materials-logo

Journal Browser

Journal Browser

Microstructural, Mechanical, and Durability Characteristics of Cementitious Materials (2nd Edition)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Construction and Building Materials".

Deadline for manuscript submissions: 20 July 2024 | Viewed by 3160

Special Issue Editors

Institute of Civil Engineering Materials, School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
Interests: geopolymer; microstructure; drying shrinkage; mechanical properties; durability of cement-based composites
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Civil Engineering, Hunan University, Changsha 410012, China
Interests: concrete; durability; fracture mechanics; non-destructive evaluation; freeze–thaw
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Concrete is the most widely used construction material in the world. Advances in the manufacturing of cementitious materials and the production of concrete have led to improved performance of traditional concrete. Different types of cementitious materials have been developed to build high-performance and environmentally sustainable concrete structures. For example, concrete with the addition of supplementary cementitious material, alkali-activated concrete, and geopolymer concrete was developed to reduce the negative environmental impacts of ordinary Portland cement and improve the properties of the construction materials, while fiber-reinforced cementitious composites and ultra-high performance concrete were developed to enhance the performance and durability of the concrete. However, many fundamental mechanisms in the different types of cementitious materials are not yet well understood. Since the mechanical properties and durability of the materials are directly linked to the change in the microstructure of the mixture, it is important to understand the relationship between the microstructural, mechanical, and durability performance of cementitious materials.

The aim of this Special Issue is to collect original contributions on the mechanical properties and durability evaluation of different types of cementitious materials and the microstructure characterization of cementitious composites. Topics of interest include but are not limited to the following: characterization of cementitious materials, mechanical and durability performance, fiber-reinforced concrete, alkali-activated materials, geopolymer, multi-scale study of the cementitious materials, and other related experimental investigations, simulations, and analyses of cement-based construction materials.

Dr. Ruizhe Si
Dr. Shuaicheng Guo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cementitious materials
  • mechanical properties
  • durability
  • microstructure
  • advanced materials characterization
  • numerical simulations
  • experimental findings

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4352 KiB  
Article
Influence of Eggshell Powder on the Properties of Cement-Based Materials
by Gui-Yu Zhang, Seokhoon Oh, Yi Han, Li-Yi Meng, Runsheng Lin and Xiao-Yong Wang
Materials 2024, 17(7), 1705; https://doi.org/10.3390/ma17071705 - 08 Apr 2024
Viewed by 533
Abstract
Replacing cement with industrial by-products is an important way to achieve carbon neutrality in the cement industry. The purpose of this study is to evaluate the effect of eggshell powder on cement hydration properties, and to evaluate its feasibility as a substitute for [...] Read more.
Replacing cement with industrial by-products is an important way to achieve carbon neutrality in the cement industry. The purpose of this study is to evaluate the effect of eggshell powder on cement hydration properties, and to evaluate its feasibility as a substitute for cement. The substitution rates of eggshell powder are 0%, 7.5%, and 15%. Studying the heat of hydration and macroscopic properties can yield the following results. First: The cumulative heat of hydration based on each gram of cementitious material falls as the eggshell powder content rises. This is a result of the eggshell powder’s diluting action. However, the cumulative heat of hydration per gram of cement rises due to the nucleation effect of the eggshell powder. Second: The compressive strengths of ES0, ES7.5, and ES15 samples at 28 days of age are 54.8, 43.4, and 35.5 MPa, respectively. Eggshell powder has a greater negative impact on the compressive strength. The effect of eggshell powder on the speed and intensity of ultrasonic waves has a similar trend. Third: As the eggshell powder content increases, the resistivity gradually decreases. In addition, we also characterize the microscopic properties of the slurry with added eggshell powder. X-ray Diffraction (XRD) shows that, as the age increases from 1 day to 28 days, hemicaboaluminate transforms into monocaboaluminate. As the content of the eggshell powder increases, FTIR analysis finds a slight decrease in the content of CSH. Similarly, thermogravimetric (TG) results also show a decrease in the production of calcium hydroxide. Although the additional nucleation effect of eggshell powder promotes cement hydration and generates more portlandite, it cannot offset the loss of portlandite caused by the decrease in cement. Last: A numerical hydration model is presented for cement–eggshell powder binary blends. The parameters of the hydration model are determined based on hydration heat normalized by cement mass. Moreover, the hydration heat until 28 days is calculated using the proposed model. The strength development of all specimens and all test ages can be expressed as an exponential function of hydration heat. Full article
Show Figures

Figure 1

19 pages, 7460 KiB  
Article
Influence of Graphene Oxide on Mechanical Properties and Durability of Cement Mortar
by Lounis Djenaoucine, Álvaro Picazo, Miguel Ángel de la Rubia, Amparo Moragues and Jaime C. Gálvez
Materials 2024, 17(6), 1445; https://doi.org/10.3390/ma17061445 - 21 Mar 2024
Viewed by 554
Abstract
The effect of graphene oxide (GO) on the mechanical strengths and durability of cement composites was researched by preparing GO-modified cement mortars. Thermogravimetric analysis (TGA) and nuclear magnetic resonance (29Si MAS-NMR) were performed on the cement paste to evaluate the influence [...] Read more.
The effect of graphene oxide (GO) on the mechanical strengths and durability of cement composites was researched by preparing GO-modified cement mortars. Thermogravimetric analysis (TGA) and nuclear magnetic resonance (29Si MAS-NMR) were performed on the cement paste to evaluate the influence of GO on the hydration process and chain structure of calcium-silicate-hydrate (C–S–H) gels. TGA revealed that the high GO dosage increased the content of C–S–H by 5.46% compared with the control at 28 days. Similarly, 29Si-NMR improved the hydration degree and main chain length (MCL) in GO-modified samples at 28 days. The GO led to increases of 2.54% and 7.01% in the hydration degree and MCL, respectively, compared with the control at 28 days. These findings underscore the multifaceted role of GO in improving the mechanical properties and durability of cement composites. Mechanical strength tests, such as compressive and flexural tests, were conducted on cement mortars. The optimal dosage of GO increased the compressive strength by 9.02% after 28 days. Furthermore, the flexural strength of cement mortars with the combination of GO and superplasticizer (SP) after 28 days increased by 21.86%, compared with reference mortar. The impact of GO proved to be more pronounced and beneficial in the durability tests, suggesting that GO can enhance the microstructure through hydration products to create a dense and interconnected microstructure. Full article
Show Figures

Figure 1

21 pages, 8263 KiB  
Article
The Influence of Corrosion Processes on the Degradation of Concrete Cover
by Zofia Szweda, Artur Skórkowski and Petr Konečný
Materials 2024, 17(6), 1398; https://doi.org/10.3390/ma17061398 - 19 Mar 2024
Cited by 1 | Viewed by 504
Abstract
In this work, two methods were used to accelerate the corrosion of concrete. In the first method, chloride ions were injected into the concrete using the migration method. The moment of the initiation of the corrosion process was monitored using an electrochemical method [...] Read more.
In this work, two methods were used to accelerate the corrosion of concrete. In the first method, chloride ions were injected into the concrete using the migration method. The moment of the initiation of the corrosion process was monitored using an electrochemical method of measuring polarization resistance. In the next step, the corrosion process was accelerated by the electrolysis process. Changes on the sample surface were also monitored using a camera. In the second method, the corrosion process of the reinforcing bar was initiated by the use of the electrolysis process only. Here, changes occurring on the surfaces of the tested sample were recorded using two web cameras placed on planes perpendicular to each other. Continuous measurement of the current flowing through the system was carried out in both cases. It was assumed that in conditions of natural corrosion, a crack would occur when the sum of the mass loss of the reinforcing bar due to corrosion reached the same value in tcr(real) (real time) as it reached in the tcr (time of cracking) during the accelerated corrosion test. The real time value was estimated for C1 concrete with cement CEM I. The estimated value was tcr(real) = 1.1 years and for C2 concrete with cement CEM III, tcr(real) = 11.2 years. However, the main difference that was observed during the tests was the nature of the concrete cracks. In the case of the C1 concrete sample, these occurred along the reinforcing bar, while in the C2 concrete, the failures occurred on a perpendicular plane transverse to the direction of the reinforcing bar. Full article
Show Figures

Figure 1

25 pages, 13075 KiB  
Article
Mechanical Properties of Fully Recycled Aggregate Concrete Reinforced with Steel Fiber and Polypropylene Fiber
by Lijuan Zhang, Xiang Li, Changbin Li, Jun Zhao and Shengzhao Cheng
Materials 2024, 17(5), 1156; https://doi.org/10.3390/ma17051156 - 01 Mar 2024
Viewed by 688
Abstract
The study and utilization of fully recycled aggregate concrete (FRAC), in which coarse and fine aggregates are completely replaced by recycled aggregates, are of great significance in improving the recycling rate of construction waste, reducing the carbon emission of construction materials, and alleviating [...] Read more.
The study and utilization of fully recycled aggregate concrete (FRAC), in which coarse and fine aggregates are completely replaced by recycled aggregates, are of great significance in improving the recycling rate of construction waste, reducing the carbon emission of construction materials, and alleviating the ecological degradation problems currently faced. In this paper, investigations were carried out to study the effects of steel fiber (0.5%, 1.0%, and 1.5%) and polypropylene fiber (0.9 kg/m3, 1.2 kg/m3 and 1.5 kg/m3) on the properties of FRAC, including compressive strength, splitting tensile strength, the splitting tensile load–displacement curve, the tensile toughness index, flexural strength, the load–deflection curve, and the flexural toughness index. The results show that the compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced FRAC were remarkably enhanced compared with those of ordinary FRAC, and the maximum increase was 56.9%, 113.3%, and 217.0%, respectively. Overall, the enhancement effect of hybrid steel–polypropylene fiber is more significant than single-mixed fiber. Moreover, the enhancement of the crack resistance, tensile toughness, and flexural toughness obtained by adding steel fiber to the FRAC is more significant than that obtained by adding polypropylene fiber. Furthermore, adding polypropylene fiber alone and mixing it with steel fiber showed different FRAC splitting tensile and flexural properties. Full article
Show Figures

Figure 1

15 pages, 2665 KiB  
Article
Application of a Closed-Form Model in Analyzing the Fracture of Quasi-Brittle Materials
by Xiangyu Han, Peng Li and Jianguo Liu
Materials 2024, 17(2), 282; https://doi.org/10.3390/ma17020282 - 05 Jan 2024
Cited by 1 | Viewed by 521
Abstract
Fracture failure in quasi-brittle materials poses a persistent challenge in materials science and engineering. This study presents a thorough investigation of the Boundary Effect Model (BEM), offering a nuanced understanding of the size effect on fracture properties. The conceptual framework, evolutionary process, and [...] Read more.
Fracture failure in quasi-brittle materials poses a persistent challenge in materials science and engineering. This study presents a thorough investigation of the Boundary Effect Model (BEM), offering a nuanced understanding of the size effect on fracture properties. The conceptual framework, evolutionary process, and applicability scope of BEM are elucidated, highlighting its accuracy and reliability in calculating fracture properties across various quasi-brittle materials. Through the integration of BEM with diverse fracture tests—such as three-point bending, four-point bending, and wedge-splitting—a linear correlation between maximum failure loads and material fracture properties is established. Notably, the study demonstrates that fracture properties, determined by BEM, can be regarded as consistent material constants across specimens of varying sizes, initial notch lengths, geometries, and microstructures. Validation of the BEM’s reliability encompasses the analysis of 140 fracture test results involving concrete, hard rocks, and bamboo scrimber. The synergy of non-linear and linear BEM analyses emerges as a robust approach for accurately predicting the fracture behavior of quasi-brittle materials. This comprehensive exploration sheds light on the potential of the Boundary Effect Model as a valuable tool for predicting and understanding fracture mechanics in diverse materials and scenarios. This research serves as an effective approach to accurately evaluating the fracture properties of quasi-brittle materials, which is of great practical significance for material design, engineering construction, and various industrial applications. Full article
Show Figures

Figure 1

Back to TopTop