Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = hybrid composite joint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8715 KiB  
Article
Experimental Investigation of Failure Behaviors of CFRP–Al Lap Joints with Various Configurations Under High- and Low-Temperature Conditions
by Mingzhen Wang, Qiaosheng Huang, Qingfeng Duan, Wentao Yang, Yue Cui and Hongqiang Lyu
Materials 2025, 18(15), 3467; https://doi.org/10.3390/ma18153467 (registering DOI) - 24 Jul 2025
Abstract
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap [...] Read more.
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap joints (BBSL), and two-bolt bonded–bolted hybrid double-lap joints (BBDL). The analysis reveals that double-lap joints possess a markedly higher strength than single-lap joints. The ultimate loads of the TBSL (single-lap joints) at temperatures of −40 °C and 25 °C are 29.5% and 26.20% lower, respectively, than those of the TBDL (double-lap joints). Similarly, the ultimate loads of the BBSL (hybrid single-lap joints) at −40 °C, 25 °C, and 80 °C are 19.8%, 31.66%, and 40.05% lower, respectively, compared to the corresponding data of the TBDL. In bolted–bonded hybrid connections, the adhesive layer enhances the joint’s overall stiffness but exhibits significant temperature dependence. At room and low temperatures, the ultimate loads of the BBDL are 46.97 kN at −40 °C and 50.30 kN at 25 °C, which are significantly higher than those of the TBDL (42.24 kN and 44.63 kN, respectively). However, at high temperatures, the load–displacement curves of the BBDL and TBDL are nearly identical. This suggests that the adhesive layers are unable to provide a sufficient shear-bearing capacity due to their low modulus at elevated temperatures. This research provides valuable insights for designing composite–metal connections in aircraft structures, highlighting the impacts of different joint configurations and temperature conditions on failure modes and load-bearing capacities. Full article
Show Figures

Figure 1

20 pages, 7657 KiB  
Article
Utilizing Excess Resin in Prepregs to Achieve Good Performance in Joining Hybrid Materials
by Nawres J. Al-Ramahi, Safaa M. Hassoni, Janis Varna and Roberts Joffe
Polymers 2025, 17(12), 1689; https://doi.org/10.3390/polym17121689 - 18 Jun 2025
Viewed by 397
Abstract
This study investigates the fracture toughness of adhesive joints between carbon fiber-reinforced polymer composites (CFRP) and boron-alloyed high-strength steel under Mode I and II loading, based on linear elastic fracture mechanics (LEFM). Two adhesive types were examined: the excess resin from the prepreg [...] Read more.
This study investigates the fracture toughness of adhesive joints between carbon fiber-reinforced polymer composites (CFRP) and boron-alloyed high-strength steel under Mode I and II loading, based on linear elastic fracture mechanics (LEFM). Two adhesive types were examined: the excess resin from the prepreg composite, forming a thin layer, and a toughened structural epoxy (Sika Power-533), designed for the automotive industry, forming a thick layer. Modified double cantilever beam (DCB) and end-notched flexure (ENF) specimens were used for testing. The results show that using Sika Power-533 increases the critical energy release rate by up to 30 times compared to the prepreg resin, highlighting the impact of adhesive layer thickness. Joints with the thick Sika adhesive performed similarly regardless of whether uncoated or Al–Si-coated steel was used, indicating the composite/Sika interface as the failure point. In contrast, the thin resin adhesive layer exhibited poor bonding with uncoated steel, which detached during sample preparation. This suggests that, for thin layers, the resin/steel interface is the weakest link. These findings underline the importance of adhesive selection and layer thickness for optimizing joint performance in composite–metal hybrid structures. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 3830 KiB  
Article
Microstructural Features and Mechanical Properties of Laser–MIG Hybrid Welded–Brazed Ti/Al Butt Joints with Different Filler Wires
by Xin Zhao, Zhibin Yang, Yonghao Huang, Hongjun Zhu and Shaozheng Dong
Metals 2025, 15(6), 674; https://doi.org/10.3390/met15060674 - 17 Jun 2025
Viewed by 353
Abstract
Laser–MIG hybrid welding–brazing was performed to join TC4 titanium alloy and 5083 aluminum alloy with ER5356, ER4043 and ER2319 filler wires. The effects of the different filler wires on the microstructural features and mechanical properties of Ti/Al welded–brazed butt joints were investigated in [...] Read more.
Laser–MIG hybrid welding–brazing was performed to join TC4 titanium alloy and 5083 aluminum alloy with ER5356, ER4043 and ER2319 filler wires. The effects of the different filler wires on the microstructural features and mechanical properties of Ti/Al welded–brazed butt joints were investigated in detail. The wetting and spreading effect of the ER4043 filler wire was the best, especially on the weld’s rear surface. Serrated-shaped and rod-like IMCs were generated at the top region of the interface of the joint with ER4043 filler wire, but rod-like IMCs did not appear at the joints with the other filler wires. Only serrated-shaped IMCs appeared in the middle and bottom regions for the three filler wires. The phase compositions of all the IMCs were inferred as being made up of TiAl3. The average thickness of the IMC layer of joints with the ER5356 and ER2319 filler wires was almost the same and thinner than that of the joint with the ER4043 filler wire. The average thickness was largest in the middle region and smallest in the bottom region for all the joints with the three filler wires. The average microhardness in the weld metal of ER5356, ER4043 and ER2319 filler wires could reach up to 77.7 HV, 91.2 HV and 85.4 HV, respectively. The average tensile strength of joints with the ER5356, ER4043 and ER2319 filler wires was 106 MPa, 238 MPa and 192 MPa, respectively. The tensile samples all fractured at the IMC interface and showed a mixed brittle–ductile fracture feature. These research results could help confirm the appropriate filler wire for the laser–MIG hybrid welding–brazing of Ti/Al dissimilar butt joints. Full article
(This article belongs to the Special Issue Laser Processing Technology for Metals)
Show Figures

Figure 1

24 pages, 1293 KiB  
Article
Singular Perturbation Decoupling and Composite Control Scheme for Hydraulically Driven Flexible Robotic Arms
by Jianliang Xu, Zhen Sui and Xiaohua Wei
Processes 2025, 13(6), 1805; https://doi.org/10.3390/pr13061805 - 6 Jun 2025
Viewed by 444
Abstract
Hydraulically driven flexible robotic arms (HDFRAs) play an indispensable role in industrial precision operations such as aerospace assembly and nuclear waste handling, owing to their high power density and adaptability to complex environments. However, inherent mechanical flexibility-induced vibrations, hydraulic nonlinear dynamics, and electromechanical [...] Read more.
Hydraulically driven flexible robotic arms (HDFRAs) play an indispensable role in industrial precision operations such as aerospace assembly and nuclear waste handling, owing to their high power density and adaptability to complex environments. However, inherent mechanical flexibility-induced vibrations, hydraulic nonlinear dynamics, and electromechanical coupling effects lead to multi-timescale control challenges, severely limiting high-precision trajectory tracking performance. The present study introduces a novel hierarchical control framework employing dual-timescale perturbation analysis, which effectively addresses the constraints inherent in conventional single-timescale control approaches. First, the system is decoupled into three subsystems via dual perturbation parameters: a second-order rigid-body motion subsystem (SRS), a second-order flexible vibration subsystem (SFS), and a first-order hydraulic dynamic subsystem (FHS). For SRS/SFS, an adaptive fast terminal sliding mode active disturbance rejection controller (AFTSM-ADRC) is designed, featuring a dual-bandwidth extended state observer (BESO) to estimate parameter perturbations and unmodeled dynamics in real time. A novel reaching law with power-rate hybrid characteristics is developed to suppress sliding mode chattering while ensuring rapid convergence. For FHS, a sliding mode observer-integrated sliding mode coordinated controller (SMO-ISMCC) is proposed, achieving high-precision suppression of hydraulic pressure fluctuations through feedforward compensation of disturbance estimation and feedback integration of tracking errors. The globally asymptotically stable property of the composite system has been formally verified through systematic Lyapunov-based analysis. Through comprehensive simulations, the developed methodology demonstrates significant improvements over conventional ADRC and PID controllers, including (1) joint tracking precision reaching 104 rad level under nominal conditions and (2) over 40% attenuation of current oscillations when subjected to stochastic disturbances. These results validate its superiority in dynamic decoupling and strong disturbance rejection. Full article
(This article belongs to the Special Issue Modelling and Optimizing Process in Industry 4.0)
Show Figures

Figure 1

14 pages, 8312 KiB  
Article
Influence of Reflow Cycles of the Pb–Free/Pb Hybrid Assembly Process on the IMCs Growth Interface of Micro-Solder Joints
by Xinyuan He, Qi Zhang, Qiming Cui, Yifan Bai, Lincheng Fu, Zicong Zhao, Chuanhang Zou and Yong Wang
Crystals 2025, 15(6), 516; https://doi.org/10.3390/cryst15060516 - 28 May 2025
Viewed by 367
Abstract
Under the dual impetus of environmental regulations and reliability requirements, the Pb–free/Pb hybrid assembly process in aerospace-grade ball grid array (BGA) components has become an unavoidable industrial imperative. However, constrained process compatibility during single or multiple reflow protocols amplifies structural heterogeneity in solder [...] Read more.
Under the dual impetus of environmental regulations and reliability requirements, the Pb–free/Pb hybrid assembly process in aerospace-grade ball grid array (BGA) components has become an unavoidable industrial imperative. However, constrained process compatibility during single or multiple reflow protocols amplifies structural heterogeneity in solder joints and accelerates dynamic microstructural evolution, thereby elevating interfacial reliability risks at solder joint interfaces. This paper systematically investigated phase composition, grain dimensions, thickness evolution, and crystallographic orientation patterns of interfacial intermetallic compounds (IMCs) in hybrid micro-solder joints under multiple reflows, employing electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The result shows that the first reflow induces prismatic Cu6Sn5 grain formation driven by Pb aggregation zones and elevated Cu concentration gradients. Surface-protruding fine grains significantly increase kernel average misorientation (KAMave) of 0.68° while minimizing crystallographic orientation preference density (PFmax) of 15.5. Higher aspect ratios correlate with elongated grain morphology, consequently elevating grain size of 5.3 μm and IMC thickness of 5.0 μm. Subsequent reflows fundamentally alter material dynamics: Pb redistribution transitions from clustered to randomized spatial configurations, while grains develop pronounced in-plane orientation preferences that reciprocally influence Sn crystal alignment. The second reflow produces scallop-type grains with minimized dimensions of 4.0 μm and a thickness of 2.1 μm, with a KAMave of 0.37° and PFmax of 20.5. The third reflow initiates uniform growth of scalloped grains of 7.0 μm with a stable population density, whereas the fifth reflow triggers a semicircular grain transformation of 9.1 μm through conspicuous coalescence mechanisms. This work elucidates multiple reflow IMC growth mechanisms in Pb–free/Pb hybrid solder joints, providing critical theoretical and practical insights for optimizing hybrid technologies and reliability management strategies in high-reliability aerospace electronics. Full article
(This article belongs to the Special Issue Surface Modification Treatments of Metallic Materials (2nd Edition))
Show Figures

Figure 1

16 pages, 3292 KiB  
Article
Topology Optimization of Additively Manufactured Adherends for Increased Adhesive Bond Strength
by Michael Ascher and Ralf Späth
Materials 2025, 18(10), 2170; https://doi.org/10.3390/ma18102170 - 8 May 2025
Viewed by 452
Abstract
The limited build space of additive manufacturing (AM) machines constrains the maximum size of AM components, while manufacturing costs rise with geometric complexity. To enhance value and overcome size limitations, it can be more efficient to join non-AM and AM components to meet [...] Read more.
The limited build space of additive manufacturing (AM) machines constrains the maximum size of AM components, while manufacturing costs rise with geometric complexity. To enhance value and overcome size limitations, it can be more efficient to join non-AM and AM components to meet the requirements by means of a hybrid structure. Adhesive bonding is particularly suitable for such joints, as it imposes no constraints on the joining surface’s geometry or the adherend’s material. To ensure structural integrity, it is conceivable to exploit the design freedom underlying AM processes by optimizing the topology of the AM component to stress the adhesive layer homogeneously. This study explores the feasibility of this concept using the example of an axially loaded single-lap tubular joint between a carbon fiber-reinforced composite tube and an additively manufactured laser-based powder-bed-fusion aluminum alloy sleeve. The sleeve topology was optimized using the finite element method, achieving a 75 %P reduction in adhesive stress increase compared to a non-optimized sleeve. Due to the pronounced ductility of the two-component epoxy-based adhesive, the static bond strength remained unaffected, whereas fatigue life significantly improved. The findings demonstrate the feasibility of leveraging AM design freedom to enhance adhesive joint performance, providing a promising approach for hybrid structures in lightweight applications. Full article
Show Figures

Figure 1

15 pages, 8076 KiB  
Article
Applicability of Machine Learning and Mathematical Equations to the Prediction of Total Organic Carbon in Cambrian Shale, Sichuan Basin, China
by Majia Zheng, Meng Zhao, Ya Wu, Kangjun Chen, Jiwei Zheng, Xianglu Tang and Dadong Liu
Appl. Sci. 2025, 15(9), 4957; https://doi.org/10.3390/app15094957 - 30 Apr 2025
Viewed by 496
Abstract
Accurate Total Organic Carbon (TOC) prediction in the deeply buried Lower Cambrian Qiongzhusi Formation shale is constrained by extreme heterogeneity (TOC variability: 0.5–12 wt.%, mineral composition Coefficient of Variation > 40%) and ambiguous geophysical responses. This study introduces three key innovations to address [...] Read more.
Accurate Total Organic Carbon (TOC) prediction in the deeply buried Lower Cambrian Qiongzhusi Formation shale is constrained by extreme heterogeneity (TOC variability: 0.5–12 wt.%, mineral composition Coefficient of Variation > 40%) and ambiguous geophysical responses. This study introduces three key innovations to address these challenges: (1) A Dynamic Weighting–Calibrated Random Forest Regression (DW-RFR) model integrating high-resolution Gamma-Ray-guided dynamic time warping (±0.06 m depth alignment precision derived from 237 core-log calibration points using cross-validation), Principal Component Analysis-Deyang–Anyue Rift Trough Shapley Additive Explanations (PCA-SHAP) hybrid feature engineering (89.3% cumulative variance, VIF < 4), and Bayesian-optimized ensemble learning; (2) systematic benchmarking against conventional ΔlogR (R2 = 0.700, RMSE = 0.264) and multi-attribute joint inversion (R2 = 0.734, RMSE = 0.213) methods, demonstrating superior accuracy (R2 = 0.917, RMSE = 0.171); (3) identification of Gamma Ray (r = 0.82) and bulk density (r = −0.76) as principal TOC predictors, contrasted with resistivity’s thermal maturity-dependent signal attenuation (r = 0.32 at Ro > 3.0%). The methodology establishes a transferable framework for organic-rich shale evaluation, directly applicable to the Longmaxi Formation and global Precambrian–Cambrian transition sequences. Future directions emphasize real-time drilling data integration and quantum computing-enhanced modeling for ultra-deep shale systems, advancing predictive capabilities in tectonically complex basins. Full article
Show Figures

Figure 1

11 pages, 5675 KiB  
Proceeding Paper
Integrated Framework for Manufacturing, Design, and Monitoring of Composite-Bonded Joints: An Overview of the Results of the IDEA Project (MOST)
by Marino Quaresimin, Paolo Andrea Carraro, Federico Lamon, Silvia Giovanna Avataneo, Matteo Basso, Andrea Merulla, Umberto Galietti, Ester D’Accardi, Davide Palumbo, Massimiliano De Agostinis, Mattia Mele, Monica Ferraris, Alessandro Benelli and Koshika Pandey
Eng. Proc. 2025, 85(1), 53; https://doi.org/10.3390/engproc2025085053 - 22 Apr 2025
Viewed by 348
Abstract
The IDEA project, developed in the frame of MOST—National Centre for Sustainable Mobility—addressed the growing need for reliable bonded joints in fibre-reinforced polymer composite structures used in transportation. Purely bonded joints are preferred for their lightweight and cost-efficient properties, but contamination and defect [...] Read more.
The IDEA project, developed in the frame of MOST—National Centre for Sustainable Mobility—addressed the growing need for reliable bonded joints in fibre-reinforced polymer composite structures used in transportation. Purely bonded joints are preferred for their lightweight and cost-efficient properties, but contamination and defect detection issues often make them unreliable. To solve this, the project developed innovative surface treatments, a methodology for the safe, optimized design of bonded joints, and structural health monitoring solutions, viable for real-time assessment. These advancements aim to increase the reliability and safety of bonded connections, helping industries adopt lighter, purely bonded joints over heavier, hybrid bonded/bolted options. Full article
Show Figures

Figure 1

13 pages, 4809 KiB  
Article
Optimization of Hybrid Composite–Metal Joints: Single Pin
by Ruopu Bian, Bin Wang, Hongying Yang, Jiazhi Ren, Lujun Cui and Oluwamayokun B. Adetoro
Materials 2025, 18(7), 1664; https://doi.org/10.3390/ma18071664 - 4 Apr 2025
Viewed by 472
Abstract
Deepening the understanding of composite and metal joint methodologies applied in the aerospace industry is crucial for minimizing operational expenditures. Current investigations are focusing on innovative joining techniques that incorporate additive manufactured rivet pins. This research aims to analyze the mechanical strength of [...] Read more.
Deepening the understanding of composite and metal joint methodologies applied in the aerospace industry is crucial for minimizing operational expenditures. Current investigations are focusing on innovative joining techniques that incorporate additive manufactured rivet pins. This research aims to analyze the mechanical strength of these joints for the effective optimization of pin profiles. Through extensive study of the impact of pin geometry on joint performance, we derived the optimal pin design, considering various initial parameters with the objective of minimizing stress concentration in the pin structure. The joint configurations of metal to composite interfaces were systematically examined using finite element analysis and lap shear testing, which included a singular pin and an adhesive-bonding layer. Numerical simulations reveal that the maximum shear stress in the pin is located at the junction between the base of the pin and the metal plate. By optimizing the shape and dimensions of the pin, both the shear and axial stresses can be significantly mitigated. Following the numerical optimization process, a series of enhanced pins have been produced via additive manufacturing techniques to facilitate mechanical testing. The experimental data obtained align closely with the simulation results, thereby reinforcing the validity of the optimization. The optimal configuration for a single pin, involving a 60° angle and a total height of 3.43 mm, achieves the minimum shear stress. Based on these findings, further investigations are underway to explore optimized designs utilizing multiple pins. This paper presents the results of the single pin study, whereas the findings pertaining to the ongoing investigation on the multi-pin configuration will be disseminated in subsequent publications. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

31 pages, 1738 KiB  
Review
A Review of Developments in Carbon-Based Nanocomposite Electrodes for Noninvasive Electroencephalography
by Hector Medina and Nathan Child
Sensors 2025, 25(7), 2274; https://doi.org/10.3390/s25072274 - 3 Apr 2025
Viewed by 748
Abstract
Wearable biosensors have been of interest for their wide range of uses, varying from recording biological signals to measuring strain of bending joints. Carbon nanoparticles have been utilized in biocompatible polymers to create nanocomposites with highly tunable mechanical and electrical properties. These nanocomposites [...] Read more.
Wearable biosensors have been of interest for their wide range of uses, varying from recording biological signals to measuring strain of bending joints. Carbon nanoparticles have been utilized in biocompatible polymers to create nanocomposites with highly tunable mechanical and electrical properties. These nanocomposites have been demonstrated to be highly effective as wearable sensors for recording physiological signals such as electroencephalography (EEG), offering advantages in mechanical and electrical properties and signal quality over commercially available sensors while maintaining feasibility and scalability in manufacturing. This review aims to provide a critical summary of the recent literature on the properties, design, fabrication, and performance of carbon-based nanocomposites for EEG electrodes. The goal of this review is to highlight the various design configurations and properties thereof, manufacturing methods, performance measurements, and related challenges associated with these promising noninvasive dry soft electrodes. While this technology offers many advantages over either other noninvasive or their invasive counterparts, there are still various challenges and opportunities for improvements and innovation. For example, the investigation of gradient composite structures, hybrid nanocomposite/composite materials, hierarchical contact surfaces, and the influence of loading and alignment of the dispersal phase in the performance of these electrodes could lead to novel and better designs. Finally, current practices for evaluating the performance of novel EEG electrodes are discussed and challenged, emphasizing the critical need for the development of standardized assessment protocols, which could provide reliability in the field, enable benchmarking, and hence promote innovation. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Figure 1

20 pages, 6896 KiB  
Article
Study on the Performance of Adhesive-Bolt Hybrid Connection Between GFRP Plate and Steel Plate
by Zhenchao Yang, Bin Jia, Ying Sheng, Xiao Liu and Yu Zeng
Materials 2025, 18(7), 1481; https://doi.org/10.3390/ma18071481 - 26 Mar 2025
Viewed by 370
Abstract
Glass fiber-reinforced polymer (GFRP) connecting joints are difficult in the design of structural components and also critical areas prone to damage. In this study, based on the existing research, a combination of experimental and finite element analysis is used to systematically analyze the [...] Read more.
Glass fiber-reinforced polymer (GFRP) connecting joints are difficult in the design of structural components and also critical areas prone to damage. In this study, based on the existing research, a combination of experimental and finite element analysis is used to systematically analyze the performance-influencing factors of the hybrid connection of glass fiber-reinforced composite plate and steel plate adhesive bolts under tension. By discussing the damage modes, load–displacement curves, and strain distributions at the GFRP connection joints, the influence of the connection methods and bolt quantities on the tensile properties of double-lap joints comprising GFRP plates and steel plates is revealed, and a loss evolution model for GFRP composite plates is established based on the Hashin failure criterion. The results show that the adhesive–bolted connection integrates the advantages of both adhesive bonding and bolted connections, significantly improving the tensile performance of the joint. Furthermore, the vertical arrangement of two bolts is superior to the horizontal arrangement under double-bolt connection conditions between GFRP plates and steel plates. For the several design options proposed in this study, the GFRP joints exhibit the optimal tensile properties among the four bolt arrangement schemes. Full article
Show Figures

Figure 1

41 pages, 6573 KiB  
Review
Research and Development Progress of Laser–Arc Hybrid Welding: A Review
by Yang He, Xinyu Song, Zhidong Yang, Ruihai Duan, Jiangmin Xu, Wenqin Wang, Liangyu Chen, Mingxiao Shi and Shujin Chen
Metals 2025, 15(3), 326; https://doi.org/10.3390/met15030326 - 17 Mar 2025
Cited by 2 | Viewed by 1792
Abstract
Laser–arc hybrid welding (LAHW) is an advanced welding technology that integrates both laser and arc heat sources within a single molten pool, achieving synergistic benefits that surpass the sum of their individual contributions. This method enhances the welding speed and depth of the [...] Read more.
Laser–arc hybrid welding (LAHW) is an advanced welding technology that integrates both laser and arc heat sources within a single molten pool, achieving synergistic benefits that surpass the sum of their individual contributions. This method enhances the welding speed and depth of the fusion, stabilizes the process, and minimizes welding defects. Numerous studies have investigated the principles, synergistic effects, keyhole dynamics, joint performance, and various factors influencing the parameters of laser–arc hybrid welding. This paper begins with an introduction to the classification of LAHW, followed by a discussion of the characteristics of gas-shielded welding, argon arc welding, and plasma hybrid welding. Subsequently, the welding principles underlying laser–arc hybrid welding will be elucidated. To enhance weld integrity and quality, this paper will analyze keyhole behavior, droplet transfer dynamics, welding quality performance, and the generation and prevention of welding defects that affect laser–arc hybrid welding. Additionally, a detailed analysis of the effects of residual stress on the shape, microstructure, and phase composition of the weld will be provided, along with an exploration of the influences of various welding parameters on post-weld deformation and mechanical properties. Full article
Show Figures

Figure 1

29 pages, 10636 KiB  
Article
Development of an Environmentally Friendly Steel Structural Framework: Evaluation of Bending Stiffness and Yield Bending Moment of Cross-Laminated Timber Slab–H-Shaped Steel Composite Beams for Component Reuse
by Sachi Furukawa, Ryohei Iwami and Yoshihiro Kimura
Sustainability 2025, 17(5), 2073; https://doi.org/10.3390/su17052073 - 27 Feb 2025
Cited by 1 | Viewed by 979
Abstract
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as [...] Read more.
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as a sustainable alternative. CLT, known for its carbon sequestration properties, offers an environmentally friendly replacement for reinforced-concrete slabs, particularly when paired with steel structures to enhance material reuse and reduce lifecycle impacts. This study focuses on hybrid systems combining H-shaped steel beams and CLT floor panels connected using high-strength friction bolts. A four-point bending test, simulating a secondary beam, was conducted, demonstrating that the composite effect significantly enhances flexural stiffness and strength. Additionally, a simplified method for evaluating the flexural stiffness and yielding strength of these composite beams, based on material and joint properties, was shown to successfully evaluate the test results. Full article
(This article belongs to the Section Green Building)
Show Figures

Graphical abstract

27 pages, 15329 KiB  
Review
Research Status and Development Trends of Joining Technologies for Ceramic Matrix Composites
by Biao Chen, Hang Sun, Yuchen Ye, Chunming Ji, Shidong Pan and Bing Wang
Materials 2025, 18(4), 871; https://doi.org/10.3390/ma18040871 - 17 Feb 2025
Viewed by 932
Abstract
Ceramic matrix composites (CMCs) are composite materials made by using structural ceramics as matrix and reinforcing components such as high-strength fibers, whiskers, or particles. These materials are combined in a specific way to achieve a composite structure. With their excellent properties, including high [...] Read more.
Ceramic matrix composites (CMCs) are composite materials made by using structural ceramics as matrix and reinforcing components such as high-strength fibers, whiskers, or particles. These materials are combined in a specific way to achieve a composite structure. With their excellent properties, including high specific strength, high specific stiffness, good thermal stability, oxidation resistance, and corrosion resistance, CMCs are widely used in the aerospace, automotive, energy, defense, and bio-medical fields. However, large and complex-shaped ceramic matrix composite parts are greatly influenced by factors such as the molding process, preparation costs, and consistency of quality, which makes the joining technology for CMCs increasingly important and a key trend for future development. However, due to the anisotropic nature of CMCs, the design of structural components varies, with different properties in different directions. Additionally, the chemical compatibility and physical matching between dissimilar materials in the joining process lead to much more complex joint design and strength analysis compared to traditional materials. This paper categorizes the joining technologies for CMCs into mechanical joining, bonding, soldering joining, and hybrid joining. Based on different joining techniques, the latest research progress on the joining of CMCs with themselves or with metals is reviewed. The advantages and disadvantages of each joining technology are summarized, and the future development trends of these joining technologies are analyzed. Predicting the performance of joining structures is currently a hot topic and challenge in research. Therefore, the study systematically reviews research combining failure mechanisms of ceramic matrix composite joining structures with finite element simulation techniques. Finally, the paper highlights the breakthroughs achieved in current research, as well as existing challenges, and outlines future research and application directions for ceramic matrix composite joining. Full article
Show Figures

Figure 1

23 pages, 12741 KiB  
Article
Performance of Hybrid Reinforced Composite Substrates in Adhesively Bonded Joints Under Varied Loading Rates
by Hossein Malekinejad, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Polymers 2025, 17(4), 469; https://doi.org/10.3390/polym17040469 - 11 Feb 2025
Cited by 1 | Viewed by 956
Abstract
The use of adhesive bonding for joining composites has grown due to its excellent performance compared to traditional joining methods. However, delamination remains a significant issue in adhesively bonded composite joints, often causing early failure and reducing joint performance. To address this, there [...] Read more.
The use of adhesive bonding for joining composites has grown due to its excellent performance compared to traditional joining methods. However, delamination remains a significant issue in adhesively bonded composite joints, often causing early failure and reducing joint performance. To address this, there is a strong interest in methods that enhance the through-thickness strength of composite substrates to reduce the risk of delamination. Various studies have suggested techniques to prevent delamination in carbon fiber reinforced polymer (CFRP) single-lap joints (SLJs). This study investigates the reinforcement of substrates to prevent delamination, often by adding a tough polymer or metal layer (called fiber metal laminates) to the top and bottom surfaces of the substrates. The effects of incorporating aluminum and film adhesive layers (each comprising 25% of the composite substrate’s thickness) on the failure load and failure mode of bonded joints under different loading rates, including quasi-static (1 mm/min), high-rate (0.1 m/s), and impact (2.5 m/s) conditions, were examined. These configurations were also simulated using cohesive zone modeling (CZM) across all loading rates to predict failure load and mechanisms numerically. Under impact loading, substituting outer CFRP layers with polymer or metal layers significantly increased the failure load and energy absorption capacity. Samples reinforced with aluminum and polymer showed approximately 39% and 13% higher failure loads, respectively, compared to the reference CFRP samples under impact. In terms of energy absorption, SLJs reinforced using aluminum could dissipate energy about 15% greater than the reference CFRP SLJs. The polymer reinforcement configuration can enhance specific strength with a relatively smaller increase in weight compared to FML. This is particularly important in aerospace applications, where minimizing weight while improving performance is crucial. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop