Development of an Influenza/COVID-19 Combination mRNA Vaccine Containing a Novel Multivalent Antigen Design That Enhances Immunogenicity of Influenza Virus B Hemagglutinins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmids Construction
2.1.1. Luciferase Reporter Plasmids
2.1.2. Plasmids Coding for HA and S-Protein RBD Antigens
2.2. Plasmid Stability
2.3. mRNA Production
2.4. Formulation
2.4.1. Ready to Use (RTU) Lipid Nano Particles (LNP)
2.4.2. Encapsulated LNP
2.5. Cell Culture
2.6. Viruses
2.7. In Vitro Assays
2.8. In Vivo Immunogenicity Studies
2.8.1. Hemagglutination Inhibition (HAI) Assay
2.8.2. SARS-CoV-2 Pseudovirus Neutralization Assay
2.8.3. COVID-19 IgG Titer Assay
2.9. Statistical Analysis
3. Results
3.1. Vector Optimization
3.2. Optimization of Influenza HA Antigen Design
3.2.1. Monovalent and Bivalent HA Antigens
3.2.2. Bivalent HA Antigen Optimization
3.2.3. Trivalent HA Antigens
3.3. Application of Dumbbell Antigens to Influenza/COVID-19 Combination mRNA Vaccines
3.4. Single mRNA Encoded Tetravalent Influenza/COVID-19 Combination Vaccines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COVID-19 | coronavirus disease 2019 |
UTR | untranslated region |
HAI | hemagglutination inhibition |
RBD | receptor binding domain |
IVT | in vitro transcription |
LNP | lipid nanoparticle |
RTU LNP | ready-to-use lipid nanoparticle |
GMT | geometric mean titer |
ccCVVs | cell culture-based candidate vaccine viruses |
NIBSC | National Institute for Biological Standards and Control |
CDC | Centers for Disease Control and Prevention |
RLU | relative luminescence units |
TCID50 | Tissue Culture Infectious Dose 50% |
References
- Centers for Disease Control and Prevention. About Estimated Flu Burden. Available online: https://www.cdc.gov/flu-burden/php/about/index.html (accessed on 21 February 2025).
- Centers for Disease Control and Prevention. Preliminary Estimated Flu Disease Burden 2024–2025 Flu Season. Available online: https://www.cdc.gov/flu-burden/php/data-vis/2024-2025.html (accessed on 21 February 2025).
- Centers for Disease Control and Prevention. Weekly US Influenza Surveillance Report: Key Updates for Week 52, Ending 28 December 2024. Available online: https://www.cdc.gov/fluview/surveillance/2024-week-52.html (accessed on 21 February 2025).
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine 2008, 26 (Suppl. 4), D49–D53. [Google Scholar] [CrossRef]
- World Health Organization. History of the Influenza Vaccine. Available online: https://www.who.int/news-room/spotlight/history-of-vaccination/history-of-influenza-vaccination (accessed on 21 February 2025).
- Pfizer; BioNTech. Pfizer and BioNTech Provide Update on mRNA-Based Combination Vaccine Program Against Influenza and COVID-19 in Individuals 18–64 Years of Age [Press Release]. 2024. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-provide-update-mrna-based-combination (accessed on 21 April 2025).
- Moderna. Moderna Announces Positive Phase 3 Data for Combination Vaccine Against Influenza and COVID-19 [Press Release]. 2024. Available online: https://investors.modernatx.com/news/news-details/2024/Moderna-Announces-Positive-Phase-3-Data-for-Combination-Vaccine-Against-Influenza-and-COVID-19-/default.aspx (accessed on 21 April 2025).
- CureVac. CureVac Announces Promising Phase 2 Interim Data from Seasonal Influenza Vaccine Development Program in Collaboration with GSK [Press Release]. 2024. Available online: https://www.curevac.com/en/curevac-announces-promising-phase-2-interim-data-from-seasonal-influenza-vaccine-development-program-in-collaboration-with-gsk/ (accessed on 21 April 2025).
- Moderna. Moderna Announces Interim Phase 3 Safety and Immunogenicity Results for mRNA-1010, a Seasonal Influenza Vaccine Candidate [Press Release]. 2023. Available online: https://www.accessnewswire.com/newsroom/en/healthcare-and-pharmaceutical/moderna-announces-interim-phase-3-safety-and-immunogenicity-results-fo-739660 (accessed on 21 April 2025).
- Reneer, Z.B.; Bergeron, H.C.; Reynolds, S.; Thornhill-Wadolowski, E.; Feng, L.; Bugno, M.; Truax, A.D.; Tripp, R.A. mRNA vaccines encoding influenza virus hemagglutinin (HA) elicits immunity in mice from influenza A virus challenge. PLoS ONE 2024, 19, e0297833. [Google Scholar] [CrossRef]
- Güthe, S.; Kapinos, L.; Möglich, A.; Meier, S.; Grzesiek, S.; Kiefhaber, T. Very fast folding and association of a trimerization domain from bacteriophage T4 fibritin. J. Mol. Biol. 2004, 337, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.E.; Falsey, A.R.; Scott, D.A.; Gurtman, A.; Zareba, A.M.; Jansen, K.U.; Gruber, W.C.; Dormitzer, P.R.; Swanson, K.A.; Radley, D.; et al. A Randomized Phase 1/2 Study of a Respiratory Syncytial Virus Prefusion F Vaccine. J. Infect. Dis. 2022, 225, 1357–1366. [Google Scholar] [CrossRef]
- McLellan, J.S.; Chen, M.; Joyce, M.G.; Sastry, M.; Stewart-Jones, G.B.; Yang, Y.; Zhang, B.; Chen, L.; Srivatsan, S.; Zheng, A.; et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 2013, 342, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, T.; Akada, S.; Anami, A.; Kosaka, K.; Munjal, I.; Baber, J.; Shoji, Y.; Aizawa, M.; Swanson, K.A.; Gurtman, A. Efficacy and safety of bivalent RSVpreF maternal vaccination to prevent RSV illness in Japanese infants: Subset analysis from the pivotal randomized phase 3 MATISSE trial. Vaccine 2024, 42, 126041. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Xie, X.; Zhao, S.; Wang, Q.; Xu, J.; Hua, Y.; Wu, C.; Gu, S.; Fang, T.; et al. Improved Respiratory Syncytial Virus Fusion F Protein Mutant and Its Application. CN117886902A, 26 November 2024. [Google Scholar]
- Weldon, W.C.; Wang, B.Z.; Martin, M.P.; Koutsonanos, D.G.; Skountzou, I.; Compans, R.W. Enhanced immunogenicity of stabilized trimeric soluble influenza hemagglutinin. PLoS ONE 2010, 5, e12466. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Raheem, I.T.; Nahas, D.D.; Citron, M.; Kim, P.S.; Montefiori, D.C.; Ottinger, E.A.; Hepler, R.W.; Hrin, R.; Patel, S.B.; et al. Stabilized trimeric peptide immunogens of the complete HIV-1 gp41 N-heptad repeat and their use as HIV-1 vaccine candidates. Proc. Natl. Acad. Sci. USA 2024, 121, e2317230121. [Google Scholar] [CrossRef]
- Impagliazzo, A.; Milder, F.; Kuipers, H.; Wagner, M.V.; Zhu, X.; Hoffman, R.M.; van Meersbergen, R.; Huizingh, J.; Wanningen, P.; Verspuij, J.; et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 2015, 349, 1301–1306. [Google Scholar] [CrossRef]
- Wei, C.J.; Xu, L.; Kong, W.P.; Shi, W.; Canis, K.; Stevens, J.; Yang, Z.Y.; Dell, A.; Haslam, S.M.; Wilson, I.A.; et al. Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J. Virol. 2008, 82, 6200–6208. [Google Scholar] [CrossRef]
- Krammer, F.; Margine, I.; Tan, G.S.; Pica, N.; Krause, J.C.; Palese, P. A carboxy-terminal trimerization domain stabilizes conformational epitopes on the stalk domain of soluble recombinant hemagglutinin substrates. PLoS ONE 2012, 7, e43603. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, L.A.; de Vries, R.P.; de Boer-Luijtze, E.A.; Rigter, A.; Rottier, P.J.; de Haan, C.A. A single immunization with soluble recombinant trimeric hemagglutinin protects chickens against highly pathogenic avian influenza virus H5N1. PLoS ONE 2010, 5, e10645. [Google Scholar] [CrossRef]
- Arevalo, C.P.; Bolton, M.J.; Le Sage, V.; Ye, N.; Furey, C.; Muramatsu, H.; Alameh, M.G.; Pardi, N.; Drapeau, E.M.; Parkhouse, K.; et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 2022, 378, 899–904. [Google Scholar] [CrossRef] [PubMed]
- WHO Technical Advisory Group on COVID-19 Vaccine Composition. Statement on the Antigen Composition of COVID-19 Vaccines [Statement]. 2023. Available online: https://www.who.int/news/item/13-12-2023-statement-on-the-antigen-composition-of-covid-19-vaccines (accessed on 21 April 2025).
- World Health Organization. Recommendations Announced for Influenza Vaccine Composition for the 2023–2024 Northern Hemisphere Influenza Season; World Health Organization: Geneva, Switzerland, 2023; pp. 1–11. Available online: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2023-2024-northern-hemisphere-influenza-season (accessed on 24 February 2023).
- World Health Organization. Recommended Composition of Influenza Virus Vaccines for Use in the 2024–2025 Northern Hemisphere Influenza Season; World Health Organization: Geneva, Switzerland, 2024; pp. 1–11. Available online: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2024-2025-northern-hemisphere-influenza-season (accessed on 23 February 2024).
- World Health Organization. Recommended Composition of Influenza Virus Vaccines for Use in the 2022–2023 Northern Hemisphere Influenza Season; World Health Organization: Geneva, Switzerland, 2022; pp. 1–11. Available online: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2022-2023-northern-hemisphere-influenza-season (accessed on 25 February 2022).
- World Health Organization. Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza; World Health Organization: Geneva, Switzerland, 2011; p. xii. 139p. [Google Scholar]
- World Health Organization. WHO Manual on Animal Influenza Diagnosis and Surveillance; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Trepotec, Z.; Geiger, J.; Plank, C.; Aneja, M.K.; Rudolph, C. Segmented poly(A) tails significantly reduce recombination of plasmid DNA without affecting mRNA translation efficiency or half-life. RNA 2019, 25, 507–518. [Google Scholar] [CrossRef]
- Vogel, A.B.; Kanevsky, I.; Che, Y.; Swanson, K.A.; Muik, A.; Vormehr, M.; Kranz, L.M.; Walzer, K.C.; Hein, S.; Guler, A.; et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 2021, 592, 283–289. [Google Scholar] [CrossRef]
- Fang, E.; Liu, X.; Li, M.; Zhang, Z.; Song, L.; Zhu, B.; Wu, X.; Liu, J.; Zhao, D.; Li, Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct. Target. Ther. 2022, 7, 94. [Google Scholar] [CrossRef]
- Lucksinger, G.; Liu, Y.; Wang, Z.; Fried, D.; Fabregas, H.; Meyer, J.; Vijil, J.; Diemert, D.; Stine, B.; Tripurasetty, G. Multivalency Through Single-Stranded mRNA: Results From a Phase 1 Study to Assess the Safety and Immunogenicity of a Broadly Protective mRNA Vaccine JCXH-221 Against SARS-CoV-2 Infection and Disease. In Proceedings of the World Vaccine Congress, Washington, DC, USA, 1–4 April 2024. [Google Scholar]
- Holdsworth, S.R.; Kitching, A.R.; Tipping, P.G. Th1 and Th2 T helper cell subsets affect patterns of injury and outcomes in glomerulonephritis. Kidney Int. 1999, 55, 1198–1216. [Google Scholar] [CrossRef]
- Mangus, D.A.; Evans, M.C.; Jacobson, A. Poly(A)-binding proteins: Multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 2003, 4, 223. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; Oliveira, P.H.; Prazeres, D.M.; Monteiro, G.A. High frequency plasmid recombination mediated by 28 bp direct repeats. Mol. Biotechnol. 2008, 40, 252–260. [Google Scholar] [CrossRef]
- Juraszek, J.; Milder, F.J.; Yu, X.; Blokland, S.; van Overveld, D.; Abeywickrema, P.; Tamara, S.; Sharma, S.; Rutten, L.; Bakkers, M.J.G.; et al. Engineering a cleaved, prefusion-stabilized influenza B virus hemagglutinin by identification and locking of all six pH switches. PNAS Nexus 2024, 3, pgae462. [Google Scholar] [CrossRef]
- Milder, F.J.; Jongeneelen, M.; Ritschel, T.; Bouchier, P.; Bisschop, I.J.M.; de Man, M.; Veldman, D.; Le, L.; Kaufmann, B.; Bakkers, M.J.G.; et al. Universal stabilization of the influenza hemagglutinin by structure-based redesign of the pH switch regions. Proc. Natl. Acad. Sci. USA 2022, 119, e2115379119. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.S.; Zhu, X.; Yu, W.; Wilson, I.A. Design and Structure of an Engineered Disulfide-Stabilized Influenza Virus Hemagglutinin Trimer. J. Virol. 2015, 89, 7417–7420. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chang, J.C.; Guo, Z.; Carney, P.J.; Shore, D.A.; Donis, R.O.; Cox, N.J.; Villanueva, J.M.; Klimov, A.I.; Stevens, J. Structural stability of influenza A(H1N1)pdm09 virus hemagglutinins. J. Virol. 2014, 88, 4828–4838. [Google Scholar] [CrossRef] [PubMed]
Virus | Strain | Isolate ID | Protein ID |
---|---|---|---|
Influenza | A/Wisconsin/588/2019 (H1N1) | EPI_ISL_404460 | EPI1661231 |
Influenza | A/Wisconsin/67/2022 (H1N1) | EPI_ISL_15928563 | EPI2224978 |
Influenza | A/Darwin/6/2021 (H3N2) | EPI_ISL_2233238 | EPI1859992 |
Influenza | A/Massachusetts/18/2022 (H3N2) | EPI_ISL_16968012 | EPI2413620 |
Influenza | B/Austria/1359417/2021 (B/Victoria) | EPI_ISL_2378894 | EPI1868375 |
Influenza | B/Phuket/3073/2013 (B/Yamagata) | EPI_ISL_161843 | EPI529345 |
SARS-CoV-2 | hCoV-19/USA/RI-CDC-2-6647173/2022 | EPI_ISL_16134259 | GenBank: WAR32688.1 |
Virus | Supplier | Cat# | Strain |
---|---|---|---|
Influenza | NIBSC | 21/346 | A/Victoria/2570/2019 (H1N1) |
Influenza | CDC | N/A | A/Georgia/12/2022 (H1N1) |
Influenza | NIBSC | 21/212 | A/Darwin/6/2021 (H3N2) |
Influenza | CDC | N/A | A/California/123/2022 (H3N2) |
Influenza | NIBSC | 21/224 | B/Austria/1359417/2021 (B/Victoria) |
Influenza | NIBSC | 21/132 | B/Phuket/3073/2013 (B/Yamagata) |
SARS-CoV-2 S-protein pseudotyped lentivirus | SinoBiological | PSV030 | SARS-CoV-2 B.1.1.529 sublineage XBB.1.5 (Omicron) Spike Pseudovirus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thornhill-Wadolowski, E.; Ruter, D.L.; Yan, F.; Gajera, M.; Kurt, E.; Samanta, L.; Leigh, K.; Zhu, J.; Guo, Z.; Wang, Z.; et al. Development of an Influenza/COVID-19 Combination mRNA Vaccine Containing a Novel Multivalent Antigen Design That Enhances Immunogenicity of Influenza Virus B Hemagglutinins. Vaccines 2025, 13, 628. https://doi.org/10.3390/vaccines13060628
Thornhill-Wadolowski E, Ruter DL, Yan F, Gajera M, Kurt E, Samanta L, Leigh K, Zhu J, Guo Z, Wang Z, et al. Development of an Influenza/COVID-19 Combination mRNA Vaccine Containing a Novel Multivalent Antigen Design That Enhances Immunogenicity of Influenza Virus B Hemagglutinins. Vaccines. 2025; 13(6):628. https://doi.org/10.3390/vaccines13060628
Chicago/Turabian StyleThornhill-Wadolowski, Elena, Dana L. Ruter, Feng Yan, Mayur Gajera, Evan Kurt, Labannya Samanta, Kimberlin Leigh, Jianbo Zhu, Zhijun Guo, Zihao Wang, and et al. 2025. "Development of an Influenza/COVID-19 Combination mRNA Vaccine Containing a Novel Multivalent Antigen Design That Enhances Immunogenicity of Influenza Virus B Hemagglutinins" Vaccines 13, no. 6: 628. https://doi.org/10.3390/vaccines13060628
APA StyleThornhill-Wadolowski, E., Ruter, D. L., Yan, F., Gajera, M., Kurt, E., Samanta, L., Leigh, K., Zhu, J., Guo, Z., Wang, Z., Liu, Y., Lee, J., & Bugno, M. (2025). Development of an Influenza/COVID-19 Combination mRNA Vaccine Containing a Novel Multivalent Antigen Design That Enhances Immunogenicity of Influenza Virus B Hemagglutinins. Vaccines, 13(6), 628. https://doi.org/10.3390/vaccines13060628