Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,607)

Search Parameters:
Keywords = host–cell interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3205 KiB  
Review
Microbiome–Immune Interaction and Harnessing for Next-Generation Vaccines Against Highly Pathogenic Avian Influenza in Poultry
by Yongming Sang, Samuel N. Nahashon and Richard J. Webby
Vaccines 2025, 13(8), 837; https://doi.org/10.3390/vaccines13080837 (registering DOI) - 6 Aug 2025
Abstract
Highly pathogenic avian influenza (HPAI) remains a persistent threat to global poultry production and public health. Current vaccine platforms show limited cross-clade efficacy and often fail to induce mucosal immunity. Recent advances in microbiome research reveal critical roles for gut commensals in modulating [...] Read more.
Highly pathogenic avian influenza (HPAI) remains a persistent threat to global poultry production and public health. Current vaccine platforms show limited cross-clade efficacy and often fail to induce mucosal immunity. Recent advances in microbiome research reveal critical roles for gut commensals in modulating vaccine-induced immunity, including enhancement of mucosal IgA production, CD8+ T-cell activation, and modulation of systemic immune responses. Engineered commensal bacteria such as Lactococcus lactis, Bacteroides ovatus, Bacillus subtilis, and Staphylococcus epidermidis have emerged as promising live vectors for antigen delivery. Postbiotic and synbiotic strategies further enhance protective efficacy through targeted modulation of the gut microbiota. Additionally, artificial intelligence (AI)-driven tools enable predictive modeling of host–microbiome interactions, antigen design optimization, and early detection of viral antigenic drift. These integrative technologies offer a new framework for mucosal, broadly protective, and field-deployable vaccines for HPAI control. However, species-specific microbiome variation, ecological safety concerns, and scalable manufacturing remain critical challenges. This review synthesizes emerging evidence on microbiome–immune crosstalk, commensal vector platforms, and AI-enhanced vaccine development, emphasizing the urgent need for One Health integration to mitigate zoonotic adaptation and pandemic emergence. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

18 pages, 3120 KiB  
Article
Měnglà Virus VP40 Localizes to the Nucleus and Impedes the RIG-I Signaling Pathway
by Joyce Sweeney Gibbons, Naveen Thakur, Emma Komers, Olivia A. Vogel, Poushali Chakraborty, JoAnn M. Tufariello and Christopher F. Basler
Viruses 2025, 17(8), 1082; https://doi.org/10.3390/v17081082 - 5 Aug 2025
Abstract
Měnglà virus (MLAV) is a member of the genus Dianlovirus in the family Filoviridae, which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair [...] Read more.
Měnglà virus (MLAV) is a member of the genus Dianlovirus in the family Filoviridae, which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair IFNα/β gene expression and block IFNα/β-induced Jak-STAT signaling, respectively, suggesting the capacity to counteract human innate immune defenses. In this study, MLAV VP40 is demonstrated to impair the Sendai virus (SeV)-induced activation of the IFNβ promoter. Inhibition is independent of the MLAV VP40 PPPY late-domain motif that interacts with host proteins possessing WW-domains to promote viral budding. Similar IFNβ promoter inhibition was not detected for EBOV or MARV VP40. MLAV VP40 exhibited lesser capacity to inhibit TNFα activation of an NF-κB reporter gene. MLAV VP40 impaired IFNβ promoter activation by an over-expressed, constitutively active form of RIG-I and by the over-expressed IRF3 kinases TBK1 and IKKε. However, MLAV VP40 did not inhibit IFNβ promoter activation by constitutively active IRF3 5D. Consistent with these findings, MLAV VP40 inhibited SeV-induced IRF3 phosphorylation. Although IRF3 phosphorylation occurs in the cytoplasm, MLAV VP40 exhibits substantial nuclear localization, accumulating in foci in HeLa cell nuclei. In contrast, the VP40 of EBOV and MARV exhibited lower degrees of nuclear localization and did not accumulate in foci. MLAV VP40 interacts with importin alpha-1 (IMPα1), suggesting entry via the IMPα/IMPβ nuclear import pathway. Cumulatively, these data identify novel features that distinguish MLAV VP40 from its homologues in EBOV and MARV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

15 pages, 1303 KiB  
Article
Extracellular Vesicle Release from Immune Cells in Cutaneous Leishmaniasis: Modulation by Leishmania (V.) braziliensis and Reversal by Antimonial Therapy
by Vanessa Fernandes de Abreu Costa, Thaize Quiroga Chometon, Katherine Kelda Gomes de Castro, Melissa Silva Gonçalves Ponte, Maria Inês Fernandes Pimentel, Marcelo Rosandiski Lyra, Rienk Nieuwland and Alvaro Luiz Bertho
Pathogens 2025, 14(8), 771; https://doi.org/10.3390/pathogens14080771 - 4 Aug 2025
Abstract
Human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is a complex parasitic disease marked by dynamic host–parasite interactions and immunomodulation. Extracellular vesicles (EV) derived from immune cells have emerged as key mediators of intercellular communication and potential biomarkers in infectious diseases. In [...] Read more.
Human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is a complex parasitic disease marked by dynamic host–parasite interactions and immunomodulation. Extracellular vesicles (EV) derived from immune cells have emerged as key mediators of intercellular communication and potential biomarkers in infectious diseases. In this study, we combined a modified lymphocyte proliferation assay with nano-flow cytometry to quantify and phenotype EV released by CD4+, CD8+, and CD14+ cells in PBMC cultures from CL patients at different clinical stages: before treatment (PBT), during treatment (PDT), and post-treatment (PET) with antimonial. Healthy individuals (HI) were included as physiological controls. Upon stimulation with L. (V.) braziliensis antigens, we observed a distinct modulation of EV subsets. In the PBT group, CD4+ and CD14+ EV were significantly reduced, while CD8+ EV remained elevated. During PDT and PET, EV concentrations were restored across all subsets. These findings suggest that L. (V.) braziliensis selectively modulates the release of immune cell–derived EV, possibly as an immune evasion mechanism. The restoration of EV release following antimonial therapy highlights their potential as sensitive biomarkers for disease activity and treatment monitoring. This study offers novel insights into the immunoregulatory roles of EV in CL and underscores their relevance in host–parasite interactions. Full article
(This article belongs to the Special Issue Leishmania & Leishmaniasis)
Show Figures

Figure 1

16 pages, 2235 KiB  
Article
Plasma Lysophosphatidylcholine Levels Correlate with Prognosis and Immunotherapy Response in Squamous Cell Carcinoma
by Tomoyuki Iwasaki, Hidekazu Shirota, Eiji Hishinuma, Shinpei Kawaoka, Naomi Matsukawa, Yuki Kasahara, Kota Ouchi, Hiroo Imai, Ken Saijo, Keigo Komine, Masanobu Takahashi, Chikashi Ishioka, Seizo Koshiba and Hisato Kawakami
Int. J. Mol. Sci. 2025, 26(15), 7528; https://doi.org/10.3390/ijms26157528 - 4 Aug 2025
Abstract
Cancer is a systemic disease rather than a localized pathology and is characterized by widespread effects, including whole-body exhaustion and chronic inflammation. A thorough understanding of cancer pathophysiology requires a systemic approach that accounts for the complex interactions between cancer cells and host [...] Read more.
Cancer is a systemic disease rather than a localized pathology and is characterized by widespread effects, including whole-body exhaustion and chronic inflammation. A thorough understanding of cancer pathophysiology requires a systemic approach that accounts for the complex interactions between cancer cells and host tissues. To explore these dynamics, we employed a comprehensive metabolomic analysis of plasma samples from patients with either esophageal or head and neck squamous cell carcinoma (SCC). Plasma samples from 149 patients were metabolically profiled and correlated with clinical data. Among the metabolites identified, lysophosphatidylcholine (LPC) emerged as the sole biomarker strongly correlated with prognosis. A significant reduction in plasma LPC levels was linked to poorer overall survival. Plasma LPC levels demonstrated minimal correlation with patient-specific factors, such as tumor size and general condition, but showed significant association with the response to immune checkpoint inhibitor therapy. Proteomic and cytokine analyses revealed that low plasma LPC levels reflected systemic chronic inflammation, characterized by high levels of inflammatory proteins, the cytokines interleukin-6 and tumor necrosis factor-α, and coagulation-related proteins. These findings indicate that plasma LPC levels may be used as reliable biomarkers for predicting prognosis and evaluating the efficacy of immunotherapy in patients with SCC. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Figure 1

24 pages, 6246 KiB  
Article
Anti-Herpes Simplex Virus Type 1 Activity of Rosa damascena Mill Essential Oil and Floral Water in Retinal Infection In Vitro and In Silico
by Neli Vilhelmova-Ilieva, Rayna Nenova, Kalin Kalinov, Ana Dobreva, Dimitar Peshev and Ivan Iliev
Int. J. Mol. Sci. 2025, 26(15), 7521; https://doi.org/10.3390/ijms26157521 - 4 Aug 2025
Abstract
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena [...] Read more.
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena Mill against herpes simplex virus type 1 (HSV-1) infection in rabbit retinal cells (RRCs). The composition of the main chemical components in the rose essential oil was determined by means of gas chromatographic analysis. The effect on the viral replication cycle was determined using the cytopathic effect (CPE) inhibition assay. The virucidal activity, the effect on the adsorption stage of the virus to the host cell, and the protective effect on healthy cells were evaluated using the endpoint dilution method. The effects were determined as deviation in the viral titer, Δlg, for the treated cells from the one for the untreated viral control. The identified main active components of rose oil are geraniol (28.73%), citronellol (21.50%), nonadecane (13.13%), nerol (5.51%), heneicosane (4.87%), nonadecene (3.93), heptadecane (2.29), farnesol (2.11%), tricosane (1.29%), eicosane (1.01%), and eugenol (0.85%). The results demonstrated that both rose products do not have a significant effect on the virus replication but directly affect the viral particles and reduce the viral titer by Δlg = 3.25 for floral water and by Δlg = 3.0 for essential oil. Significant inhibition of the viral adsorption stage was also observed, leading to a decrease in the viral titers by Δlg = 2.25 for floral water and by Δlg = 2.0 for essential oil. When pretreating healthy cells with rose products, both samples significantly protected them from subsequent infection with HSV-1. This protective effect was more pronounced for the oil (Δlg = 2.5) compared to the one for the floral water (Δlg = 2.0). We used the in silico molecular docking method to gain insight into the mechanism of hindrance of viral adsorption by the main rose oil compounds (geraniol, citronellol, nerol). These components targeted the HSV-1 gD interaction surface with nectin-1 and HVEM (Herpesvirus Entry Mediator) host cell receptors, at N-, C-ends, and N-end, respectively. These findings could provide a structural framework for further development of anti-HSV-1 therapeutics. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

19 pages, 1769 KiB  
Article
Dynamics of a Fractional-Order Within-Host Virus Model with Adaptive Immune Responses and Two Routes of Infection
by Taofeek O. Alade, Furaha M. Chuma, Muhammad Javed, Samson Olaniyi, Adekunle O. Sangotola and Gideon K. Gogovi
Math. Comput. Appl. 2025, 30(4), 80; https://doi.org/10.3390/mca30040080 - 2 Aug 2025
Viewed by 118
Abstract
This paper introduces a novel fractional-order model using the Caputo derivative operator to investigate the virus dynamics of adaptive immune responses. Two infection routes, namely cell-to-cell and virus-to-cell transmissions, are incorporated into the dynamics. Our research establishes the existence and uniqueness of positive [...] Read more.
This paper introduces a novel fractional-order model using the Caputo derivative operator to investigate the virus dynamics of adaptive immune responses. Two infection routes, namely cell-to-cell and virus-to-cell transmissions, are incorporated into the dynamics. Our research establishes the existence and uniqueness of positive and bounded solutions through the application of the generalized mean-value theorem and Banach fixed-point theory methods. The fractional-order model is shown to be Ulam–Hyers stable, ensuring the model’s resilience to small errors. By employing the normalized forward sensitivity method, we identify critical parameters that profoundly influence the transmission dynamics of the fractional-order virus model. Additionally, the framework of optimal control theory is used to explore the characterization of optimal adaptive immune responses, encompassing antibodies and cytotoxic T lymphocytes (CTL). To assess the influence of memory effects, we utilize the generalized forward–backward sweep technique to simulate the fractional-order virus dynamics. This study contributes to the existing body of knowledge by providing insights into how the interaction between virus-to-cell and cell-to-cell dynamics within the host is affected by memory effects in the presence of optimal control, reinforcing the invaluable synergy between fractional calculus and optimal control theory in modeling within-host virus dynamics, and paving the way for potential control strategies rooted in adaptive immunity and fractional-order modeling. Full article
Show Figures

Figure 1

14 pages, 1004 KiB  
Article
Transcriptional Analysis of Spodoptera frugiperda Sf9 Cells Infected with Daphnis nerii Cypovirus-23
by Wendong Kuang, Jian Yang, Jinchang Wang, Chenghua Yan, Junhui Chen, Xinsheng Liu, Chunhua Yang, Zhigao Zhan, Limei Guan, Jianghuai Li, Tao Deng, Feiying Yang, Guangqiang Ma and Liang Jin
Int. J. Mol. Sci. 2025, 26(15), 7487; https://doi.org/10.3390/ijms26157487 - 2 Aug 2025
Viewed by 115
Abstract
Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus that has a lethal effect on many species of Sphingidae pests. DnCPV-23 can replicate in Spodoptera frugiperda Sf9 cells, but the replication characteristics of the virus in this cell line are still unclear. [...] Read more.
Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus that has a lethal effect on many species of Sphingidae pests. DnCPV-23 can replicate in Spodoptera frugiperda Sf9 cells, but the replication characteristics of the virus in this cell line are still unclear. To determine the replication characteristics of DnCPV-23 in Sf9 cells, uninfected Sf9 cells and Sf9 cells at 24 and 72 h after DnCPV-23 infection were collected for transcriptome analysis. Compared to uninfected Sf9 cells, a total of 188 and 595 differentially expressed genes (DEGs) were identified in Sf9 cells collected at 24 hpi and 72 h, respectively. KEGG analyses revealed that 139 common DEGs in two treatment groups were related to nutrition and energy metabolism-related processes, cell membrane integrity and function-related pathways, detoxification-related pathways, growth and development-related pathways, and so on. We speculated that these cellular processes might be manipulated by viruses to promote replication. This study provides an important basis for further in-depth research on the mechanism of interaction between viruses and hosts. It provides additional basic information for the future exploitation of DnCPV-23 as a biological insecticide. Full article
Show Figures

Figure 1

14 pages, 2882 KiB  
Article
Babesia bovis Enolase Is Expressed in Intracellular Merozoites and Contains B-Cell Epitopes That Induce Neutralizing Antibodies In Vitro
by Alma Cárdenas-Flores, Minerva Camacho-Nuez, Massaro W. Ueti, Mario Hidalgo-Ruiz, Angelina Rodríguez-Torres, Diego Josimar Hernández-Silva, José Guadalupe Gómez-Soto, Masahito Asada, Shin-ichiro Kawazu, Alma R. Tamayo-Sosa, Rocío Alejandra Ruiz-Manzano and Juan Mosqueda
Vaccines 2025, 13(8), 818; https://doi.org/10.3390/vaccines13080818 - 31 Jul 2025
Viewed by 216
Abstract
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to [...] Read more.
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to vaccination against bovine babesiosis involves the use of multiple protective antigens, offering advantages over traditional live-attenuated vaccines. Tools such as immunobioinformatics and reverse vaccinology have facilitated the identification of novel antigens. Enolase, a “moonlighting” enzyme of the glycolytic pathway with demonstrated vaccine potential in other pathogens, has not yet been studied in B. bovis. Methods: In this study, the enolase gene from two B. bovis isolates was successfully identified and sequenced. The gene, consisting of 1366 base pairs, encodes a predicted protein of 438 amino acids. Its expression in intraerythrocytic parasites was confirmed by RT-PCR. Two peptides containing predicted B-cell epitopes were synthesized and used to immunize rabbits. Hyperimmune sera were then analyzed by ELISA, confocal microscopy, Western blot, and an in vitro neutralization assay. Results: The hyperimmune sera showed high antibody titers, reaching up to 1:256,000. Specific antibodies recognized intraerythrocytic merozoites by confocal microscopy and bound to a ~47 kDa protein in erythrocytic cultures of B. bovis as detected by Western blot. In the neutralization assay, antibodies raised against peptide 1 had no observable effect, whereas those targeting peptide 2 significantly reduced parasitemia by 71.99%. Conclusions: These results suggest that B. bovis enolase contains B-cell epitopes capable of inducing neutralizing antibodies and may play a role in parasite–host interactions. Enolase is therefore a promising candidate for further exploration as a vaccine antigen. Nonetheless, additional experimental studies are needed to fully elucidate its biological function and validate its vaccine potential. Full article
(This article belongs to the Special Issue Vaccines against Arthropods and Arthropod-Borne Pathogens)
Show Figures

Figure 1

17 pages, 2886 KiB  
Article
The Intersection Between Schistosoma mansoni Infection and Dyslipidemia Modulates Inflammation in the Visceral Adipose Tissue of Swiss Webster Mice
by Thainá de Melo, Isadora do Monte Silveira Bruno, Luciana Brandão-Bezerra, Silvia Amaral Gonçalves da Silva, Christiane Leal Corrêa, Luciana Silva Rodrigues, José Roberto Machado-Silva and Renata Heisler Neves
Trop. Med. Infect. Dis. 2025, 10(8), 217; https://doi.org/10.3390/tropicalmed10080217 - 31 Jul 2025
Viewed by 167
Abstract
Background: Dyslipidemia and schistosomiasis are major public health challenges, particularly in endemic regions where their coexistence may influence host metabolism and immune responses. This study aimed to evaluate visceral adipose tissue (AT) remodeling in a murine model of acute Schistosoma mansoni infection combined [...] Read more.
Background: Dyslipidemia and schistosomiasis are major public health challenges, particularly in endemic regions where their coexistence may influence host metabolism and immune responses. This study aimed to evaluate visceral adipose tissue (AT) remodeling in a murine model of acute Schistosoma mansoni infection combined with diet-induced dyslipidemia. Methodology: Female Swiss Webster mice were fed either a standard or high-fat diet (HFD) for 29 weeks and infected with S. mansoni at week 20. Nine weeks after infection, biochemical, morphometric, histopathological, and immunological analyses were performed. Results: The HFD promoted weight gain and dyslipidemia, while S. mansoni infection alone did not alter lipid profiles but partially mitigated the metabolic effects of the HFD. Morphometric analysis revealed adipocyte hypertrophy and reduced cell number in HFD-fed animals. In HFD-fed infected mice, infection partially reversed hypertrophy, suggesting a modulatory effect on AT remodeling. Histopathological examinations showed that while a HFD induced mild inflammation, infection led to intense leukocyte infiltration, hyperemia, and plasma cell degeneration. Peritoneal lavage confirmed a proinflammatory immune profile. Conclusions: These findings indicate that the interaction between a HFD and S. mansoni infection exacerbates adipose tissue inflammation and metabolic alterations, highlighting the complex interplay between parasitic infection, diet, and immune-metabolic regulation. Full article
(This article belongs to the Section Neglected and Emerging Tropical Diseases)
Show Figures

Figure 1

21 pages, 4740 KiB  
Article
Mosquito Exosomal Tetraspanin CD151 Facilitates Flaviviral Transmission and Interacts with ZIKV and DENV2 Viral Proteins
by Durga Neupane, Md Bayzid, Girish Neelakanta and Hameeda Sultana
Int. J. Mol. Sci. 2025, 26(15), 7394; https://doi.org/10.3390/ijms26157394 - 31 Jul 2025
Viewed by 215
Abstract
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of [...] Read more.
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of transmembrane domain glycoproteins involved in cellular organization, signaling, and protein–protein interactions have been recognized as potential mediators of flaviviral infection and transmission. While their roles in vertebrate hosts have been explored, their involvement in flaviviral replication and dissemination within medically important vectors remains poorly understood. In this study, we investigated the role of arthropod tetraspanins in mosquito cells and extracellular vesicles (EVs) derived from cells infected with Zika virus (ZIKV) and dengue virus (serotype 2; DENV2). Among several of the tetraspanins analyzed, only CD151 was significantly upregulated in both mosquito cells and in EVs derived from ZIKV/DENV2-infected cells. RNAi-mediated silencing of CD151 led to a marked reduction in viral burden, suggesting its crucial role in flavivirus replication. Inhibition of EV biogenesis using GW4869 further demonstrated that EV-mediated viral transmission contributes to flavivirus propagation. Additionally, co-immunoprecipitation and immunofluorescence analyses revealed direct interactions between CD151 and ZIKV NS2B and DENV2 capsid proteins. Overall, our findings highlight the functional importance of mosquito CD151 in the replication and transmission of ZIKV and DENV2. This study provides new insights into the molecular mechanisms of flaviviral infection in mosquitoes and suggests that targeting vector tetraspanins may offer a potential approach to controlling mosquito-borne flaviviruses. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

20 pages, 1573 KiB  
Article
Polyvalent Mannuronic Acid-Coated Gold Nanoparticles for Probing Multivalent Lectin–Glycan Interaction and Blocking Virus Infection
by Rahman Basaran, Darshita Budhadev, Eleni Dimitriou, Hannah S. Wootton, Gavin J. Miller, Amy Kempf, Inga Nehlmeier, Stefan Pöhlmann, Yuan Guo and Dejian Zhou
Viruses 2025, 17(8), 1066; https://doi.org/10.3390/v17081066 - 30 Jul 2025
Viewed by 286
Abstract
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. [...] Read more.
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information remains to be limited for some important MLGIs, significantly restricting the research progress. We have recently demonstrated that functional nanoparticles, including ∼4 nm quantum dots and varying sized gold nanoparticles (GNPs), densely glycosylated with various natural mono- and oligo- saccharides, are powerful biophysical probes for MLGIs. Using two important viral receptors, DC-SIGN and DC-SIGNR (together denoted as DC-SIGN/R hereafter), as model multimeric lectins, we have shown that α-mannose and α-manno-α-1,2-biose (abbreviated as Man and DiMan, respectively) coated GNPs not only can provide sensitive measurement of MLGI affinities but also reveal critical structural information (e.g., binding site orientation and mode) which are important for MLGI targeting. In this study, we produced mannuronic acid (ManA) coated GNPs (GNP-ManA) of two different sizes to probe the effect of glycan modification on their MLGI affinity and antiviral property. Using our recently developed GNP fluorescence quenching assay, we find that GNP-ManA binds effectively to both DC-SIGN/R and increasing the size of GNP significantly enhances their MLGI affinity. Consistent with this, increasing the GNP size also significantly enhances their ability to block DC-SIGN/R-augmented virus entry into host cells. Particularly, ManA coated 13 nm GNP potently block Ebola virus glycoprotein-driven entry into DC-SIGN/R-expressing cells with sub-nM levels of EC50. Our findings suggest that GNP-ManA probes can act as a useful tool to quantify the characteristics of MLGIs, where increasing the GNP scaffold size substantially enhances their MLGI affinity and antiviral potency. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Figure 1

16 pages, 8060 KiB  
Article
Transcriptomic Reprogramming and Key Molecular Pathways Underlying Huanglongbing Tolerance and Susceptibility in Six Citrus Cultivars
by Xiaohong Chen, Fang Fang, Tingting Chen, Jinghua Wu, Zheng Zheng and Xiaoling Deng
Int. J. Mol. Sci. 2025, 26(15), 7359; https://doi.org/10.3390/ijms26157359 - 30 Jul 2025
Viewed by 237
Abstract
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating disease threatening global citrus production. Although no commercial citrus varieties exhibit complete HLB resistance, genotype-specific tolerance variations remain underexplored. This study conducted a comparative transcriptomic profiling of six commercially citrus cultivars [...] Read more.
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating disease threatening global citrus production. Although no commercial citrus varieties exhibit complete HLB resistance, genotype-specific tolerance variations remain underexplored. This study conducted a comparative transcriptomic profiling of six commercially citrus cultivars in South China, four susceptible cultivars (C. reticulata cv. Tankan, Gongkan, Shatangju, and C. sinensis Osbeck cv. Newhall), and two tolerant cultivars (C. limon cv. Eureka; C. maxima cv Guanxi Yu) to dissect molecular mechanisms underlying HLB responses. Comparative transcriptomic analyses revealed extensive transcriptional reprogramming, with tolerant cultivars exhibiting fewer differentially expressed genes (DEGs) and targeted defense activation compared to susceptible genotypes. The key findings highlighted the genotype-specific regulation of starch metabolism, where β-amylase 3 (BAM3) was uniquely upregulated in tolerant varieties, potentially mitigating starch accumulation. Immune signaling diverged significantly: tolerant cultivars activated pattern-triggered immunity (PTI) via receptor-like kinases (FLS2) and suppressed ROS-associated RBOH genes, while susceptible genotypes showed the hyperactivation of ethylene signaling and oxidative stress pathways. Cell wall remodeling in susceptible cultivars involved upregulated xyloglucan endotransglucosylases (XTH), contrasting with pectin methylesterase induction in tolerant Eureka lemon for structural reinforcement. Phytohormonal dynamics revealed SA-mediated defense and NPR3/4 suppression in Eureka lemon, whereas susceptible cultivars prioritized ethylene/JA pathways. These findings delineate genotype-specific strategies in citrus–CLas interactions, identifying BAM3, FLS2, and cell wall modifiers as critical targets for breeding HLB-resistant cultivars through molecular-assisted selection. This study provides a foundational framework for understanding host–pathogen dynamics and advancing citrus immunity engineering. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction: Current Status and Future Directions)
Show Figures

Figure 1

16 pages, 1540 KiB  
Article
The Role of Drug Resistance in Candida Inflammation and Fitness
by Gabriella Piatti, Alberto Vitale, Anna Maria Schito, Susanna Penco and Daniele Saverino
Microorganisms 2025, 13(8), 1777; https://doi.org/10.3390/microorganisms13081777 - 30 Jul 2025
Viewed by 222
Abstract
Drug resistance in Candida may result in either a fitness cost or a fitness advantage. Candida auris, whose intrinsic drug resistance remains unclear, has emerged as a significant human pathogen. We aimed to investigate whether Candida fitness, including early interaction with the host [...] Read more.
Drug resistance in Candida may result in either a fitness cost or a fitness advantage. Candida auris, whose intrinsic drug resistance remains unclear, has emerged as a significant human pathogen. We aimed to investigate whether Candida fitness, including early interaction with the host innate immune system, depends on the antifungal susceptibility phenotype and putative-associated resistance mutations. We compared interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor α production by human colorectal adenocarcinoma cells stimulated by fluconazole-susceptible and fluconazole-resistant strains of Candida albicans, C. parapsilosis, C. tropicalis, and C. glabrata, as well as fluconazole-resistant C. auris strains. Sensitive Candida strains induced lower cytokine levels compared with C. auris and resistant strains, except for TNF a. Resistant strains induced cytokine levels like C. auris, except for higher IL-1β and lower TNF-α. Susceptible strains exhibited cytokine profiles distinct from those of resistant strains. C. auris induced cytokine levels comparable to resistant strains but displayed profiles resembling those of susceptible strains. This study highlights the relationship among antifungal susceptibility, fungal fitness and host early immunity. C. auris behavior appears to be between fluconazole-sensitive and fluconazole-resistant strains. Understanding these dynamics may enhance the knowledge of the survival and reproduction of resistant Candida and the epidemiology of fungal infections. Full article
Show Figures

Figure 1

13 pages, 513 KiB  
Review
Alternatives Integrating Omics Approaches for the Advancement of Human Skin Models: A Focus on Metagenomics, Metatranscriptomics, and Metaproteomics
by Estibaliz Fernández-Carro, Sophia Letsiou, Stella Tsironi, Dimitrios Chaniotis, Jesús Ciriza and Apostolos Beloukas
Microorganisms 2025, 13(8), 1771; https://doi.org/10.3390/microorganisms13081771 - 29 Jul 2025
Viewed by 355
Abstract
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, [...] Read more.
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, and atopic dermatitis. This review, for the first time, provides recent advancements in all four layers of omic technologies—metagenomics, metatranscriptomics, metaproteomics, and metabolomics—offering comprehensive insights into microbial diversity, in the context of functional skin modeling. Thus, this review explores the application of these omic tools to in vitro skin models, providing an integrated framework for understanding the molecular mechanisms underlying skin–microbiota interactions in both healthy and pathological contexts. We highlight the importance of developing advanced in vitro skin models, including the integration of immune components and endothelial cells, to accurately replicate the cutaneous microenvironment. Moreover, we discuss the potential of these models to identify novel therapeutic targets, enabling the design of personalized treatments aimed at restoring microbial balance, reinforcing the skin barrier, and modulating inflammation. As the field progresses, the incorporation of multi-omic approaches into skin-microbiome research will be pivotal in unraveling the complex interactions between host and microbiota, ultimately advancing therapeutic strategies for skin-related diseases. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

18 pages, 5957 KiB  
Article
Genome-Wide Screening Reveals the Oncolytic Mechanism of Newcastle Disease Virus in a Human Colonic Carcinoma Cell Line
by Yu Zhang, Shufeng Feng, Gaohang Yi, Shujun Jin, Yongxin Zhu, Xiaoxiao Liu, Jinsong Zhou and Hai Li
Viruses 2025, 17(8), 1043; https://doi.org/10.3390/v17081043 - 25 Jul 2025
Viewed by 381
Abstract
Viral oncolysis is considered a promising cancer treatment method because of its good tolerability and durable anti-tumor effects. Compared with other oncolytic viruses, Newcastle disease virus (NDV) has some distinct advantages. As an RNA virus, NDV does not recombine with the host genome, [...] Read more.
Viral oncolysis is considered a promising cancer treatment method because of its good tolerability and durable anti-tumor effects. Compared with other oncolytic viruses, Newcastle disease virus (NDV) has some distinct advantages. As an RNA virus, NDV does not recombine with the host genome, making it safer compared with DNA viruses and retroviruses; NDV can induce syncytium formation, allowing the virus to spread among cells without exposure to host neutralizing antibodies; and its genome adheres to the hexamer genetic code rule (genome length as a multiple of six nucleotides), ensuring accurate replication, low recombination rates, and high genetic stability. Although wild-type NDV has a killing effect on various tumor cells, its oncolytic effect and working mechanism are diverse, increasing the complexity of generating engineered oncolytic viruses with NDV. This study aims to employ whole-genome CRISPR-Cas9 knockout screening and RNA sequencing to identify putative key regulatory factors involved in the interaction between NDV and human colon cancer HCT116 cells and map their global interaction networks. The results suggests that NDV infection disrupts cellular homeostasis, thereby exerting oncolytic effects by inhibiting cell metabolism and proliferation. Meanwhile, the antiviral immune response triggered by NDV infection, along with the activation of anti-apoptotic signaling pathways, may be responsible for the limited oncolytic efficacy of NDV against HCT116 cells. These findings not only enhance our understanding of the oncolytic mechanism of NDV against colonic carcinoma but also provide potential strategies and targets for the development of NDV-based engineered oncolytic viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop