Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = high-strength strand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7160 KB  
Article
Evaluation of the Seismic Behavior of Carbon-Grid-Reinforced Walls with Varying Anchorage and Axial Load Ratios
by Kyung-Min Kim, Sung-Woo Park, Bhum-Keun Song, Kyung-Jae Min and Seon-Hee Yoon
Polymers 2026, 18(1), 144; https://doi.org/10.3390/polym18010144 - 5 Jan 2026
Viewed by 264
Abstract
Fiber-reinforced polymers (FRPs) are being increasingly used to replace rebars as reinforcements for concrete. This study evaluated the seismic behavior of concrete walls reinforced with grid-type carbon FRP (CFRP; carbon grid) through quasi-static cyclic tests and compared the results with that of the [...] Read more.
Fiber-reinforced polymers (FRPs) are being increasingly used to replace rebars as reinforcements for concrete. This study evaluated the seismic behavior of concrete walls reinforced with grid-type carbon FRP (CFRP; carbon grid) through quasi-static cyclic tests and compared the results with that of the reinforced concrete (RC) wall. The experimental variables were the ratio of the carbon-grid anchorage length in the foundation to the wall length and the axial force ratio. Based on the results of the quasi-static cyclic tests, the ratio of the equivalent stiffness at the crushing of the compression-edge cover concrete to the initial stiffness of the carbon-grid-reinforced concrete specimens was 0.14 on average. This indicates that the specimens reached their maximum load due to the crushing of the compression-edge cover concrete after a significant reduction in stiffness due to cracking. The skeleton curve for the carbon-grid-reinforced concrete specimens was found to be bilinear, with reduced stiffness due to cracking and failure due to the crushing of the compression-edge cover concrete, making it definable and predictable. Additionally, in specimens with a high axial force or small ratio of the anchorage length in the foundation to the wall length, some of the longitudinal CFRP strands fractured at the same time as they reached the failure load. Moreover, the load at the crushing of the compression-edge cover concrete of the carbon-grid-reinforced concrete specimen increased by 1.10 times with the increase in the axial force ratio and decreased by 0.96 times with the decrease in the ratio of the anchorage length in the foundation to the wall length. It was found to be 0.73–0.80 times the flexural strength based on the assumption of plane sections remaining plane. In comparison with RC specimen, the cumulative absorbed energy of the carbon-grid-reinforced concrete specimen began to decrease after a story drift ratio of 1%, and the cumulative absorbed energy up to the target story drift ratio of 3.0% was found to be 0.60–0.62 times that of the RC specimen. Full article
(This article belongs to the Special Issue Polymer Composites in Construction Materials)
Show Figures

Figure 1

15 pages, 1891 KB  
Article
An Improved Equation for Predicting the Stress of Bonded High-Strength Strands at Flexural Failure
by Kyeong-Jin Sung, Jisu Hong and Se-Jin Jeon
Buildings 2026, 16(1), 179; https://doi.org/10.3390/buildings16010179 - 31 Dec 2025
Viewed by 230
Abstract
To achieve efficient design and ensure the safety of concrete structures, the use of high-strength concrete, reinforcing steel, and prestressing tendons has been steadily increasing. In this study, for flexural design of prestressed concrete (PSC) structures employing high-strength strands with tensile strengths of [...] Read more.
To achieve efficient design and ensure the safety of concrete structures, the use of high-strength concrete, reinforcing steel, and prestressing tendons has been steadily increasing. In this study, for flexural design of prestressed concrete (PSC) structures employing high-strength strands with tensile strengths of 2160 MPa and 2360 MPa, the applicability of the current design-code equation for predicting the strand stress at flexural failure (fps)—which was originally proposed based on studies of conventional strands with tensile strengths of 1860 MPa or lower—was evaluated. Furthermore, an improved prediction equation was proposed. Section analyses based on stress–strain curves obtained from numerous tensile tests of high-strength strands were conducted, and the results were compared with the existing prediction equations specified in ACI 318 and the Korean KDS code. The comparison revealed that, for high-strength strands, the strand stress tends to be underestimated in the tension-controlled region and overestimated in the compression-controlled region. To address these issues, a new prediction equation was proposed that retains the form of the existing equation but incorporates correction factors reflecting the characteristics of high-strength strands. The performance of the proposed equation was evaluated not only for rectangular sections but also for T- and I-shaped sections, and its predictive accuracy was verified by comparing the predicted strand stresses and nominal flexural strengths with those obtained from section analyses. As a result, the proposed prediction equation demonstrated improved accuracy compared with the existing one, while maintaining an appropriate level of conservatism. Therefore, it is expected to enhance design efficiency for PSC structures employing high-strength strands. Full article
(This article belongs to the Collection Advanced Concrete Structures in Civil Engineering)
Show Figures

Figure 1

26 pages, 5060 KB  
Review
Mechanical Behavior and Performance Degradation of Structural Cables in Buildings: A Comprehensive Review
by Xu Chen, Hai Zhang, Hongbo Liu, Jianshuo Wang, Yutong Zhang, Liulu Guo, Zhihua Chen, Marta Kosior-Kazberuk and Julita Krassowska
Materials 2025, 18(24), 5502; https://doi.org/10.3390/ma18245502 - 7 Dec 2025
Viewed by 372
Abstract
Owing to their lightness, high strength, flexibility, and design adaptability, cables have been extensively employed in architectural engineering. As cables are primary load-bearing components in long-span spatial structures, a profound understanding of their mechanical behavior is essential for structural design and safety evaluation. [...] Read more.
Owing to their lightness, high strength, flexibility, and design adaptability, cables have been extensively employed in architectural engineering. As cables are primary load-bearing components in long-span spatial structures, a profound understanding of their mechanical behavior is essential for structural design and safety evaluation. This paper presents a systematic review of the physical and mechanical properties of cables commonly used in building structures, offering reference data for key performance indicators. The mechanical responses and influencing factors pertaining to major types of cables—such as semi-parallel wire strand (SPWS), Galfan-coated steel strand (GSS), and full-locked coil wire rope (LCR)—are thoroughly examined. This review covers five critical aspects: fundamental cable characteristics, stress relaxation and creep, mechanical performance under high temperatures, corrosion-induced degradation, and post-fracture behavior after fatigue-induced wire breaks. It identifies key mechanical parameters, including elastic modulus, axial stiffness, bending stiffness, and the coefficient of thermal expansion. The degradation behavior of cables under high-temperature and corrosive conditions is examined, highlighting the superior corrosion resistance of LCR and GSS. Furthermore, the redistribution of stress and residual capacity after the rupturing of steel wires is elucidated. Based on recent studies, prospective directions are suggested to address current knowledge gaps and advance design strategies focused on durability and performance for forthcoming cable-supported structures. Full article
Show Figures

Graphical abstract

13 pages, 3254 KB  
Article
Long-Term Performance of Wood–Cement Composites: Stabilization Versus Degradation Driven by Waste Type
by Dorin Maier, Daniela Lucia Manea, Daniela-Roxana Tămaș-Gavrea, Alexandra Țiriac and Paul Costin
Buildings 2025, 15(22), 4137; https://doi.org/10.3390/buildings15224137 - 17 Nov 2025
Viewed by 445
Abstract
The valorization of wood waste in cement-based materials offers a promising path toward reducing the environmental footprint of the construction sector. While short-term properties of wood–cement composites have been studied, their long-term durability remains a critical uncertainty for practical application. This study investigates [...] Read more.
The valorization of wood waste in cement-based materials offers a promising path toward reducing the environmental footprint of the construction sector. While short-term properties of wood–cement composites have been studied, their long-term durability remains a critical uncertainty for practical application. This study investigates the long-term mechanical behavior of Portland-cement mortars incorporating 5% by mass of four types of wood waste: spruce, oak, beech, and oriented strand board (OSB). Specimens were subjected to flexural and compressive tests after 28 days and approximately 242 days of curing under natural laboratory conditions to assess the evolution of their properties. The results demonstrate that the long-term performance is highly dependent on the wood type. Composites with spruce sawdust, oak, beech, and OSB exhibited remarkable stability, with strength variations generally within ±8% over the extended period, supporting a scenario of matrix stabilization. In contrast, mortar with spruce shavings suffered a significant strength reduction of approximately 25%, indicating susceptibility to degradation, likely due to its high-water demand and porous resulting matrix. All wood-composite mortars showed a substantial density reduction of 20–36% compared to the reference. The findings confirm that OSB and oak waste provide the best overall performance, combining higher initial strength with excellent long-term stability. This research concludes that carefully selected wood waste can produce durable, lightweight cement composites viable for non-structural applications, thereby supporting the integration of circular economy principles in sustainable construction. Unlike previous studies that primarily assessed short-term strength, this paper provides one of the few comparative long-term assessments under natural curing conditions, highlighting the stabilization–degradation mechanisms across wood types. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 5029 KB  
Article
Withdrawal Behavior of the Self-Tapping Screws in Bamboo/Wood-Oriented Strand Board
by Kaiting Zhang, Jun Zhang, Yong Guo and Yuxia Chen
Forests 2025, 16(11), 1623; https://doi.org/10.3390/f16111623 - 23 Oct 2025
Viewed by 515
Abstract
This study examines how screw diameter, penetration length, and aperture ratio affect self-tapping screw (STS) withdrawal resistance in bamboo/wood-oriented strand board (WOSB/BOSB) to increase bamboo use in construction and furniture. It proposes a widely applicable empirical formula for calculating withdrawal resistance. With its [...] Read more.
This study examines how screw diameter, penetration length, and aperture ratio affect self-tapping screw (STS) withdrawal resistance in bamboo/wood-oriented strand board (WOSB/BOSB) to increase bamboo use in construction and furniture. It proposes a widely applicable empirical formula for calculating withdrawal resistance. With its high specific strength, uniformity, and STS withdrawal resistance, BOSB is a promising material for engineering and furniture applications, according to experiments. Screw diameter, penetration length, and aperture ratio significantly influence the STS’s withdrawal behavior. Among these, screw diameter and penetration length are the primary factors affecting screw withdrawal behavior. As the two factors increase, withdrawal resistance increases linearly. However, the relationship between withdrawal resistance and aperture ratio is non-linear, initially increasing and then decreasing as the aperture ratio increases. With an optimal mounting aperture ratio, the STS withdrawal forces in the BOSB face and edge are approximately 3 and 3.5 times greater than in WOSB, respectively. Traditional formulas for withdrawal resistance were refined based on the fitting equation of aperture ratio and withdrawal force, significantly reducing the relative errors of the modified formulas. Notably, the withdrawal resistance results for STSs calculated using the refined equation based on the CCMC 13677-R standard achieve an accuracy of up to 93%. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Graphical abstract

23 pages, 7087 KB  
Article
Production of Anisotropic NdFeB Permanent Magnets with In Situ Magnetic Particle Alignment Using Powder Extrusion
by Stefan Rathfelder, Stephan Schuschnigg, Christian Kukla, Clemens Holzer, Dieter Suess and Carlo Burkhardt
Materials 2025, 18(15), 3668; https://doi.org/10.3390/ma18153668 - 4 Aug 2025
Cited by 3 | Viewed by 1280
Abstract
This study investigates the sustainable production of NdFeB permanent magnets using powder extrusion molding (PEM) with in situ magnetic alignment, utilizing recycled powder from an end-of-life (Eol) wind turbine magnet obtained via hydrogen processing of magnetic scrap (HPMS). Finite Element Method (FEM) simulations [...] Read more.
This study investigates the sustainable production of NdFeB permanent magnets using powder extrusion molding (PEM) with in situ magnetic alignment, utilizing recycled powder from an end-of-life (Eol) wind turbine magnet obtained via hydrogen processing of magnetic scrap (HPMS). Finite Element Method (FEM) simulations were conducted to design and optimize alignment tool geometries and magnetic field parameters. A key challenge in the PEM process is achieving effective particle alignment while the continuous strand moves through the magnetic field during extrusion. To address this, extrusion experiments were performed using three different alignment tool geometries and varying magnetic field strengths to determine the optimal configuration for particle alignment. The experimental results demonstrate a high degree of alignment (Br/Js = 0.95), exceeding the values obtained with PEM without an external magnetic field (0.78). The study confirms that optimizing the alignment tool geometry and applying sufficiently strong magnetic fields during extrusion enable the production of anisotropic NdFeB permanent magnets without post-machining, providing a scalable route for permanent magnet recycling and manufacturing. Moreover, PEM with in situ magnetic particle alignment allows for the continuous fabrication of near-net-shape strands with customizable cross-sections, making it a scalable approach for permanent magnet recycling and industrial manufacturing. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

25 pages, 4032 KB  
Review
Insights to Resistive Pulse Sensing of Microparticle and Biological Cells on Microfluidic Chip
by Yiming Yao, Kai Zhao, Haoxin Jia, Zhengxing Wei, Yiyang Huo, Yi Zhang and Kaihuan Zhang
Biosensors 2025, 15(8), 496; https://doi.org/10.3390/bios15080496 - 1 Aug 2025
Viewed by 2211
Abstract
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through [...] Read more.
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through a nanopore, this technology offers detailed insights into the structure, charge, and dynamics of the analytes. In this work, the RPS platforms based on biological, solid-state, and other sensing pores, detailing their latest research progress and applications, are reviewed. Their core capability is the high-precision characterization of tiny particles, ions, and nucleotides, which are widely used in biomedicine, clinical diagnosis, and environmental monitoring. However, current RPS methods involve bottlenecks, including limited sensitivity (weak signals from sub-nanometer targets with low SNR), complex sample interference (high false positives from ionic strength, etc.), and field consistency (solid-state channel drift, short-lived bio-pores failing POCT needs). To overcome this, bio-solid-state fusion channels, in-well reactors, deep learning models, and transfer learning provide various options. Evolving into an intelligent sensing ecosystem, RPS is expected to become a universal platform linking basic research, precision medicine, and on-site rapid detection. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and Lab-on-Chip (Bio)sensors)
Show Figures

Figure 1

27 pages, 9778 KB  
Article
Flexural Behavior of Pre-Tensioned Precast High-Performance Steel-Fiber-Reinforced Concrete Girder Without Conventional Reinforcement: Full-Scale Test and FE Modeling
by Ling Kang, Haiyun Zou, Tingmin Mu, Feifei Pei and Haoyuan Bai
Buildings 2025, 15(13), 2308; https://doi.org/10.3390/buildings15132308 - 1 Jul 2025
Viewed by 885
Abstract
In contrast to brittle normal-strength concrete (NSC), high-performance steel-fiber-reinforced concrete (HPSFRC) provides better tensile and shear resistance, enabling enhanced bridge girder design. To achieve a balance between cost efficiency and quality, reducing conventional reinforcement is a viable cost-saving strategy. This study focused on [...] Read more.
In contrast to brittle normal-strength concrete (NSC), high-performance steel-fiber-reinforced concrete (HPSFRC) provides better tensile and shear resistance, enabling enhanced bridge girder design. To achieve a balance between cost efficiency and quality, reducing conventional reinforcement is a viable cost-saving strategy. This study focused on the flexural behavior of a type of pre-tensioned precast HPSFRC girder without longitudinal and shear reinforcement. This type of girder consists of HPSFRC and prestressed steel strands, balancing structural performance, fabrication convenience, and cost-effectiveness. A 30.0 m full-scale girder was randomly selected from the prefabrication factory and tested through a four-point bending test. The failure mode, load–deflection relationship, and strain distribution were investigated. The experimental results demonstrated that the girder exhibited ductile deflection-hardening behavior (47% progressive increase in load after the first crack), extensive cracking patterns, and large total deflection (1/86 of effective span length), meeting both the serviceability and ultimate limit state design requirements. To complement the experimental results, a nonlinear finite element model (FEM) was developed and validated against the test data. The flexural capacity predicted by the FEM had a marginal 0.8% difference from the test result, and the predicted load–deflection curve, crack distribution, and load–strain curve were in adequate agreement with the test outcomes, demonstrating reliability of the FEM in predicting the flexural behavior of the girder. Based on the FEM, parametric analysis was conducted to investigate the effects of key parameters, namely concrete tensile strength, concrete compressive strength, and prestress level, on the flexural responses of the girder. Eventually, design recommendations and future studies were suggested. Full article
(This article belongs to the Special Issue Advances in Mechanical Behavior of Prefabricated Structures)
Show Figures

Figure 1

17 pages, 8805 KB  
Article
Microstructure and Mechanical Properties of Brass-Clad Copper Stranded Wires in High-Speed Solid/Liquid Continuous Composite Casting and Drawing
by Yu Lei, Xiao Liu, Yanbin Jiang, Fan Zhao, Xinhua Liu and Jianxin Xie
Metals 2025, 15(5), 482; https://doi.org/10.3390/met15050482 - 24 Apr 2025
Viewed by 1381
Abstract
A solid/liquid continuous composite casting technology was developed to produce brass-clad copper stranded wire billets efficiently with continuous casting speeds ranging from 200 mm/min to 1000 mm/min. As the casting speed increased, the microstructure of the brass cladding transformed at an angle to [...] Read more.
A solid/liquid continuous composite casting technology was developed to produce brass-clad copper stranded wire billets efficiently with continuous casting speeds ranging from 200 mm/min to 1000 mm/min. As the casting speed increased, the microstructure of the brass cladding transformed at an angle to the radial direction. The wire billet prepared at a casting speed of 600 mm/min was then subjected to drawing. As the percentage reduction in area of the billet increased from 11.9 to 81.5% during the drawing process, the tensile strength improved from 336 MPa to 534 MPa, while the elongation after fracture decreased from 30.1 to 4.7%. Meanwhile, dislocation, dislocation cells, and microbands successively formed in the pure copper strand wires, while twins, shear bands, dislocation pile-ups, and secondary twins gradually formed in the brass cladding. During the drawing process, the interface between copper and brass remained metallurgically bonded, exhibiting coordinated deformation behavior. This paper clarified the evolution of microstructure and mechanical properties of brass-clad copper stranded wires in high-speed solid/liquid continuous composite casting and drawing, which could provide important reference for industrial production. Full article
Show Figures

Figure 1

23 pages, 5096 KB  
Review
Engineered Bamboo Building Materials: Types, Production, and Applications
by Mahdi Hosseini, Milan Gaff, Yang Wei and Chaoyu Tu
Forests 2025, 16(4), 662; https://doi.org/10.3390/f16040662 - 10 Apr 2025
Cited by 5 | Viewed by 5854
Abstract
The challenges highlighted at the 29th Conference of the Parties (COP29) emphasize the importance of using renewable resources in the architecture, engineering, and construction (AEC) industry. The building and construction sector is a major contributor to environmental pollution, with most emissions stemming from [...] Read more.
The challenges highlighted at the 29th Conference of the Parties (COP29) emphasize the importance of using renewable resources in the architecture, engineering, and construction (AEC) industry. The building and construction sector is a major contributor to environmental pollution, with most emissions stemming from the extraction, transportation, production, and disposal of construction materials. As a result, developing renewable building materials is essential. In the past decade, bamboo has gained significant attention from researchers due to its strength, sustainability, high yield, and rapid growth. Bamboo in its original form has been used in construction for centuries, and recent innovations have led to the creation of engineered bamboo materials designed for more versatile applications. Researchers have been focused on understanding the physical and mechanical properties of engineered bamboo to assess its potential as a sustainable alternative to traditional building materials. However, modern practitioners are still unfamiliar with engineered bamboo materials, their types, and where they can be used. This article highlights the most widely researched engineered bamboo materials that have been used in the construction of small architectural forms and bigger structures. It provides an overview of common engineered bamboo building materials, namely laminated bamboo lumber, laminated bamboo sheets, parallel strand bamboo, bamboo mat boards, and bamboo particleboards, and their manufacturing processes and applications, offering valuable information for current practitioners and future research. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
Show Figures

Figure 1

21 pages, 3836 KB  
Review
Current Trends in Monitoring and Analysis of Tool Wear and Delamination in Wood-Based Panels Drilling
by Tomasz Trzepieciński, Krzysztof Szwajka, Joanna Zielińska-Szwajka and Marek Szewczyk
Machines 2025, 13(3), 249; https://doi.org/10.3390/machines13030249 - 20 Mar 2025
Cited by 3 | Viewed by 2219
Abstract
Wood-based panels (WBPs) have versatile structural applications and are a suitable alternative to plastic panels and metallic materials. They have appropriate strength parameters that provide the required stiffness and strength for furniture products and construction applications. WBPs are usually processed by cutting, milling [...] Read more.
Wood-based panels (WBPs) have versatile structural applications and are a suitable alternative to plastic panels and metallic materials. They have appropriate strength parameters that provide the required stiffness and strength for furniture products and construction applications. WBPs are usually processed by cutting, milling and drilling. Especially in the furniture industry, the accuracy of processing is crucial for aesthetic reasons. Ensuring the WBP surface’s high quality in the production cycle is associated with the appropriate selection of processing parameters and tools adapted to the specificity of the processed material (properties of wood, glue, type of resin and possible contamination). Therefore, expert assessment of the durability of WBPs is difficult. The interest in the automatic monitoring of cutting tools in sustainable production, according to the concept of Industry 4.0, is constantly growing. The use of flexible automation in the machining of WBPs is related to the provision of tools monitoring the state of tool wear and surface quality. Drilling is the most common machining process that prepares panels for assembly operations and directly affects the surface quality of holes and the aesthetic appearance of products. This paper aimed to synthesize research findings across Medium-Density Fiberboards (MDFs), particleboards and oriented strand boards (OSBs), highlighting the impact of processing parameters and identifying areas for future investigation. This article presents the research trend in the adoption of the new general methodological assumptions that allow one to define both the drill condition and delamination monitoring in the drilling of the most commonly used wood-based boards, i.e., particleboards, MDFs and OSBs. Full article
(This article belongs to the Special Issue Tool Wear in Machining, 2nd Edition)
Show Figures

Figure 1

28 pages, 16213 KB  
Article
Experimental and Numerical Studies on the Mechanical Behavior of a Novel Bidirectional, Prestressed, Prefabricated, Composite Hollow-Core Slab
by Junyan Jin, Weicheng Hu, Fuyan Zheng and Bitao Wu
Buildings 2025, 15(2), 232; https://doi.org/10.3390/buildings15020232 - 15 Jan 2025
Cited by 1 | Viewed by 1644
Abstract
Prestressed, precast composite panels are a type of building component that combines prestressing technology with composite materials; but, for most of them, it is difficult to balance structural stress performance and assembly efficiency. This paper proposes a series of novel bidirectional, prestressed, prefabricated, [...] Read more.
Prestressed, precast composite panels are a type of building component that combines prestressing technology with composite materials; but, for most of them, it is difficult to balance structural stress performance and assembly efficiency. This paper proposes a series of novel bidirectional, prestressed, prefabricated, composite slabs, aiming to enhance their bidirectional force characteristics and assembly efficiency. By implanting a kind of specially designed concrete movable core rib with the same geometry as the cavity in the hollow-core slab at medium spacing, the transverse stressing performance of the structure is enhanced without affecting the unidirectional structural performance. Then, in the pre-set transverse apertures, several pieces of unidirectional, prestressed, precast hollow-core slabs that are implanted in the core mold are connected in series with high-strength strands and prestressed; finally, we obtain a bidirectional, prestressed, prefabricated composite slab. Two types of slabs (i.e., 3.3 m × 4.5 m and 4.5 m × 4.5 m) are selected and their mechanical behavior is investigated experimentally and by the finite element method, and the results are in good agreement. The proposed bidirectional, prestressed, precast composite slab not only has better overall bearing performance but also improves the structural stiffness and assembly rate, which can greatly improve the economic benefits and is of great significance for the popularization and application of assembled concrete structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 4693 KB  
Article
Rheological Characterization and Printability of Sodium Alginate–Gelatin Hydrogel for 3D Cultures and Bioprinting
by Mohan Kumar Dey and Ram V. Devireddy
Biomimetics 2025, 10(1), 28; https://doi.org/10.3390/biomimetics10010028 - 4 Jan 2025
Cited by 7 | Viewed by 3549
Abstract
The development of biocompatible hydrogels for 3D bioprinting is essential for creating functional tissue models and advancing preclinical drug testing. This study investigates the formulation, printability, mechanical properties, and biocompatibility of a novel Alg-Gel hydrogel blend (alginate and gelatin) for use in extrusion-based [...] Read more.
The development of biocompatible hydrogels for 3D bioprinting is essential for creating functional tissue models and advancing preclinical drug testing. This study investigates the formulation, printability, mechanical properties, and biocompatibility of a novel Alg-Gel hydrogel blend (alginate and gelatin) for use in extrusion-based 3D bioprinting. A range of hydrogel compositions were evaluated for their rheological behavior, including shear-thinning properties, storage modulus, and compressive modulus, which are crucial for maintaining structural integrity during printing and supporting cell viability. The printability assessment of the 7% alginate–8% gelatin hydrogel demonstrated that the 27T tapered needle achieved the highest normalized Printability Index (POInormalized = 1), offering the narrowest strand width (0.56 ± 0.02 mm) and the highest printing accuracy (97.2%) at the lowest printing pressure (30 psi). In contrast, the 30R needle, with the smallest inner diameter (0.152 mm) and highest printing pressure (80 psi), resulted in the widest strand width (0.70 ± 0.01 mm) and the lowest accuracy (88.8%), resulting in a POInormalized of 0.274. The 30T and 27R needles demonstrated moderate performance, with POInormalized values of 0.758 and 0.558, respectively. The optimized 7% alginate and 8% gelatin blend demonstrated favorable printability, mechanical strength, and cell compatibility with MDA-MB-213 breast cancer cells, exhibiting high cell proliferation rates and minimal cytotoxicity over a 2-week culture period. This formulation offers a balanced approach, providing sufficient viscosity for precision printing while minimizing shear stress to preserve cell health. This work lays the groundwork for future advancements in bioprinted cancer models, contributing to the development of more effective tools for drug screening and personalized medicine. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

17 pages, 6140 KB  
Article
Additive Manufacturing of Smart Footwear Components for Healthcare Applications
by Aravind Kanna Kundumani Janarthanan and Bala Vaidhyanathan
Micromachines 2025, 16(1), 30; https://doi.org/10.3390/mi16010030 - 28 Dec 2024
Cited by 2 | Viewed by 2491
Abstract
Diabetic foot complications pose significant health risks, necessitating innovative approaches in orthotic design. This study explores the potential of additive manufacturing in producing functional footwear components with lattice-based structures for diabetic foot orthoses. Five distinct lattice structures (gyroid, diamond, Schwarz P, Split P, [...] Read more.
Diabetic foot complications pose significant health risks, necessitating innovative approaches in orthotic design. This study explores the potential of additive manufacturing in producing functional footwear components with lattice-based structures for diabetic foot orthoses. Five distinct lattice structures (gyroid, diamond, Schwarz P, Split P, and honeycomb) were designed and fabricated using stereolithography (SLA) with varying strand thicknesses and resin types. Mechanical testing revealed that the Schwarz P lattice exhibited superior compressive strength, particularly when fabricated with flexible resin. Porosity analysis demonstrated significant variations across structures, with the gyroid showing the most pronounced changes with increasing mesh thickness. Real-time pressure distribution mapping, achieved through integrated force-sensitive resistors and Arduino-based data acquisition, enabled the visualization of pressure hotspots across the insole. The correlation between lattice properties and pressure distribution was established, allowing for tailored designs that effectively alleviated high-pressure areas. This study demonstrates the feasibility of creating highly personalized orthotic solutions for diabetic patients using additive manufacturing, offering a promising approach to reducing the plantar pressure in foot and may contribute to improved outcomes in diabetic foot care. Full article
Show Figures

Figure 1

21 pages, 6126 KB  
Article
Influence of Lignin Type on the Properties of Hemp Fiber-Reinforced Polypropylene Composites
by Florin Ciolacu, Teodor Măluțan, Gabriela Lisa and Mariana Ichim
Polymers 2024, 16(23), 3442; https://doi.org/10.3390/polym16233442 - 8 Dec 2024
Cited by 7 | Viewed by 2857
Abstract
Increasing environmental awareness has boosted interest in sustainable alternatives for binding natural reinforcing fibers in composites. Utilizing lignin, a biorenewable polymer byproduct from several industries, as a component in polymer matrices can lead to the development of more eco-friendly and high-performance composite materials. [...] Read more.
Increasing environmental awareness has boosted interest in sustainable alternatives for binding natural reinforcing fibers in composites. Utilizing lignin, a biorenewable polymer byproduct from several industries, as a component in polymer matrices can lead to the development of more eco-friendly and high-performance composite materials. This research work aimed to investigate the effect of two types of lignin (lignosulfonate and soda lignin) on the properties of hemp fiber-reinforced polypropylene composites for furniture applications. The composites were produced by thermoforming six overlapping layers of nonwoven material. A 20% addition of soda lignin or lignosulfonate (relative to the nonwoven mass) was incorporated between the nonwoven layers made of 80% hemp and 20% polypropylene (PP). The addition of both types of lignin resulted in an increase in the tensile and bending strength of lignin-based composites, as well as a decrease in the absorbed water percentage. Compared to oriented strand board (OSB), lignin-based composites exhibited better properties. Regarding the two types of lignin used, the addition of lignosulfonate resulted in better composite properties than those containing soda lignin. Thermal analysis revealed that the thermal degradation of soda lignin begins long before the melting temperature of polypropylene. This early degradation explains the inferior properties of the composites containing soda lignin compared to those with lignosulfonate. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

Back to TopTop