; Bechnak, S.; et al. mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 Omicron variant. Cell Rep. Med. 2022, 3, 100529. [Google Scholar] [CrossRef]
- Telenti, A.; Arvin, A.; Corey, L.; Corti, D.; Diamond, M.S.; Garcia-Sastre, A.; Garry, R.F.; Holmes, E.C.; Pang, P.S.; Virgin, H.W. After the pandemic: Perspectives on the future trajectory of COVID-19. Nature 2021, 596, 495–504. [Google Scholar] [CrossRef]
Name of VOC | Lineage Status | Average Number of Spike Mutations | Location First Identified |
---|---|---|---|
Alpha | B.1.1.7 | 29.7 | UK in late 2020 |
Beta | B.1.351 | 28.4 | South Africa in late 2020 |
Gamma | P.1 | 29.1 | Brazil in late 2020 |
Delta | B.1.617.2 | 35.4 | India in late 2020 Became dominant worldwide |
Omicron | B.1.1529 | >50 | South Africa in late 2021—rapidly disseminated worldwide |
Mutations Evading the Variants Neutralization | References |
---|---|
D614G, E484A, N501Y, Q493K, K417N, S477N, Y505H, G496S | Chakraborty et al., 2022 [4] |
D614G, T478K, E484K, E484A, N501Y, Q493K, K417N, S477N, Y505H, G496S | Planas et al., 2022 [5] |
R346T, K444T, N460K, F486S | Qu et al., 2022 [12,13,14] |
S371F, S373P, S375F, D614G | Park et al., 2022 [28] |
Q183E, K444T, V445P, F490S, R346T, N460K, F486S | Wang et al., 2023 [29] |
K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H | Hoffman et al., 2022 [30] |
R346K, S371L, N440K, G446S, Q493R | Liu et al., 2022 [31] |
Y505H, N786K, T951, N211I, N856K, V213R | Kumar et al., 2022 [24] |
Q493R, N501Y, S371L, S373P, S375F, Q498R, T478K | Dhawan et al., 2022 [9] |
L455S | Wang et al., 2024 [32] |
Y144 (YY144-145TSN), Y144 del, FF486S, F486V | Tamura et al., 2023 [33] |
Models for Cartography Mapping | SARS-CoV-2 VoCs and Omicron Subvariants | Sera Reactivity Under Various Circumstances | References |
---|---|---|---|
Syrian hamsters (serum against pre-Omicron and Omicron) | D614G, Alpha, Delta and B.1+E484K | Anti-D614G—reactive | Muhlemann B. et al., 2024 [60] |
Alpha (B.1.1.7), Beta (B.1.351), Mu (B.1.621) and D614G recombinant | Anti-Alpha B.1.1.7, Anti-B.1+E484K, Anti-Beta B.1.351, Anti-Delta B.1.617.2, and anti-D614G—highly reactive | ||
Omicron BA.1, BA.2, BQ.1.18, BF.7, and XBB.2 | Ant-Omicron BA.1, BA.2, BA.4/BA.5 and XBB.2—highly reactive | ||
Omicron EG.5.1, JN.1 and BN.1.3.1 | Anti-Omicron BA.1, BA.2, BA.4/BA.5 and XBB.2—non-reactive | ||
Hamsters (serum developed against pre-Omicron) | Pre-Omicron variants | Closely reactive | Mykytyn A.Z. et al., 2022 [63] |
Omicron BA.1 and BA.2 | Faintly reactive to pre-Omicron variants’ sera Reactive to Anti-BA.1 | ||
Humans (6 months prior to booster vaccine and 1 year post-booster with 1 year of sera) with Sputnik V vaccine | WT, Alpha, Beta, Delta, Omicron BA.1 and BA.4/BA.5 | Vaccinated sera (pre-boost) remained highly reactive to pre-Omicron variants | Astakhova E.A. et al., 2023 [62] |
BA.1 and BA.4/BA.5 | Remained at baseline reactivity to Omicron BA.1 and BA.4/BA.5 | ||
Human serum from subjects who received an early vaccination | Pre-Omicron variants Wuhan, D614G, Alpha, Beta, Gamma, Delta | Sera strongly reactive to WT, D614G, Alpha, Beta, Gamma, and Delta (with a mutational profile including N501Y, E484K, K417N/T, L452R) | Mykytyn A.Z. et al., 2023 [64,65] |
Humans following vaccination after Omicron infection | Early Omicron variants BA.1, BA.2, BA 2.12.1, BA4/5, BA.2.75 | Sera highly reactive to early Omicron variants | |
Following vaccination after Omicron infection | Emerged Omicron variants B.Q. and X.B.B | Sera faintly reactive to emerged Omicron variants | |
Sera from vaccinated and Omicron-infected individuals | SARS-CoV, Pangolin and bat Sarbecoviruses | Obtained sera were not reactive | |
Sera collected from infected and immunized primates, with animals immunized with monovalent XBB.1.5 vaccine | Pre-Omicron (Wuhan, Alpha, Beta and Delta) | Highly Reactive to Alpha | Rossler A. 2025 [59] |
Early Omicron (BA.1, BA.2, BA.2.12.1, CH.1.1, DV.7.1, BA.5, and BQ.1.1 | BA.5 and BQ.1.1 located near to XBB.1 descendants. BA.2.75 and DV.7.1 were a similar distance from BA.1 and BA.2, but more distant from XBB.1. BQ.1.1 and DV.7.1 were distinct from earlier variants on the scale. CH.1.1 had the most undetectable titre with all sera cohorts (excluded, as it made map unstable). Sera reactive to other variants before saltation of BA.2.75. | ||
XBC.1.6, and XBB.1—descendent variants (XBB.1, XBB.1.5, FL.1.5.1, HV.1, HK.3, and EG.5) | Sera from vaccinated (Wuhan strain and XBB; one strain) individuals were shown to decline Nabs against XBB.1.5 | ||
Recent Omicron variants (BA.2.86, JN.1, KP.2, KP.3, and KZ.1.1.1 | A strong neutralization from earlier variants’ sera | ||
Hamster model (sera developed against BA.5, which is genetically close to BA.2 (with the exception of three substitutions and two deletions) | BA.1, BA.2, BA.5, BQ.1.1, XBB.1 and BM 1.1.1 | Efficient neutralization of BA.2 and BQ.1.1. BA.1 and BM1.1.1 poorly neutralized. XBB.1 not neutralized. | Mykytyn A.Z. et al., 2023, 2025 [64,65] |
Human model (First-exposure Sera; first-infection sera + two doses of BNT162b2, BNT-vaccinated subjects who received three doses; vivalent booster against BA.5, CK2.1.1, and BA.4/5 + with and without infection) | Representative variants: BA.2.75, BA.5, recombinant XBB and XBF lineages: BA.2.75 (CB.1, BR.3, CH.1.1). Six variants of BA.5 (BA.5.2.1, BE.1.1, Bf.7, BQ.1.3, BQ.1.1, BQ. 1.18. 2 XBB recombinant (XBB.1, XBB.1.5.1). XBF one recombinant variant (XBF3). | Poorly reactive and strong immune escape in BA.2.75, CB.1, BR.3, and CH. L1 with first-exposure sera. With first-exposure sera + two doses of Bivalent BNT. Similar neutralization pattern in BA.5 with BA.5.2.1, B.E. 1.1, and B.F. 7. B.Q. variants with a greater drop in neutralization Abs. First-exposure Sera (ancestral, Alpha, Delta, BA.1, Omicron, and BA.2 Omicron variants) + new Sera of BA.5 and 2 CK.2.11 eiyh XBF3, XBB.1, and XBB. 1.51 had a higher rate of escape. CK.2.1.1 convalescent sera > neutralization pattern with B.Q.1.18 + R346T and B.Q.1.3 + E619Q. No neutralization of the BQ variant using BA.5 convalescent sera. XBB and XBF recombinants poorly neutralized by single-infection sera +3. BNT doses against pre-Omicron variants BA.1, BA.2, and BA.5 | Rössler A. et al., 2023 [47,59] |
Panel variants: D614G, Beta, Delta, BA.1, BA.2, CB.1, BR.3, CH.1.1, BA.5 (BA.5.3.2), BF.7, BQ.1.3, BQ.1.3, BQ.1.1, BQ.1.18, XBB.1, XBB.1.5.1, and XBF.3 Broad N-Antigen | The Biv.alent vaccinated group was show to have a higher level of neutralizing abs. BA4/5 bivalent booster with or without infection; antibodies were reactive against the N-antigen due to the previous infection. | Rössler A. et al., 2023 [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaushal, A. Omicron Variant Could Be an Antigenic Shift of SARS-CoV-2. COVID 2025, 5, 73. https://doi.org/10.3390/covid5050073
Kaushal A. Omicron Variant Could Be an Antigenic Shift of SARS-CoV-2. COVID. 2025; 5(5):73. https://doi.org/10.3390/covid5050073
Chicago/Turabian StyleKaushal, Anju. 2025. "Omicron Variant Could Be an Antigenic Shift of SARS-CoV-2" COVID 5, no. 5: 73. https://doi.org/10.3390/covid5050073
APA StyleKaushal, A. (2025). Omicron Variant Could Be an Antigenic Shift of SARS-CoV-2. COVID, 5(5), 73. https://doi.org/10.3390/covid5050073