Stimuli-Responsive DNA Hydrogel Design Strategies for Biomedical Applications
Abstract
:1. Introduction
2. Pure DNA-Based Stimulation-Responsive DNA Hydrogel
2.1. Hybridization-Based DNA Hydrogel
2.2. Enzyme-Mediated DNA Hydrogel
3. Hybrid DNA-Based Stimulation-Responsive DNA Hydrogel
3.1. Synthetic Polymer Hybrid DNA Hydrogel
3.2. Inorganic Nanomaterial Hybrid DNA Hydrogel
4. Stimuli-Responsive DNA Linker
4.1. Nucleic Acid Strand Responsive Linker
4.2. pH Change-Responsive Linkers
4.3. Target Molecule-Responsive Linkers
4.4. Metal Ion-Responsive Linkers
4.5. Temperature-Responsive Linkers
4.6. Restriction Enzyme-Responsive Linkers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caló, E.; Khutoryanskiy, V.V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2014, 65, 252–267. [Google Scholar] [CrossRef]
- Moroni, L.; Burdick, J.A.; Highley, C.; Lee, S.J.; Morimoto, Y.; Takeuchi, S.; Yoo, J.J. Biofabrication Strategies for 3D in Vitro Models and Regenerative Medicine. Nat. Rev. Mater. 2018, 3, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2013, 6, 105–121. [Google Scholar] [CrossRef]
- Nie, L.; Li, J.; Lu, G.; Wei, X.; Deng, Y.; Liu, S.; Zhong, S.; Shi, Q.; Hou, R.; Sun, Y.; et al. Temperature Responsive Hydrogel for Cells Encapsulation Based on Graphene Oxide Reinforced Poly(N-Isopropylacrylamide)/Hydroxyethyl-Chitosan. Mater. Today Commun. 2022, 31, 103697. [Google Scholar] [CrossRef]
- Shin, Y.; Choi, M.-Y.; Choi, J.; Na, J.-H.; Kim, S.Y. Design of an Electro-Stimulated Hydrogel Actuator System with Fast Flexible Folding Deformation under a Low Electric Field. ACS Appl. Mater. Interfaces 2021, 13, 15633–15646. [Google Scholar] [CrossRef]
- Chen, X.; Fan, M.; Tan, H.; Ren, B.; Yuan, G.; Jia, Y.; Li, J.; Xiong, D.; Xing, X.; Niu, X.; et al. Magnetic and Self-Healing Chitosan-Alginate Hydrogel Encapsulated Gelatin Microspheres via Covalent Cross-Linking for Drug Delivery. Mater. Sci. Eng. C 2019, 101, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Tao, B.; Lin, C.; Deng, Y.; Yuan, Z.; Shen, X.; Chen, M.; He, Y.; Peng, Z.; Hu, Y.; Cai, K. Copper-Nanoparticle-Embedded Hydrogel for Killing Bacteria and Promoting Wound Healing with Photothermal Therapy. J. Mater. Chem. B 2019, 7, 2534–2548. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, M.; Bowyer, A.; Eisenthal, R.; Hubble, J. A Novel pH- and Ionic-Strength-Sensitive Carboxy Methyl Dextran Hydrogel. Biomaterials 2005, 26, 4677–4683. [Google Scholar] [CrossRef]
- Sun, L.; Shen, F.; Tian, L.; Tao, H.; Xiong, Z.; Xu, J.; Liu, Z. ATP-Responsive Smart Hydrogel Releasing Immune Adjuvant Synchronized with Repeated Chemotherapy or Radiotherapy to Boost Antitumor Immunity. Adv. Mater. 2021, 33, e2007910. [Google Scholar] [CrossRef]
- Shigemitsu, H.; Kubota, R.; Nakamura, K.; Matsuzaki, T.; Minami, S.; Aoyama, T.; Urayama, K.; Hamachi, I. Protein-Responsive Protein Release of Supramolecular/Polymer Hydrogel Composite Integrating Enzyme Activation Systems. Nat. Commun. 2020, 11, 3859. [Google Scholar] [CrossRef]
- El-Husseiny, H.M.; Mady, E.A.; Hamabe, L.; Abugomaa, A.; Shimada, K.; Yoshida, T.; Tanaka, T.; Yokoi, A.; Elbadawy, M.; Tanaka, R. Smart/Stimuli-Responsive Hydrogels: Cutting-Edge Platforms for Tissue Engineering and Other Biomedical Applications. Mater. Today Bio 2021, 13, 100186. [Google Scholar] [CrossRef] [PubMed]
- Protsak, I.S.; Morozov, Y.M. Fundamentals and Advances in Stimuli-Responsive Hydrogels and Their Applications: A Review. Gels 2025, 11, 30. [Google Scholar] [CrossRef]
- Morya, V.; Walia, S.; Mandal, B.B.; Ghoroi, C.; Bhatia, D. Functional DNA Based Hydrogels: Development, Properties and Biological Applications. ACS Biomater. Sci. Eng. 2020, 6, 6021–6035. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Y.; Sheng, S.; Yang, H.; Li, Z.; Han, Q.; Zhang, Q.; Su, J. DNA-Based Hydrogels for Bone Regeneration: A Promising Tool for Bone Organoids. Mater. Today Bio 2025, 31, 101502. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P.; Peil, A.; Jiang, Q.; Wang, D.; Mousavi, S.; Xiong, Q.; Shen, Q.; Shang, Y.; Ding, B.; Lin, C.; et al. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem. Rev. 2023, 123, 3976–4050. [Google Scholar] [CrossRef]
- Cao, Z.; Li, K.; Wang, C.; Liu, J.; Tang, Y.; Wang, L. Historical Perspectives and Recent Research on DNA Hydrogel-Based Stimuli-Responsive Systems and Bioengineering Applications. ACS Appl. Polym. Mater. 2022, 5, 31–49. [Google Scholar] [CrossRef]
- Qi, F.; Li, H.; Wang, Y.; Ding, C. Responsive DNA Hydrogels: Design Strategies and Prospects for Biosensing. Chem. Commun. 2024, 60, 10231–10244. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wu, D.; Sun, Q.; Yang, X.; Wang, D.; Zhuang, M.; Zhang, Y.; Gan, M.; Luo, D. A PEGDA/DNA Hybrid Hydrogel for Cell-Free Protein Synthesis. Front. Chem. 2020, 8, 28. [Google Scholar] [CrossRef]
- Yin, M.; Zhang, Y.; Liang, H.; Liu, C.; Bi, Y.; Sun, J.; Guo, W. Smart Free-Standing Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film-Based Sensing System Using Changes in Bending Angles as a Visual Signal Readout. Anal. Chem. 2024, 96, 5215–5222. [Google Scholar] [CrossRef]
- Gao, M.; Krissanaprasit, A.; Miles, A.; Hsiao, L.C.; LaBean, T.H. Mechanical and electrical properties of DNA Hydrogel-Based composites containing Self-Assembled Three-Dimensional nanocircuits. Appl. Sci. 2021, 11, 2245. [Google Scholar] [CrossRef]
- Chen, S.; Lee, C.J.M.; Tan, G.S.X.; Ng, P.R.; Zhang, P.; Zhao, J.; Novoselov, K.S.; Andreeva, D.V. Ultra-Tough Graphene Oxide/DNA 2D Hydrogel with Intrinsic Sensing and Actuation Functions. Macromol. Rapid Commun. 2025, 46, 2400518. [Google Scholar] [CrossRef] [PubMed]
- Gačanin, J.; Synatschke, C.V.; Weil, T. Biomedical Applications of DNA-Based Hydrogels. Adv. Funct. Mater. 2019, 30, 1906253. [Google Scholar] [CrossRef]
- Xing, Y.; Cheng, E.; Yang, Y.; Chen, P.; Zhang, T.; Sun, Y.; Yang, Z.; Liu, D. Self-Assembled DNA Hydrogels with Designable Thermal and Enzymatic Responsiveness. Adv. Mater. 2010, 23, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, C.; Shao, Y.; Chen, C.; Yang, Z.; Liu, D. Reversibly Tuning the Mechanical Properties of a DNA Hydrogel by a DNA Nanomotor. Chem. Commun. 2016, 52, 10668–10671. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Han, J.; Pei, Y.; Du, J. Aptamer Functionalized DNA Hydrogel for Wise-Stage Controlled Protein Release. Appl. Sci. 2018, 8, 1941. [Google Scholar] [CrossRef]
- Bush, J.; Hu, C.-H.; Veneziano, R. Mechanical Properties of DNA Hydrogels: Towards Highly Programmable Biomaterials. Appl. Sci. 2021, 11, 1885. [Google Scholar] [CrossRef]
- Lai, J.; Li, S.; Shi, X.; Coyne, J.; Zhao, N.; Dong, F.; Mao, Y.; Wang, Y. Displacement and Hybridization Reactions in Aptamer-Functionalized Hydrogels for Biomimetic Protein Release and Signal Transduction. Chem. Sci. 2017, 8, 7306–7311. [Google Scholar] [CrossRef]
- Can, A.E.; Ali, A.W.U.; Oelschlaeger, C.; Willenbacher, N.; Stoev, I.D. Mechanically tunable DNA hydrogels as prospective biosensing modules. Macromol. Rapid Commun. 2025. [Google Scholar] [CrossRef]
- Jiang, H.; Pan, V.; Vivek, S.; Weeks, E.R.; Ke, Y. Programmable DNA Hydrogels Assembled from Multidomain DNA Strands. ChemBioChem 2016, 17, 1156–1162. [Google Scholar] [CrossRef]
- Shaver, A.; Mahlum, J.D.; Scida, K.; Johnston, M.L.; Pellitero, M.A.; Wu, Y.; Carr, G.V.; Arroyo-Currás, N. Optimization of vancomycin Aptamer sequence length increases the sensitivity of electrochemical, Aptamer-Based sensors in vivo. ACS Sens. 2022, 7, 3895–3905. [Google Scholar] [CrossRef]
- Wolfe, M.; Cramer, A.; Webb, S.; Goorskey, E.; Chushak, Y.; Mirau, P.; Arroyo-Currás, N.; Chávez, J.L. Rational approach to optimizing Conformation-Switching APTAmers for biosensing applications. ACS Sens. 2024, 9, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chao, J.; Liu, H.; Su, S.; Wang, L.; Huang, W.; Willner, I.; Fan, C. Clamped Hybridization Chain Reactions for the Self-Assembly of Patterned DNA Hydrogels. Angew. Chem. Int. Ed. 2017, 56, 2171–2175. [Google Scholar] [CrossRef]
- Xu, G.; Lai, M.; Wilson, R.; Glidle, A.; Reboud, J.; Cooper, J.M. Branched Hybridization Chain Reaction—Using Highly Dimensional DNA Nanostructures for Label-Free, Reagent-Less, Multiplexed Molecular Diagnostics. Microsyst. Nanoeng. 2019, 5, 37. [Google Scholar] [CrossRef]
- Dong, Y.; Yao, C.; Wang, Z.; Luo, D.; Yang, D. Target-Triggered Polymerization of Branched DNA Enables Enzyme-Free and Fast Discrimination of Single-Base Changes. iScience 2019, 21, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Ye, D.; Zuo, X.; Li, J.; Wang, J.; Liu, H.; Hwang, M.T.; Chao, J.; Su, S.; Wang, L.; et al. DNA Hydrogel with Aptamer-Toehold-Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis. Nano Lett. 2017, 17, 5193–5198. [Google Scholar] [CrossRef] [PubMed]
- Dirks, R.M.; Pierce, N.A. Triggered Amplification by Hybridization Chain Reaction. Proc. Natl. Acad. Sci. USA 2004, 101, 15275–15278. [Google Scholar] [CrossRef]
- Um, S.H.; Lee, J.B.; Park, N.; Kwon, S.Y.; Umbach, C.C.; Luo, D. Enzyme-Catalysed Assembly of DNA Hydrogel. Nat. Mater. 2006, 5, 797–801. [Google Scholar] [CrossRef]
- Song, J.; Im, K.; Hwang, S.; Hur, J.; Nam, J.; Ahn, G.-O.; Hwang, S.; Kim, S.; Park, N. DNA Hydrogel Delivery Vehicle for Light-Triggered and Synergistic Cancer Therapy. Nanoscale 2015, 7, 9433–9437. [Google Scholar] [CrossRef]
- Quazi, M.Z.; Park, N. DNA Hydrogel-Based Nanocomplexes with Cancer-Targeted Delivery and Light-Triggered Peptide Drug Release for Cancer-Specific Therapeutics. Biomacromolecules 2023, 24, 2127–2137. [Google Scholar] [CrossRef]
- Wu, J.; Liyarita, B.R.; Zhu, H.; Liu, M.; Hu, X.; Shao, F. Self-Assembly of Dendritic DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Appl. Mater. Interfaces 2021, 13, 49705–49712. [Google Scholar] [CrossRef]
- Nishikawa, M.; Mizuno, Y.; Mohri, K.; Matsuoka, N.; Rattanakiat, S.; Takahashi, Y.; Funabashi, H.; Luo, D.; Takakura, Y. Biodegradable CpG DNA Hydrogels for Sustained Delivery of Doxorubicin and Immunostimulatory Signals in Tumor-Bearing Mice. Biomaterials 2010, 32, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Y.; Zhou, L.; Li, C.; Zhang, M.; Zhang, F.; Ding, Z.; Wen, Y.; Zhang, P. XT-Type DNA Hydrogels Loaded with VEGF and NGF Promote Peripheral Nerve Regeneration via a Biphasic Release Profile. Biomater. Sci. 2021, 9, 8221–8234. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Park, J.; Choi, J.H.; Kang, S.; Park, N. RNA–DNA Hybrid Nano-Materials for Highly Efficient and Long Lasting RNA Interference Effect. RSC Adv. 2023, 13, 3139–3146. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Lee, M.; Kim, T.; Na, J.; Jung, Y.; Jung, G.Y.; Kim, S.; Park, N. A RNA Producing DNA Hydrogel as a Platform for a High Performance RNA Interference System. Nat. Commun. 2018, 9, 4331. [Google Scholar] [CrossRef]
- Park, N.; Um, S.H.; Funabashi, H.; Xu, J.; Luo, D. A Cell-Free Protein-Producing Gel. Nat. Mater. 2009, 8, 432–437. [Google Scholar] [CrossRef]
- Lee, J.B.; Peng, S.; Yang, D.; Roh, Y.H.; Funabashi, H.; Park, N.; Rice, E.J.; Chen, L.; Long, R.; Wu, M.; et al. A Mechanical Metamaterial Made from a DNA Hydrogel. Nat. Nanotechnol. 2012, 7, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Hanif, W.; Yadav, I.; Hasan, E.; Alsulaiman, D. Programmable All-DNA Hydrogels Based on Rolling Circle and Multiprimed Chain Amplification Products. APL Bioeng. 2023, 7, 046106. [Google Scholar] [CrossRef]
- Wang, C.; Sun, W.; Wright, G.; Wang, A.Z.; Gu, Z. Inflammation-Triggered Cancer Immunotherapy by Programmed Delivery of CPG and Anti-PD1 Antibody. Adv. Mater. 2016, 28, 8912–8920. [Google Scholar] [CrossRef]
- Tang, J.; Yao, C.; Gu, Z.; Jung, S.; Luo, D.; Yang, D. Super-Soft and Super-Elastic DNA Robot with Magnetically Driven Navigational Locomotion for Cell Delivery in Confined Space. Angew. Chem. Int. Ed. 2019, 59, 2490–2495. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Zhou, X.; Lin, H.; Zhu, X.; Lou, Y.; Zheng, L. CRISPR-Responsive RCA-Based DNA Hydrogel Biosensing Platform with Customizable Signal Output for Rapid and Sensitive Nucleic Acid Detection. Anal. Chem. 2024, 96, 15998–16006. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W.; Liu, G.; Tian, L. A Pure DNA Hydrogel with Stable Catalytic Ability Produced by One-Step Rolling Circle Amplification. Chem. Commun. 2017, 53, 3038–3041. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Huang, Y.; Zhao, H.; Li, P.; Liu, G.; Li, J.; Zhu, C.; Tian, L. DNA Hydrogel with Tunable pH-Responsive Properties Produced by Rolling Circle Amplification. Chem. A Eur. J. 2017, 23, 18276–18281. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, D.; Lee, J.B. DNA Aptamer-Based Carrier for Loading Proteins and Enhancing the Enzymatic Activity. RSC Adv. 2016, 7, 1643–1645. [Google Scholar] [CrossRef]
- Tang, S.; Wei, H.; Hu, T.; Jiang, J.; Chang, J.; Guan, Y.; Zhao, G. Suppression of Rolling Circle Amplification by Nucleotide Analogs in Circular Template for Three DNA Polymerases. Biosci. Biotechnol. Biochem. 2016, 80, 1555–1561. [Google Scholar] [CrossRef]
- Merindol, R.; Delechiave, G.; Heinen, L.; Catalani, L.H.; Walther, A. Modular Design of Programmable Mechanofluorescent DNA Hydrogels. Nat. Commun. 2019, 10, 528. [Google Scholar] [CrossRef]
- Chai, S.; Sun, W.; Hou, X.; Pei, S.; Liu, Y.; Luo, K.; Guan, S.; Lv, W. A Primer-Regulated Rolling Circle Amplification (RCA) for Logic-Controlled Multiplexed Enzyme Analysis. ACS Appl. Bio Mater. 2025, 8, 2408–2418. [Google Scholar] [CrossRef]
- Mullis, K.B. The unusual origin of the polymerase chain reaction. Sci. Am. 1990, 262, 56–65. [Google Scholar] [CrossRef]
- Hartman, M.R.; Yang, D.; Tran, T.N.N.; Lee, K.; Kahn, J.S.; Kiatwuthinon, P.; Yancey, K.G.; Trotsenko, O.; Minko, S.; Luo, D. Thermostable Branched DNA Nanostructures as Modular Primers for Polymerase Chain Reaction. Angew. Chem. Int. Ed. 2013, 52, 8699–8702. [Google Scholar] [CrossRef]
- Chen, X.; Xie, Y.; Zhang, Y.; Li, C.; Xu, W. Programmable 3D Rigid Clathrate Hydrogels Based on Self-Assembly of Tetrahedral DNA and Linker PCR Products. Chem. Commun. 2020, 56, 13181–13184. [Google Scholar] [CrossRef]
- Guo, X.; Li, F.; Liu, C.; Zhu, Y.; Xiao, N.; Gu, Z.; Luo, D.; Jiang, J.; Yang, D. Construction of Organelle-Like Architecture by Dynamic DNA Assembly in Living Cells. Angew. Chem. Int. Ed. 2020, 59, 20651–20658. [Google Scholar] [CrossRef]
- Finke, A.; Bußkamp, H.; Manea, M.; Marx, A. Designer Extracellular Matrix Based on DNA–Peptide Networks Generated by Polymerase Chain Reaction. Angew. Chem. Int. Ed. 2016, 55, 10136–10140. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; He, P.; Wang, C.; Wang, X.; Mu, Y.; Guo, W. Fast Transport and Transformation of Biomacromolecular Substances via Thermo-Stimulated Active “Inhalation–Exhalation” Cycles of Hierarchically Structured Smart PNIPAM–DNA Hydrogels. Adv. Mater. 2022, 35, 2206302. [Google Scholar] [CrossRef] [PubMed]
- Yata, T.; Takahashi, Y.; Tan, M.; Nakatsuji, H.; Ohtsuki, S.; Murakami, T.; Imahori, H.; Umeki, Y.; Shiomi, T.; Takakura, Y.; et al. DNA Nanotechnology-Based Composite-Type Gold Nanoparticle-Immunostimulatory DNA Hydrogel for Tumor Photothermal Immunotherapy. Biomaterials 2017, 146, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Nagahara, S.; Matsuda, T. Hydrogel Formation via Hybridization of Oligonucleotides Derivatized in Water-Soluble Vinyl Polymers. Polym. Gels Netw. 1996, 4, 111–127. [Google Scholar] [CrossRef]
- Lin, D.C.; Yurke, B.; Langrana, N.A. Inducing Reversible Stiffness Changes in DNA-Crosslinked Gels. J. Mater. Res. Pratt’s Guide Ventur. Cap. Sources 2005, 20, 1456–1464. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Hu, Y.; Zeng, G.; Zhang, Y.; Zhang, C.; Feng, C. How to Construct DNA Hydrogels for Environmental Applications: Advanced Water Treatment and Environmental Analysis. Small 2018, 14, e1703305. [Google Scholar] [CrossRef]
- Kahn, J.S.; Hu, Y.; Willner, I. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications. Acc. Chem. Res. 2017, 50, 680–690. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Fadeev, M.; Li, Z.; Wulf, V.; Tian, H.; Willner, I. Chemical and Photochemical DNA “Gears” Reversibly Control Stiffness, Shape-Memory, Self-Healing and Controlled Release Properties of Polyacrylamide Hydrogels. Chem. Sci. 2018, 10, 1008–1016. [Google Scholar] [CrossRef]
- Guo, W.; Lu, C.; Qi, X.; Orbach, R.; Fadeev, M.; Yang, H.; Willner, I. Switchable Bifunctional Stimuli-Triggered Poly-N-Isopropylacrylamide/DNA Hydrogels. Angew. Chem. Int. Ed. 2014, 53, 10134–10138. [Google Scholar] [CrossRef]
- Liao, W.-C.; Lilienthal, S.; Kahn, J.S.; Riutin, M.; Sohn, Y.S.; Nechushtai, R.; Willner, I. pH- and Ligand-Induced Release of Loads from DNA–Acrylamide Hydrogel Microcapsules. Chem. Sci. 2017, 8, 3362–3373. [Google Scholar] [CrossRef]
- Tanaka, S.; Yukami, S.; Fukushima, K.; Wakabayashi, K.; Ohya, Y.; Kuzuya, A. Bulk PH-Responsive DNA Quadruplex Hydrogels Prepared by Liquid-Phase, Large-Scale DNA Synthesis. ACS Macro Lett. 2018, 7, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liang, X.; Yang, S.; Wang, N.; He, T.; Wang, Y.; Zhang, L.; Wu, Q.; Gong, C. Novel Polyethyleneimine-R8-Heparin Nanogel for High-Efficiency Gene Delivery in Vitro and in Vivo. Drug Deliv. 2017, 25, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Ren, N.; Sun, R.; Xia, K.; Zhang, Q.; Li, W.; Wang, F.; Zhang, X.; Ge, Z.; Wang, L.; Fan, C.; et al. DNA-Based Hybrid Hydrogels Sustain Water-Insoluble Ophthalmic Therapeutic Delivery against Allergic Conjunctivitis. ACS Appl. Mater. Interfaces 2019, 11, 26704–26710. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Fan, C. Nanocomposite DNA Hydrogels Emerging as Programmable and Bioinstructive Materials Systems. Chem 2022, 8, 1554–1566. [Google Scholar] [CrossRef]
- Liu, C.; Gou, S.; Bi, Y.; Gao, Q.; Sun, J.; Hu, S.; Guo, W. Smart DNA-Gold Nanoparticle Hybrid Hydrogel Film Based Portable, Cost-Effective and Storable Biosensing System for the Colorimetric Detection of Lead (II) and Uranyl Ions. Biosens. Bioelectron. 2022, 210, 114290. [Google Scholar] [CrossRef]
- Zhang, L.; Jean, S.R.; Ahmed, S.; Aldridge, P.M.; Li, X.; Fan, F.; Sargent, E.H.; Kelley, S.O. Multifunctional Quantum Dot DNA Hydrogels. Nat. Commun. 2017, 8, 381. [Google Scholar] [CrossRef]
- Tang, J.; Ou, J.; Zhu, C.; Yao, C.; Yang, D. Flash Synthesis of DNA Hydrogel via Supramacromolecular Assembly of DNA Chains and Upconversion Nanoparticles for Cell Engineering. Adv. Funct. Mater. 2021, 32, 2107267. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Song, G.; He, Y.; Zhang, X.; Liu, Y.; Ju, H. A DNA–Azobenzene Nanopump Fueled by Upconversion Luminescence for Controllable Intracellular Drug Release. Angew. Chem. Int. Ed. 2019, 58, 18207–18211. [Google Scholar] [CrossRef]
- Hu, Y.; Niemeyer, C.M. Designer DNA–Silica/Carbon Nanotube Nanocomposites for Traceable and Targeted Drug Delivery. J. Mater. Chem. B 2020, 8, 2250–2255. [Google Scholar] [CrossRef]
- Schipperges, A.; Hu, Y.; Moench, S.; Weigel, S.; Reith, J.; Ordoñez-Rueda, D.; Rabe, K.S.; Niemeyer, C.M. Formulation of DNA Nanocomposites: Towards Functional Materials for Protein Expression. Polymers 2021, 13, 2395. [Google Scholar] [CrossRef]
- Malhotra, N.; Lee, J.-S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflores, O.B.; Ger, T.-R.; Hsiao, C.-D. Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.P.P.; Lim, D.-K. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics 2023, 15, 2349. [Google Scholar] [CrossRef] [PubMed]
- Rabouw, F.T.; De Mello Donega, C. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Top. Curr. Chem. 2016, 374, 58. [Google Scholar] [CrossRef]
- Karakoti, A.S.; Shukla, R.; Shanker, R.; Singh, S. Surface Functionalization of Quantum Dots for Biological Applications. Adv. Colloid Interface Sci. 2014, 215, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarlou, S.; Kahforoushan, D.; Abdollahi, H.; Zarrintaj, P.; Alomar, A.; Villanueva, C.; Davachi, S.M. Advances in Quantum Dot-Based fluorescence sensors for environmental and biomedical detection. Talanta 2025, 294, 128176. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, J.; Liu, L.; Li, C.; Ju, H. Self-Assembled DNA hydrogel as switchable material for Aptamer-Based fluorescent detection of protein. Anal. Chem. 2013, 85, 11077–11082. [Google Scholar] [CrossRef]
- Liu, J.; Lee, J.H.; Lu, Y. Quantum dot encoding of Aptamer-Linked nanostructures for One-Pot simultaneous detection of multiple analytes. Anal. Chem. 2007, 79, 4120–4125. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.A.; Park, J.C.; Na, H.; Jeon, H.; Nam, Y.S. Short DNA-Catalyzed Formation of Quantum Dot-DNA Hydrogel for Enzyme-Free Femtomolar Specific DNA Assay. Biosens. Bioelectron. 2021, 182, 113110. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Zhang, F. Bioapplications and Biotechnologies of Upconversion Nanoparticle-Based Nanosensors. Analyst 2016, 141, 3601–3620. [Google Scholar] [CrossRef]
- He, X.; Zhao, Y.; He, D.; Wang, K.; Xu, F.; Tang, J. ATP-Responsive Controlled Release System Using Aptamer-Functionalized Mesoporous Silica Nanoparticles. Langmuir 2012, 28, 12909–12915. [Google Scholar] [CrossRef]
- Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials 2019, 12, 624. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B. Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. Int. J. Mol. Sci. 2017, 18, 2142. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.A.; Fleming, A.M.; Burrows, C.J. Rapid Screen of Potential I-Motif Forming Sequences in DNA Repair Gene Promoters. ACS Omega 2018, 3, 9630–9635. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, S.; Dilbaghi, N.; Ahluwalia, A.S.; Hassan, A.A.; Kim, K.-H. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem. Sci. 2018, 44, 190–213. [Google Scholar] [CrossRef]
- Srinivas, N.; Ouldridge, T.E.; Šulc, P.; Schaeffer, J.M.; Yurke, B.; Louis, A.A.; Doye, J.P.K.; Winfree, E. On the Biophysics and Kinetics of Toehold-Mediated DNA Strand Displacement. Nucleic Acids Res. 2013, 41, 10641–10658. [Google Scholar] [CrossRef]
- Wang, L.; Deng, R.; Li, J. Target-Fueled DNA Walker for Highly Selective miRNA Detection. Chem. Sci. 2015, 6, 6777–6782. [Google Scholar] [CrossRef]
- Hu, Y.; Chu, X. A CHA-Based DNA Stochastic Walker That Traverses on Cell Membranes. Nanoscale 2020, 13, 1596–1599. [Google Scholar] [CrossRef]
- Yue, L.; Wang, S.; Wulf, V.; Willner, I. Stiffness-Switchable DNA-Based Constitutional Dynamic Network Hydrogels for Self-Healing and Matrix-Guided Controlled Chemical Processes. Nat. Commun. 2019, 10, 4774. [Google Scholar] [CrossRef] [PubMed]
- Buchberger, A.; Saini, H.; Eliato, K.R.; Zare, A.; Merkley, R.; Xu, Y.; Bernal, J.; Ros, R.; Nikkhah, M.; Stephanopoulos, N. Reversible Control of Gelatin Hydrogel Stiffness by Using DNA Crosslinkers**. ChemBioChem 2021, 22, 1755–1760. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Li, Y.; Jiang, C.; Chen, D.; Wen, Y.; Li, Z. Capillarity Self-Driven DNA Hydrogel Sensor for Visual Quantification of microRNA. Sens. Actuators B Chem. 2020, 313, 128036. [Google Scholar] [CrossRef]
- Wu, M.; Liu, Y.; Zhu, X.; Zhang, X.; Kong, Q.; Lu, W.; Yuan, X.; Liu, Y.; Lu, K.; Dai, Y.; et al. Advances in I-Motif Structures: Stability, Gene Expression, and Therapeutic Applications. Int. J. Biol. Macromol. 2025, 311, 143555. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Lu, C.; Orbach, R.; Wang, F.; Qi, X.; Cecconello, A.; Seliktar, D.; Willner, I. PH-Stimulated DNA Hydrogels Exhibiting Shape-Memory Properties. Adv. Mater. 2014, 27, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhao, Z.; Wang, Y.; Zou, J.; Lin, Q.; Duan, Y. One-Step Self-Assembly of Multifunctional DNA Nanohydrogels: An Enhanced and Harmless Strategy for Guiding Combined Antitumor Therapy. ACS Appl. Mater. Interfaces 2019, 11, 46479–46489. [Google Scholar] [CrossRef]
- Lee, M.; Lee, M.; Song, Y.; Kim, S.; Park, N. Recent Advances and Prospects of Nucleic Acid Therapeutics for Anti-Cancer Therapy. Molecules 2024, 29, 4737. [Google Scholar] [CrossRef]
- Fu, X.; Chen, T.; Song, Y.; Feng, C.; Chen, H.; Zhang, Q.; Chen, G.; Zhu, X. MRNA Delivery by a PH-Responsive DNA Nano-Hydrogel. Small 2021, 17, 2101224. [Google Scholar] [CrossRef]
- Qin, Y.; Sohn, Y.S.; Li, X.; Nechushtai, R.; Zhang, J.; Tian, H.; Willner, I. Photochemically Triggered and Autonomous Oscillatory PH-modulated Transient Assembly/Disassembly of DNA Microdroplet Coacervates. Angew. Chem. Int. Ed. 2024, 64, e202415550. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.Y.; Do, J.Y.; Hong, C.A. Target DNA- and pH-Responsive DNA Hydrogel–Based Capillary Assay for the Optical Detection of Short SARS-CoV-2 cDNA. Microchim. Acta 2021, 189, 34. [Google Scholar] [CrossRef]
- Hermann, T.; Patel, D.J. Adaptive Recognition by Nucleic Acid Aptamers. Science 2000, 287, 820–825. [Google Scholar] [CrossRef]
- Chang, Y.; Zheng, W.; Duan, M.; Su, T.; Wang, Z.; Wu, S.; Duan, N. Construction of Aptamer-Functionalized DNA Hydrogels for Effective Inhibition of Shiga Toxin II Toxicity. J. Agric. Food Chem. 2024, 72, 23533–23543. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cheng, S.; Zhang, Q.; Zhou, T.; Zhang, T.; Liu, S.; Peng, Y.; Yu, J.; Xu, J.; Wang, Q.; et al. Dual-Multivalent Aptamer-Based Drug Delivery Platform for Targeted SRC Silencing to Enhance Doxorubicin Sensitivity in Endometrial Cancer. Int. J. Biol. Sci. 2024, 20, 5812–5830. [Google Scholar] [CrossRef]
- Simon, A.J.; Walls-Smith, L.T.; Freddi, M.J.; Fong, F.Y.; Gubala, V.; Plaxco, K.W. Simultaneous Measurement of the Dissolution Kinetics of Responsive DNA Hydrogels at Multiple Length Scales. ACS Nano 2016, 11, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Y.; Jiao, X.; Li, T.; Lv, Z.; Yang, C.J.; Zhang, X.; Wen, Y. Control of Capillary Behavior through Target-Responsive Hydrogel Permeability Alteration for Sensitive Visual Quantitative Detection. Nat. Commun. 2019, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Jiang, P.; Gaddes, E.R.; Zhao, N.; Abune, L.; Wang, Y. Aptamer-Functionalized Hydrogel for Self-Programmed Protein Release via Sequential Photoreaction and Hybridization. Chem. Mater. 2017, 29, 5850–5857. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.-C.; Ye, B.-C.; Wang, H.; Zhu, Z.; Tan, W. Colorimetric Logic Gates Based on Aptamer-Crosslinked Hydrogels. Chem. Commun. 2011, 48, 1248–1250. [Google Scholar] [CrossRef]
- Liao, W.-C.; Lu, C.-H.; Hartmann, R.; Wang, F.; Sohn, Y.S.; Parak, W.J.; Willner, I. Adenosine Triphosphate-Triggered Release of Macromolecular and Nanoparticle Loads from Aptamer/DNA-Cross-Linked Microcapsules. ACS Nano 2015, 9, 9078–9086. [Google Scholar] [CrossRef]
- Mo, R.; Jiang, T.; DiSanto, R.; Tai, W.; Gu, Z. ATP-Triggered Anticancer Drug Delivery. Nat. Commun. 2014, 5, 3364. [Google Scholar] [CrossRef]
- Jouha, J.; Xiong, H. DNAZyme-Functionalized Nanomaterials: Recent Preparation, Current Applications, and Future Challenges. Small 2021, 17, 2105439. [Google Scholar] [CrossRef]
- Santoro, S.W.; Joyce, G.F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 1997, 94, 4262. [Google Scholar] [CrossRef]
- Zaborowska, Z.; Fürste, J.P.; Erdmann, V.A.; Kurreck, J. Sequence Requirements in the Catalytic Core of the “10-23” DNA Enzyme. J. Biol. Chem. 2002, 277, 40617–40622. [Google Scholar] [CrossRef]
- Chai, H.; Yan, C.; Guo, J.; Lei, F.; Miao, P. Electrochemical Analysis of Ca2+ Based on DNAzyme Catalyzed Degradation of DNA Hydrogel. Electrochem. Commun. 2024, 165, 107755. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, Y.; Chen, Y.; Wu, X.; Fang, L.; Zhu, Z.; Yang, C.J. Target-Responsive DNAZyme Cross-Linked Hydrogel for Visual Quantitative Detection of Lead. Anal. Chem. 2014, 86, 11434–11439. [Google Scholar] [CrossRef] [PubMed]
- Lilienthal, S.; Shpilt, Z.; Wang, F.; Orbach, R.; Willner, I. Programmed DNAZyme-Triggered Dissolution of DNA-Based Hydrogels: Means for Controlled Release of Biocatalysts and for the Activation of Enzyme Cascades. ACS Appl. Mater. Interfaces 2015, 7, 8923–8931. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Yu, S.; Li, R.; He, Y.; Wang, Y.; Wang, F. Bioorthogonal Disassembly of Hierarchical DNAzyme Nanogel for High-Performance Intracellular MicroRNA Imaging. Nano Lett. 2023, 23, 1386–1394. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, L.; Hu, Y.; Li, G. Target-Responsive DNAzyme Hydrogel Reinforced by Click Reaction for Surface Enhanced Raman Scattering Detection of Okadaic Acid. Sens. Actuators B Chem. 2025, 437, 137756. [Google Scholar] [CrossRef]
- Hou, M.; Yin, X.; Jiang, J.; He, J. DNAzyme-Triggered Sol–Gel–Sol Transition of a Hydrogel Allows Target Cell Enrichment. ACS Appl. Mater. Interfaces 2021, 13, 15031–15039. [Google Scholar] [CrossRef]
- Wang, J.; Yu, S.; Wu, Q.; Gong, X.; He, S.; Shang, J.; Liu, X.; Wang, F. A Self-Catabolic Multifunctional DNAzyme Nanosponge for Programmable Drug Delivery and Efficient Gene Silencing. Angew. Chem. 2021, 133, 10861–10869. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kondo, J.; Sychrovský, V.; Šebera, J.; Dairaku, T.; Saneyoshi, H.; Urata, H.; Torigoe, H.; Ono, A. Structures, Physicochemical Properties, and Applications of T–HgII–T, C–AgI–C, and Other Metallo-Base-Pairs. Chem. Commun. 2015, 51, 17343–17360. [Google Scholar] [CrossRef]
- Guo, W.; Qi, X.-J.; Orbach, R.; Lu, C.-H.; Freage, L.; Mironi-Harpaz, I.; Seliktar, D.; Yang, H.-H.; Willner, I. Reversible Ag+-Crosslinked DNA Hydrogels. Chem. Commun. 2014, 50, 4065. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Liu, H.; Gu, Z. An Exothermic Chip for Point-of-Care Testing Using a Forehead Thermometer as a Readout. Lab A Chip 2015, 16, 525–531. [Google Scholar] [CrossRef]
- Lyu, D.; Chen, S.; Guo, W. Liposome Crosslinked Polyacrylamide/DNA Hydrogel: A Smart Controlled-Release System for Small Molecular Payloads. Small 2018, 14, 1704039. [Google Scholar] [CrossRef]
- Lu, S.; Shen, J.; Fan, C.; Li, Q.; Yang, X. DNA Assembly-Based Stimuli-Responsive Systems. Adv. Sci. 2021, 8, 2100328. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Hwang, S.; Im, K.; Hur, J.; Nam, J.; Hwang, S.; Ahn, G.-O.; Kim, S.; Park, N. Light-Responsible DNA Hydrogel–Gold Nanoparticle Assembly for Synergistic Cancer Therapy. J. Mater. Chem. B 2014, 3, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, S.; Nishimura, T.; Ogura, Y.; Tanida, J. Photothermal Fabrication of Microscale Patterned DNA Hydrogels. R. Soc. Open Sci. 2018, 5, 171779. [Google Scholar] [CrossRef] [PubMed]
- Buckhout-White, S.; Person, C.; Medintz, I.L.; Goldman, E.R. Restriction Enzymes as a Target for DNA-Based Sensing and Structural Rearrangement. ACS Omega 2018, 3, 495–502. [Google Scholar] [CrossRef]
- Li, F.; Song, N.; Dong, Y.; Li, S.; Li, L.; Liu, Y.; Li, Z.; Yang, D. A Proton-Activatable DNA-Based Nanosystem Enables Co-Delivery of CRISPR/CAS9 and DNAZyme for Combined Gene Therapy. Angew. Chem. Int. Ed. 2022, 61, e202116569. [Google Scholar] [CrossRef]
- Jin, J.; Xing, Y.; Xi, Y.; Liu, X.; Zhou, T.; Ma, X.; Yang, Z.; Wang, S.; Liu, D. A Triggered DNA Hydrogel Cover to Envelop and Release Single Cells. Adv. Mater. 2013, 25, 4714–4717. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Lee, M.; Kim, S.; Park, N. Stimuli-Responsive DNA Hydrogel Design Strategies for Biomedical Applications. Biosensors 2025, 15, 355. https://doi.org/10.3390/bios15060355
Lee M, Lee M, Kim S, Park N. Stimuli-Responsive DNA Hydrogel Design Strategies for Biomedical Applications. Biosensors. 2025; 15(6):355. https://doi.org/10.3390/bios15060355
Chicago/Turabian StyleLee, Minhyuk, Minjae Lee, Sungjee Kim, and Nokyoung Park. 2025. "Stimuli-Responsive DNA Hydrogel Design Strategies for Biomedical Applications" Biosensors 15, no. 6: 355. https://doi.org/10.3390/bios15060355
APA StyleLee, M., Lee, M., Kim, S., & Park, N. (2025). Stimuli-Responsive DNA Hydrogel Design Strategies for Biomedical Applications. Biosensors, 15(6), 355. https://doi.org/10.3390/bios15060355