Optimization of Hybrid Composite–Metal Joints: Single Pin
Abstract
:1. Introduction
2. Methods of Study
2.1. Numerical Analysis
2.2. Experimental Study
2.2.1. LiM-X260 Equipment
2.2.2. Three-Dimensional Printing Materials
2.2.3. Carbon Fiber Plate and Adhesive
3. Results and Discussion
3.1. Numerical Simulation Results
3.2. Experimental Results
3.2.1. Microscope Photo of the Pin
3.2.2. Tests of Pinned Joint
4. Conclusions
- (1)
- The overall height of the pin significantly influences the shear stress (S12) within the pin, with S12 decreasing as the height increases. However, this height has minimal impact on the axial stress (S22) in both the pin and the adhesive. For axial stress (S22), the shape of the pin, particularly its angle, is more influential. The optimal configuration for a single pin, involving a 60° angle and a total height of 3.43 mm, achieves the minimum shear stress;
- (2)
- A microscopic photograph of a single pin produced via 3D-printing illustrates that the manufacturing accuracy is satisfactory;
- (3)
- In the model featuring one pin, the experimental results align with the simulated data.
5. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inverarity, S.D.R.; Mouritz, A. Composite-to-metal joining using interference fit micropins. Compos. Part A 2022, 156, 106895. [Google Scholar] [CrossRef]
- Dong, J.; Cui, X.; Zhao, P.; Wang, D. Summary of Composite Material-Metal Connection Technology. In Proceedings of the 2020 Asia Conference on Geological Research and Environmental Technology, Kamakura City, Japan, 10–11 October 2020; Available online: https://www.proquest.com/scholarly-journals/summary-composite-material-metal-connection/docview/2618601917/se-2 (accessed on 11 October 2020).
- Yang, H.; Li, H.W.; Fan, X.G. Technologies for Advanced Forming of Large-Scale Complex-Structure Titanium Components. In Proceedings of the 10th International Conference on Technology of Plasticity (ICTP2011), Aachen, Germany, 25–30 September 2011. [Google Scholar]
- Altenbach, H. Mechanics of advanced materials for lightweight structures. J. Mech. Eng. Sci. 2011, 225, 103. [Google Scholar] [CrossRef]
- Droste, A.; Naughton, P.; Bowser, B.; Rottger, J.; Burr, S.; Imam, O.; Zeitler, M.; Heuft, T.; Cawley, A. Bonded metal-plastic composite structures—The future of lightweight, cost-effective performance. In Proceedings of the Bonding & Joining, 3rd Annual SPE Automotive Composite Conference, Troy, MI, USA, 9–10 September 2003. [Google Scholar]
- Amancio-Filho, S.T.; Bueno, C.; Santos, J.F.D. On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures. Mater. Sci. Eng. A 2011, 528, 3841–3848. [Google Scholar] [CrossRef]
- Ageorges, C.; Ye, L. Resistance welding of metal/thermoplastic composite joints. J. Thermoplast. Compos. Mater. 2001, 14, 449–475. [Google Scholar] [CrossRef]
- Jung, K.W.; Kawahito, Y.; Takahashi, M. Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel. Mater. Des. 2013, 47, 179–188. [Google Scholar] [CrossRef]
- Tao, W.; Su, X.; Chen, Y. Joint formation and fracture characteristics of laser welded CFRP/TC4 joints. J. Manuf. Process. 2019, 45, 1–8. [Google Scholar] [CrossRef]
- Nagatsuka, K.; Xiao, B.; Wu, L. Dissimilar materials joining of metal/carbon fibre reinforced plastic by resistance spot welding. Weld. Int. 2018, 32, 505–512. [Google Scholar] [CrossRef]
- Siddharth, P. Comparison of the Response of Different Configurations of Aircraft Repair Patches Under Static and Dynamic Loading. Ph.D. Thesis, Brunel University, London, UK, September 2019. [Google Scholar]
- Khodabakhshi, F.; Haghshenas, M.; Chen, J. Bonding mechanism and interface characterisation during dissimilar friction stir welding of an aluminium/polymer bi-material joint. Sci. Technol. Weld. Join. 2016, 22, 182–190. [Google Scholar] [CrossRef]
- Kawahito, Y.; Katayama, S. Characteristics of LAMP Joining Structures for Several Materials. In Proceedings of the Pacific International Conference on Applications of Lasers and Optics, Wuhan, China, 23–25 March 2010. [Google Scholar] [CrossRef]
- Jung, K.W.; Kawahito, Y.; Katayama, S. Laser direct joining of carbon fiber reinforced plastic to stainless steel. Sci. Technol. Weld. Join. 2011, 16, 676–680. [Google Scholar] [CrossRef]
- Asier, C.; Fernando, L.; Aitzol, L. Novel Strategies for Laser Joining of Polyamide and AISI 304. Phys. Procedia 2012, 39, 92–99. [Google Scholar] [CrossRef]
- Nagatsuka, K.; Yoshida, S.; Tsuchiya, A. Direct joining of carbon-fiber–reinforced plastic to an aluminum alloy using friction lap joining. Compos. Part B Eng. 2015, 73, 82–88. [Google Scholar] [CrossRef]
- André, N.M. Corrosion behavior of metal–composite hybrid joints: Influence of precipitation state and bonding zones. Corros. Sci. 2019, 158, 108075. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Brandt, M.; Orifici, A.C.; Feih, S. Hierarchical surface features for improved bonding and fracture toughness of metal–metal and metal–composite bonded joints. Int. J. Adhes. Adhes. 2016, 66, 81–89. [Google Scholar] [CrossRef]
- Peter, M.; Rudi, V.; Mirja, D. Induction Spot Welding of Metal/CFRPC Hybrid Joints. Adv. Eng. Mater. 2012, 15, 804–807. [Google Scholar] [CrossRef]
- Parkes, P.N.; Butler, R.; Meyer, J. Static strength of metal-composite joints with penetrative reinforcement. Compos. Struct. 2014, 118, 250–256. [Google Scholar] [CrossRef]
Section | Young’s Modulus, E (MPa) | Poisson’s Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|
Metal plate, pin (AlSi10Mg) | 70,000 | 0.28 | |||||||
Adhesive (EC-2216 B/A Gray) | 2800 | 0.3 | |||||||
Section | Exx (MPa) | Eyy (MPa) | Ezz (MPa) | Gxy (MPa) | Gxz (MPa) | Gyz (MPa) | vxy | vxz | vyz |
Carbon fiber plate | 157,000 | 8500 | 8500 | 4200 | 4200 | 4200 | 0.35 | 0.35 | 0.35 |
Parameters | Value (mm) |
---|---|
Pin base diameter | 2.00 |
Pin height | 3.00 |
Metal plate thickness | 5.00 |
Composite plate thickness | 5.00 |
Adhesive thickness | 0.25 |
Plate length | 75.00 |
Overlap length | 25.00 |
Parameters | Value |
---|---|
Power of IPG, (W) | 500 |
Laser spot diameter, (mm) | 0.07–0.12 |
Scanning speed, (m/s) | ≥7 |
Maximum molding size, (mm) | 260 × 260 × 400 |
Characteristic | Value | Unit | |||||
---|---|---|---|---|---|---|---|
Rest angle | 29.32 | ° | |||||
Loose density | 1.43 | g/cm3 | |||||
Chemical composition | Al | Si | Mg | Fe | O | Others | |
89.24 | 10.01 | 0.331 | 0.119 | 0.056 | <0.244 |
Parameters | Range (°, mm) |
---|---|
α | 60–180 |
D1 | 2–3 |
D2 | 1–2 |
H1 | 1–3 |
H2 | 0.1–0.3 |
H | ≤5 |
Sensitivity Study (%) | |||||
---|---|---|---|---|---|
Section | D1 | D2 | H1 | H2 | H |
s12, Shear | 4.33 | 4.86 | 5.70 | 4.75 | 11.93 |
s22, Tensile | 2.13 | 2.90 | 2.46 | 2.20 | 3.07 |
s22, Compressive | 22.93 | 9.89 | 18.04 | 13.54 | 18.05 |
Section | Angle (°) | D1 (mm) | D2 (mm) | H1 (mm) | H2 (mm) | H (mm) |
---|---|---|---|---|---|---|
Best pin | 60 | 2.00 | 1.60 | 1.50 | 0.20 | 3.43 |
Specimens | D1 | D2 | D3 = D1 | H | H1 | H2 | α | D-Top View |
---|---|---|---|---|---|---|---|---|
1 | 2310.77 | 1977.35 | 2250.67 | 3469.74 | 1250.76 | 297.35 | 60.87 | 2284.16 |
2 | 2285.48 | 2085.35 | 2250.73 | 3437.41 | 1313.39 | 264.03 | 59.99 | 2267.52 |
3 | 2268.04 | 1984.05 | 2296.06 | 3452.18 | 1216.05 | 268.02 | 60.37 | 2269.33 |
Average | 2310.77 | 1977.35 | 2250.67 | 3469.74 | 1250.76 | 297.35 | 60.87 | 2284.16 |
Optimization | 2000 | 1600 | 2000 | 3430 | 1500 | 200 | 60 | 2000 |
Error | 12.59% | 20.62% | 11.73% | 0.67% | −19.04% | 27.66% | 0.68% | 12.04% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, R.; Wang, B.; Yang, H.; Ren, J.; Cui, L.; Adetoro, O.B. Optimization of Hybrid Composite–Metal Joints: Single Pin. Materials 2025, 18, 1664. https://doi.org/10.3390/ma18071664
Bian R, Wang B, Yang H, Ren J, Cui L, Adetoro OB. Optimization of Hybrid Composite–Metal Joints: Single Pin. Materials. 2025; 18(7):1664. https://doi.org/10.3390/ma18071664
Chicago/Turabian StyleBian, Ruopu, Bin Wang, Hongying Yang, Jiazhi Ren, Lujun Cui, and Oluwamayokun B. Adetoro. 2025. "Optimization of Hybrid Composite–Metal Joints: Single Pin" Materials 18, no. 7: 1664. https://doi.org/10.3390/ma18071664
APA StyleBian, R., Wang, B., Yang, H., Ren, J., Cui, L., & Adetoro, O. B. (2025). Optimization of Hybrid Composite–Metal Joints: Single Pin. Materials, 18(7), 1664. https://doi.org/10.3390/ma18071664