polymers-logo

Journal Browser

Journal Browser

Polymer Innovations in Biomedicine

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 684

Special Issue Editor

School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Interests: hydrogel microsphere; hydrogel carrier; ROS sensitive hydrogel; supramolecular hydrogel; nerve tissue engineering; vascular tissue engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymer innovations in the biomedical field are driving the development of a range of critical medical technologies. From drug delivery systems to tissue engineering scaffolds, biocompatible implants, and wearable devices, the versatility of polymers allows them to meet diverse clinical needs. In recent years, researchers have focused on developing smart polymer materials that can respond to biological systems in the body, enabling intelligent drug release during drug delivery. At the same time, biocompatible and biodegradable polymers are widely used to create tissue engineering scaffolds that support cell growth and promote tissue repair. Additionally, advances in conductive polymers have paved the way for smart wearable devices and biosensors. In the future, as polymer science continues to advance, innovative polymers will play an increasingly important role in precision medicine, tissue regeneration, wearable healthcare, and regenerative medicine, driving transformative progress in medical technology.

In this Special Issue, original research articles focusing on the new synthesis of polymers, their modification, fabrication and processing, innovative functionalization, novel biomedical applications, and reviews of the relevant literature, are welcome. Research areas may include (but are not limited to) the following:

  • Polymeric drug carriers;
  • Biodegradable polymeric scaffolds for tissue engineering;
  • Smart wearable devices and biosensors made from polymers;
  • Polymer synthesis and modification for biomedical application;
  • Polymer process and fabrication for biomedical application;
  • Polymer coatings for biomedical application.

Dr. Lin Ye
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers
  • biomaterials
  • biodegradable polymeric scaffolds
  • wound dressings
  • 3D bioprinting
  • biomedical applications
  • cell proliferation
  • biodegradability
  • tissue engineering
  • drug delivery
  • wearable devices and biosensors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

31 pages, 19413 KiB  
Article
Targeted Delivery Inside the Cells Directly Visualized with Förster Resonance Energy Transfer (FRET)
by Igor D. Zlotnikov, Natalya G. Belogurova and Elena V. Kudryashova
Polymers 2025, 17(6), 790; https://doi.org/10.3390/polym17060790 - 16 Mar 2025
Viewed by 436
Abstract
We established a real-time Förster resonance energy transfer (FRET) based assay to evaluate targeted drug delivery using polymeric micelles. Red fluorescent protein (RFP)-expressing E. coli cells were used as a test system to monitor the delivery of drug-fluorophore such as curcumin and umbelliferones [...] Read more.
We established a real-time Förster resonance energy transfer (FRET) based assay to evaluate targeted drug delivery using polymeric micelles. Red fluorescent protein (RFP)-expressing E. coli cells were used as a test system to monitor the delivery of drug-fluorophore such as curcumin and umbelliferones (MUmb and AMC) encapsulated in the polymeric micellar formulations. The efficiency of the drug delivery was quantified using the FRET efficiency, measured as the degree of energy transfer from the drug to the RFP. FRET efficiency directly provides the determination of the delivery efficacy, offering a versatile platform adaptable to various drugs and cell types. We used polymer micelles as a carrier for targeted delivery of fluorescent drugs to bacterial cells expressing RFP. The physicochemical characterization of the interaction between the drugs and the micelles including spectral properties, and the solubility and binding constants, were determined. We revealed a stronger affinity of MUmb for heparin-based micelles (Kd~10−5 M) compared to chitosan-based micelles (Kd~10−4 M), underscoring the influence of polymer composition on drug loading efficiency. For micelles containing MUmb, a FRET efficiency significantly exceeds (by three times) the efficiency for non-micellar MUmb, which have minimal penetration into bacterial cells. The most noticeable effect was observed with the use of the micellar curcumin providing pronounced activation of the RPF fluorescence signal, due to the interaction with curcumins (fluorophore-donor). Curcumin delivery using Chit5-OA micelle resulted in a 115% increase in RFP fluorescence intensity, and Hep-LA showed a significant seven-fold increase. These results highlight the significant effect of micellar composition on the effectiveness of drug delivery. In addition, we have developed a visual platform designed to evaluate the effectiveness of a pharmaceutical product through the visualization of the fluorescence of a bacterial culture on a Petri dish. This method allows us to quickly and accurately assess the penetration of a drug into bacteria, or those located inside other cells, such as macrophages, where the intercellular latent forms of the infection are located. Micellar formulations show enhanced antibacterial activity compared to free drugs, and formulations with Hep-OA micelles demonstrate the most significant reduction in E. coli viability. Synergistic effects were observed when combining curcumin and MUmb with moxifloxacin, resulting in a remarkable 40–50% increase in efficacy. The presented approach, based on the FRET test system with RFP expressed in the bacterial cells, establishes a powerful platform for development and optimizing targeted drug delivery systems. Full article
(This article belongs to the Special Issue Polymer Innovations in Biomedicine)
Show Figures

Graphical abstract

Back to TopTop