Mechanical Behavior and Performance Degradation of Structural Cables in Buildings: A Comprehensive Review
Abstract
1. Introduction
2. Systematic Review Methodology and Bibliometric Landscape
2.1. Review Methodology
2.2. Bibliometric Analysis of the Research Landscape
2.2.1. Publication Trends
2.2.2. Keyword Statistical Analysis
3. Fundamental Cable Characteristics
3.1. Elastic Modulus
3.2. Axial Stiffness
3.3. Bending Stiffness
3.4. Coefficient of Thermal Expansion
3.5. Comparison of International Standards
4. Stress Relaxation and Creep
4.1. Stress Relaxation
4.2. Creep Behavior and Modeling
5. High-Temperature Mechanical Properties
5.1. Experimental and Numerical Investigations
5.2. Comparison of the Performance of Different Types of Cables
6. Corrosion and Fretting Degradation Behavior
6.1. Corrosion-Induced Degradation
6.2. Fretting-Fatigue Behavior
6.3. Post-Fracture Mechanical Behavior
7. Discussion and Synthesis
8. Outlook and Research Roadmap
- Implement multi-sensor long-term field monitoring for in-service architectural cables. Install integrated FBG, acoustic emission, and magnetic flux leakage sensors on a minimum of three long-span roofs. Monitor tension, wire breakage, corrosion rates, and fretting damage continuously. Acquire realistic multi-physics load spectra and degradation trajectories under actual service conditions.
- Combine long-term natural corrosion monitoring with fretting-fatigue testing. Retrieve cable samples from in-service cable-supported structures with extensive operational histories. Perform detailed metallographic analysis of pitting and fretting scars, alongside residual strength and fatigue tests. Establish quantitative models for the synergy between corrosion and fretting. Determine reliable equivalence relationships between natural exposure and accelerated laboratory tests.
- Conduct full-scale transient fire tests on large-diameter cables with heating rates exceeding 100 °C/min. Record radial and axial temperature distributions, thermal torsion, real-time prestress evolution, and post-fire residual mechanical properties simultaneously. Develop validated thermomechanical constitutive relationships for nonuniform rapid heating conditions. Establish unified post-fire assessment criteria to ensure the safe reuse of cable-supported structures.
- Conduct coupled experiments on corrosion and relaxation. Perform prolonged relaxation tests on pre-corroded strands subjected to cyclic variations in temperature and humidity. Quantify the impact of localized corrosion on the acceleration of stress relaxation and the alteration of long-term stiffness degradation. Integrate these interactions into prediction models for life cycle performance.
- Conduct inter-wire friction tests and residual stress measurements on full-scale cables. Obtain realistic coefficients of friction and representative initial residual stress fields for typical types of cables. Integrate these experimentally derived parameters into refined finite element models to significantly enhance the predictive accuracy of axial and bending stiffness and the recovery length of fractured wires.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Velinsky, S.A. General nonlinear theory for complex wire rope. Int. J. Mech. Sci. 1985, 27, 497–507. [Google Scholar] [CrossRef]
- Chen, Z.H. Development and engineering practice of building cable structures in China. Build. Struct. 2024, 54, 44–50, 65. [Google Scholar] [CrossRef]
- Sun, G.J.; Li, X.H.; Wu, J.Z.; Chen, R.H.; Chen, G.N. Deformation of stainless steel cables at elevated temperature. Eng. Struct. 2020, 211, 110498. [Google Scholar] [CrossRef]
- GB/T 18365-2018; Hot-Extruded PE Protection Paralleled High Strength Wire Cable for Cable-Stayed Bridge. Standards Press of China: Beijing, China, 2018.
- YB/T 4543-2016; Zinc-5% Aluminum-Mixed Mischmetal Alloy-Coated Cable for Building Engineering. Standards Press of China: Beijing, China, 2016.
- GB/T 43485-2023; Full Locked Cable for Building Structures. Standards Press of China: Beijing, China, 2023.
- GB/T 25821-2023; Stainless Steel Wire Strand. Standards Press of China: Beijing, China, 2023.
- Baddoo, N.R. Stainless steel in construction: A review of research, applications, challenges and opportunities. J. Constr. Steel Res. 2008, 64, 1199–1206. [Google Scholar] [CrossRef]
- Liu, H.B.; Guo, L.L.; Chen, Z.H.; Fan, Z.Y. Study on temperature dependency of spiral strand properties. Int. J. Mech. Sci. 2019, 161–162, 105013. [Google Scholar] [CrossRef]
- Lou, G.B.; Hou, J.; Qi, H.H.; Li, F.X.; Song, Z.H.; Li, G.Q. Prestress loss of twisted wire strands and parallel wire strands at elevated temperatures. Eng. Struct. 2023, 291, 116438. [Google Scholar] [CrossRef]
- Lou, G.B.; Hou, J.; Qi, H.H.; Song, Z.H.; Li, G.Q. Mechanical properties and bonding strength of twisted wire strands at elevated temperatures. J. Constr. Steel Res. 2024, 213, 108392. [Google Scholar] [CrossRef]
- Sun, G.J.; Li, X.H.; Xue, S.D.; Chen, R.H. Mechanical properties of Galfan-coated steel cables at elevated temperatures. J. Constr. Steel Res. 2019, 155, 331–341. [Google Scholar] [CrossRef]
- Sun, G.J.; Li, X.H.; Xue, S.D. Mechanical Properties of Stainless-Steel Cables at Elevated Temperature. J. Mater. Civ. Eng. 2019, 31, 04019106. [Google Scholar] [CrossRef]
- Yu, Y.J.; Man, M.K.; Zhao, F.T.; Lin, S.W.; Guo, F.Q. Corrosive degradation evaluation of semi-parallel wire cables with high-density polyethylene sheath breaks. Eng. Fail. Anal. 2020, 116, 104714. [Google Scholar] [CrossRef]
- JGJ257-2012; Technical Specification for Cable Structures. China Building Industry Press: Beijing, China, 2012.
- EN 1993-1-11:2006; Eurocode 3: Design of Steel Structures—Part 1-11: Design of Structures With Tension Components. European Committee for Standardization: Brussels, Belgium, 2006.
- Larrosa, N.O.; Akid, R.; Ainsworth, R.A. Corrosion-fatigue: A review of damage tolerance models. Int. Mater. Rev. 2018, 63, 283–308. [Google Scholar] [CrossRef]
- Behvar, A.; Haghshenas, M. A critical review on very high cycle corrosion fatigue: Mechanisms, methods, materials, and models. J. Space Saf. Eng. 2023, 10, 284–323. [Google Scholar] [CrossRef]
- Atienza, J.M.; Elices Calafat, M. Behavior of Prestressing Steels after Fire. In Proceedings of the IABSE Congress, Chicago 2008: Creating and Renewing Urban Structures—Tall Buildings, Bridges and Infrastructure, Chicago, IL, USA, 17–19 September 2008; pp. 288–289. [Google Scholar] [CrossRef]
- Grace, N.F.; Mohamed, M.E.; Bebawy, M.R. Evaluating fatigue, relaxation, and creep rupture of carbon-fiber-reinforced polymer strands for highway bridge construction. PCI J. 2023, 68, 36–61. [Google Scholar] [CrossRef]
- Jirawattanasomkul, T.; Hang, L.; Srivaranun, S.; Likitlersuang, S.; Jongvivatsakul, P.; Yodsudjai, W.; Thammarak, P. Digital twin-based structural health monitoring and measurements of dynamic characteristics in balanced cantilever bridge. Resilient Cities Struct. 2025, 4, 48–66. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef] [PubMed]
- Onur, Y.A. Experimental and theoretical investigation of prestressing steel strand subjected to tensile load. Int. J. Mech. Sci. 2016, 118, 91–100. [Google Scholar] [CrossRef]
- GB50017-2017; Standard for Design of Steel Structures. China Building Industry Press: Beijing, China, 2017.
- Yu, Y.J.; Chen, Z.H.; Wang, X.X. Refined simplified finite element model of cable and its sensitivity analysis. J. Tianjin Univ. 2015, 48, 96–101. [Google Scholar]
- Costello, G.A. Analytical investigation of wire rope. Appl. Mech. Rev. 1978, 31, 897–900. [Google Scholar]
- Utting, W.S. Survey of the literature on the behaviour of steel wire rope. Wire Ind. 1984, 51, 623–629. [Google Scholar]
- Utting, W.S. Survey of the literature on the behaviour of steel wire rope—Part I. Wire Ind. 1994, 61, 633–635. [Google Scholar]
- Utting, W.S. Survey of the literature on the behaviour of steel wire rope—Part II. Wire Ind. 1994, 61, 746–748. [Google Scholar]
- Utting, W.S. Survey of the literature on the behaviour of steel wire rope—Part III. Wire Ind. 1995, 62, 269–270. [Google Scholar]
- Cardou, A.; Jolicoeur, C. Mechanical models of helical strands. Appl. Mech. Rev. 1997, 50, 1–14. [Google Scholar] [CrossRef]
- Costello, G.A. Theory of Wire Rope, 2nd ed.; Springer: New York, NY, USA, 1997. [Google Scholar]
- Raoof, M.; Kraincanic, I. Critical examination of various approaches used for analyzing helical cables. J. Strain Anal. Eng. Des. 1994, 29, 43–55. [Google Scholar] [CrossRef]
- Ghoreishi, S.R.; Tanguy, M.; Patrice, C.; Davies, P. Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model. Int. J. Mech. Sci. 2007, 49, 1251–1261. [Google Scholar] [CrossRef]
- Lesnak, M.; Marsalek, P.; Horyl, P.; Pistora, J. Load-Bearing Capacity Modelling and Testing of Single-Stranded Wire Rope. Acta Montan. Slovaca 2020, 25, 192–200. [Google Scholar] [CrossRef]
- Hroncek, J.; Marsalek, P.; Rybansky, D.; Sotola, M.; Drahorad, L.; Lesnak, M.; Fusek, M. Simplified Numerical Model for Determining Load-Bearing Capacity of Steel-Wire Ropes. Materials 2023, 16, 3756. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.J.; Chen, Z.H.; Liu, H.B.; Wang, X.D. Finite element study of behavior and interface force conditions of seven-wire strand under axial and lateral loading. Constr. Build. Mater. 2014, 66, 10–18. [Google Scholar] [CrossRef]
- Utting, W.S.; Jones, N. Tensile testing of a wire rope strand. J. Strain Anal. Eng. Des. 1985, 20, 151–164. [Google Scholar] [CrossRef]
- Utting, W.S.; Jones, N. Axial–Torsional interactions and wire deformation in 19-wire spiral strand. J. Strain Anal. Eng. Des. 1988, 23, 79–86. [Google Scholar] [CrossRef]
- Judge, R.; Yang, Z.; Jones, S.W.; Beattie, G. Full 3D finite element modelling of spiral strand cables. Constr. Build. Mater. 2012, 35, 452–459. [Google Scholar] [CrossRef]
- Peng, C.M.; Zhang, Q.W.; Li, Y.B. Static Model and Parameter Analysis of Multilayered Semi-Parallel Wire Cable Under Tensile Load. J. South China Univ. Technol. 2013, 41, 115–119, 126. [Google Scholar]
- Su, C.; Xu, Y.F.; Han, D.J. Parameter Analysis and Identification of Bending Stiffness of Cables During Tension Measurements by Frequency Method. J. Highw. Transp. Res. Dev. 2005, 22, 75–78. [Google Scholar]
- Geuzaine, M.; Foti, F.; Denoël, V. Minimal requirements for the vibration-based identification of the axial force, the bending stiffness and the flexural boundary conditions in cables. J. Sound Vib. 2021, 511, 116326. [Google Scholar] [CrossRef]
- Furukawa, A.; Hirose, K.; Kobayashi, R. Tension Estimation Method for Cable With Damper Using Natural Frequencies. Front. Built Environ. 2021, 7, 603857. [Google Scholar] [CrossRef]
- Chen, Z.H.; Yu, Y.J.; Wang, X.D.; Wu, X.F.; Liu, H.B. Experimental research on bending performance of structural cable. Constr. Build. Mater. 2015, 96, 279–288. [Google Scholar] [CrossRef]
- Chen, Y.P.; Meng, F.M.; Gong, X.S. Study on performance of bended spiral strand with interwire frictional contact. Int. J. Mech. Sci. 2017, 128–129, 499–511. [Google Scholar] [CrossRef]
- Zhang, D.S.; Ostoja-Starzewski, M. Finite Element Solutions to the Bending Stiffness of a Single-Layered Helically Wound Cable With Internal Friction. J. Appl. Mech. 2016, 83, 031003. [Google Scholar] [CrossRef]
- Zheng, G.; Li, H. Normal Stress between Steel Wires in the Stay-Cable. Appl. Mech. Mater. 2011, 50–51, 541–546. [Google Scholar] [CrossRef]
- Yu, Y.J.; Wang, X.X.; Chen, Z.H. A simplified finite element model for structural cable bending mechanism. Int. J. Mech. Sci. 2016, 113, 196–210. [Google Scholar] [CrossRef]
- Liang, B.; Zhao, Z.W.; Wu, X.F.; Liu, H.Q. The establishment of a numerical model for structural cables including friction. J. Constr. Steel Res. 2017, 139, 424–436. [Google Scholar] [CrossRef]
- Yang, J.X.; Fei, H.Y.; Sun, Q.S.; Hao, X.W. Analysis of contact friction behavior in the bending process of semi-parallel steel wire cable. Civ. Eng. J. 2022, 31, 456–466. [Google Scholar] [CrossRef]
- Bendalla, A.S.K.; Tondo, G.R.; Morgenthal, G. A nonlinear finite element framework and Gaussian process-based prediction of stick/slip behaviour in semi-parallel wire cables. Int. J. Solids Struct. 2023, 284, 112522. [Google Scholar] [CrossRef]
- Sun, J.F.; Wang, G.L.; Zhang, H.O. FE analysis of frictional contact effect for laying wire rope. J. Mater. Process. Tech. 2008, 202, 170–178. [Google Scholar] [CrossRef]
- Suangga, M.; Candra, H.; Hidayat, I.; Yuliastuti. Temperature Effect on Tension Force of Stay Cable of Cable-Stayed Bridge. Int. J. Eng. Adv. Technol. 2019, 9, 2251–2257. [Google Scholar] [CrossRef]
- ASCE 19-96; Structural Applications of Steel Cables for Buildings. ASCE: Reston, VA, USA, 1997.
- JSS II 03-1994; Structural Cable Material Specifications—Structural Strand Ropes. Japanese Steel Structure Association: Tokyo, Japan, 1994.
- Liu, J.; Li, N.; Chen, Z.H.; Zhang, X.B. Experiment study on the linear expansion factor of cables. Low Temp. Archit. Tech. 2007, 1, 54–55. [Google Scholar]
- CECS 212:2006; Technical specification for cable of building structures. China Planning Press: Beijing, China, 2006.
- Zhou, H.; Du, Y.; Li, G.Q.; Richard, L.J.Y.; Wang, X.C. Experimental study on thermal expansion and creep properties of pre-stressed steel strands at elevated temperature. Eng. Mech. 2018, 35, 123–131. [Google Scholar]
- Chen, Z.H.; Liu, Z.S. Experimental research of linear thermal expansion coefficient of cables. J. Build. Mater. 2010, 13, 626–631. [Google Scholar]
- Sun, G.J.; Chen, Z.H.; Liu, Z.S. Analytical and Experimental Investigation of Thermal Expansion Mechanism of Steel Cables. J. Mater. Civ. Eng. 2011, 23, 1017–1027. [Google Scholar] [CrossRef]
- Sun, G.J.; Li, Z.H.; Wu, J.Z.; Qu, X.S.; Ren, J.Y. Investigation into the Prestress Loss and Thermal Expansion Performance of Steel Cables at High Temperature. Int. J. Steel Struct. 2022, 22, 669–685. [Google Scholar] [CrossRef]
- Zeren, A.; Zeren, M. Stress relaxation properties of prestressed steel wires. J. Mater. Process. Technol. 2003, 141, 86–92. [Google Scholar] [CrossRef]
- Wang, X.X.; Chen, Z.H.; Liu, H.B.; Yu, Y.J. Experimental study on stress relaxation properties of structural cables. Constr. Build. Mater. 2018, 175, 777–789. [Google Scholar] [CrossRef]
- Sun, G.J.; Zhao, J.N.; Qu, X.S.; Yuan, J. Experimental study of stress relaxation performance of steel cables at room temperature. J. Mater. Civ. Eng. 2021, 33, 04020493. [Google Scholar] [CrossRef]
- Feng, Y.; Yuan, X.F.; Zhang, W.J.; Deng, M.Y. Long-term relaxation analysis of steel cables based on viscoelastic model. Thin-Wall. Struct. 2024, 205, 112363. [Google Scholar] [CrossRef]
- Atienza, J.M.; Elices, M. Role of residual stresses in stress relaxation of prestressed concrete wires. J. Mater. Civ. Eng. 2007, 19, 703–708. [Google Scholar] [CrossRef]
- Atienza, J.M.; Ruiz-Hervias, J.; Elices, M. The role of residual stresses in the performance and durability of prestressing steel wires. Exp. Mech. 2012, 52, 881–893. [Google Scholar] [CrossRef]
- Chen, Y.P.; Xiang, J.C.; Xiang, J.; Wang, Q.; Zhou, J.T. Stress relaxation behavior and its effect on the mechanical performance of a wire cable. Mech. Time-Depend. Mater. 2023, 28, 595–615. [Google Scholar] [CrossRef]
- Chen, Y.P.; Huang, L.; Xiang, J.; Xu, J.; Zhou, M.J.; Zhou, J.T. Relaxation behavior of a three-layered wire cable under a combined tension and bending load. Mech. Time-Depend. Mater. 2024, 28, 2705–2727. [Google Scholar] [CrossRef]
- Ivanco, V.; Kmet, S.; Fedorko, G. Finite element simulation of creep of spiral strands. Eng. Struct. 2016, 117, 220–238. [Google Scholar] [CrossRef]
- Zhang, W.J.; Yuan, X.F.; Yang, L.; Deng, M.Y. Research on creep constitutive model of steel cables. Constr. Build. Mater. 2020, 246, 118481. [Google Scholar] [CrossRef]
- Du, Y.; Richard Liew, J.Y.; Jiang, J.; Li, G.Q. Improved time-hardening creep model for investigation on behaviour of pre-tensioned steel strands subject to localised fire. Fire Saf. J. 2020, 116, 103191. [Google Scholar] [CrossRef]
- Sun, G.J.; Xiao, S.; Qu, X.S. Thermal–mechanical deformation of Galfan-coated steel strands at elevated temperatures. J. Constr. Steel Res. 2021, 180, 106574. [Google Scholar] [CrossRef]
- Du, Y.; Zhu, D.D.; Zhu, S.J. Experimental study on high-temperature creep behavior of full-locked and galfan-coated steel cables. J. Mater. Civ. Eng. 2024, 36, 04023512. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wang, S.M.; Ni, Y.Q.; Yuan, X.F.; Feng, Y.; Yuan, L.; Hao, S. Physics-enhanced multi-fidelity neural ordinary differential equation for forecasting long-term creep behavior of steel cables. Thin-Wall. Struct. 2025, 208, 112846. [Google Scholar] [CrossRef]
- Zhou, H.T.; Li, G.Q.; Jiang, S.C. Experimental studies on the properties of steel strand at elevated temperatures. J. Sichuan Univ. 2008, 40, 106–110. [Google Scholar]
- Du, Y.; Peng, J.Z.; Liew, J.Y.R.; Li, G.Q. Mechanical properties of high tensile steel cables at elevated temperatures. Constr. Build. Mater. 2018, 182, 52–65. [Google Scholar] [CrossRef]
- Liu, L.; Wang, L.F.; Yu, S.S.; Li, M. Mechanical Properties of Steel Strands Cooled by Different Methods After High-Temperature Treatment. Int. J. Steel Struct. 2022, 22, 333–342. [Google Scholar] [CrossRef]
- Sun, G.J.; Yuan, J.; Xue, S.D.; Yang, Y.; Mensinger, M. Experimental investigation of the mechanical properties of zinc-5% aluminum-mixed mischmetal alloy-coated steel strand cables. Constr. Build. Mater. 2020, 233, 117310. [Google Scholar] [CrossRef]
- Sun, G.J.; Li, X.H.; Wu, J.Z. Postfire mechanical properties of Galfan-coated steel cables. Fire Mater. 2020, 44, 909–922. [Google Scholar] [CrossRef]
- Sun, G.J.; Xiao, S.; Yang, Y.; Li, X.H.; Mensinger, M. Post-fire mechanical properties of stainless steel cables. J. Constr. Steel Res. 2020, 172, 106177. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Zhu, S.J.; Huang, L. Elevated-temperature mechanical property and constitutive model of Galfan-coated and full-locked steel cables. J. Constr. Steel Res. 2023, 211, 108146. [Google Scholar] [CrossRef]
- Fontanari, V.; Benedetti, M.; Monelli, B.D.; Degasperi, F. Fire behavior of steel wire ropes: Experimental investigation and numerical analysis. Eng. Struct. 2015, 84, 340–349. [Google Scholar] [CrossRef]
- Nicoletta, B.; Gales, J.; Kotsovinos, P.; Weckman, B.; John, G. Experimental Thermal Performance of Unloaded Spiral Strand and Locked Coil Cables Subject to Pool Fires. Struct. Eng. Int. 2022, 32, 392–410. [Google Scholar] [CrossRef]
- Watson, S.; Nicoletta, B.; Kotsovinos, P.; Al Hamd, R.; Gales, J. Modelling Thermal Performance of Unloaded Spiral Strand and Locked Coil Cables Subject to Pool Fires. Struct. Eng. Int. 2023, 33, 558–568. [Google Scholar] [CrossRef]
- Qu, X.S.; Deng, Y.X.; Sun, G.J. Investigation on behavior of steel cables subject to localized fire in large-space buildings. Adv. Steel Constr. 2024, 20, 1–11. [Google Scholar] [CrossRef]
- Du, Y.; Richard Liew, J.Y.; Zhang, H.; Li, G.Q. Pre-tensioned steel cables exposed to localised fires. Adv. Steel Constr. 2018, 14, 206–226. [Google Scholar] [CrossRef]
- Guo, J.; Zhong, Y.L. Prediction of Cable Deterioration Based on the Characteristics of Delamination Corrosion on Hot-Dip Galvanized Steel Wire. J. Mater. Civ. Eng. 2025, 37, 04025150. [Google Scholar] [CrossRef]
- Li, S.Y.; Yao, G.W.; Wang, W.; Yu, X.R.; He, X.B.; Ran, C.Y.; Long, H. Research on the Diffusion Model of Cable Corrosion Factors Based on Optimized BP Neural Network Algorithm. Buildings 2023, 13, 1485. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, Z.Z.; Wang, H.K.; Gao, J.; Chen, Z.W. Time variant characteristic of steel cable considering stress-corrosion deterioration. Constr. Build. Mater. 2022, 328, 127038. [Google Scholar] [CrossRef]
- Yao, G.W.; Yu, X.R.; Gu, L.F.; Jiang, Y.X. Experiment on Corrosion Fatigue Life of Steel Strands under the Coupling Effects of Chloride Environment and Alternating Loads. Adv. Civ. Eng. 2021, 2021, 2439503. [Google Scholar] [CrossRef]
- Chen, Z.H.; Chen, H.Y.; Liu, H.B.; Yang, S.H. Corrosion behavior of different cables of large-span building structures in different environments. J. Mater. Civ. Eng. 2020, 32, 04020345. [Google Scholar] [CrossRef]
- Zhang, S.C.; Xu, X.M.; Gao, F.; Luo, B.; Shi, W.Z.; Fang, Q. Experimental study on corrosion of galfan-coated full-locked coil ropes in a natatorium environment. Adv. Civ. Eng. 2022, 2022, 9777836. [Google Scholar] [CrossRef]
- Fang, Z.; Fu, J.J.; Wang, Z.; Chen, B.L.; Shi, P.A.; Ma, J. Study on Properties of High-Vanadium Full-Locked Cable with Alloy Coating with Defects. Processes 2022, 10, 513. [Google Scholar] [CrossRef]
- Jikal, A.; Majid, F.; Chaffou, H.; EI Ghorba, M. Influence of corrosion on the mechanical behavior of strand of a non-rotating wire rope: Experimental study. Procedia Struct. Integr. 2019, 18, 731–741. [Google Scholar] [CrossRef]
- Tijani, A.; Meknassi, M.; Chaffoui, H.; El Ghorba, M. Corrosion’s impact on wire rope strand response—Comparison with a theoretical predictive model. Frat. Ed Integrità Strutt. 2019, 13, 141–148. [Google Scholar] [CrossRef]
- Guo, L.L.; Wang, L.X.; Chen, Z.H.; Liu, H.B.; Yang, Z.Y.; Zhang, F. Study on corrosion law and mechanical properties of locked coil wire ropes. J. Constr. Steel Res. 2025, 226, 109264. [Google Scholar] [CrossRef]
- Xu, C.M.; Peng, Y.X.; Fang, K.T.; Jiang, T.; Wang, Y.F.; Yuan, L. Effect of Torsional Angle on the Fretting Wear Behavior and Fracture Failure Mechanism of Steel Wires with Spiral Contact Structure. J. Mater. Res. Technol. 2024, 33, 4116–4127. [Google Scholar] [CrossRef]
- Huang, K.; Peng, Y.X.; Chang, X.D.; Zhou, Z.; Jiang, G.S.; Lu, H.; Tang, W.; Shi, Z.Y.; Wang, G.F.; Zhang, X.H. Fretting Fatigue Behavior of Helical-Torsional Contact Steel Wire in Wire Rope. Int. J. Fatigue 2024, 186, 108393. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, K.; Ma, C.; Zhu, Z.; Chang, X.; Lu, H.; Zhang, Q.; Xu, C. Friction and Wear of Multiple Steel Wires in a Wire Rope. Friction 2023, 11, 763–784. [Google Scholar] [CrossRef]
- Huang, K.; Peng, Y.X.; Chang, X.D.; Shi, Z.Y.; Zhou, Z.; Lu, H.; Tang, W.; Wang, G.F.; Zhang, X.H. Fretting Wear Behavior and Strength Degradation of Helical Contact Steel Wire in Wire Rope under Different Corrosive Media and Time-Varying Conditions. Wear 2024, 550–551, 205413. [Google Scholar] [CrossRef]
- Liu, Z.X.; Guo, T.; Han, D.G.; Li, A.Q. Experimental Study on Corrosion-Fretting Fatigue Behavior of Bridge Cable Wires. J. Bridge Eng. 2020, 25, 04020104. [Google Scholar] [CrossRef]
- Ahmad, S.; Badshah, S.; Rahimian Koloor, S.S.; Amjad, M.; Jan, S.; Tamin, M.N. Cumulative Fretting Fatigue Damage Model for Steel Wire Ropes. Fatigue Fract. Eng. Mater. Struct. 2024, 47, 1656–1676. [Google Scholar] [CrossRef]
- Ahmad, S.; Badshah, S.; Amjad, M.; Jan, S.; Ibrahim, M.; Tamin, M.N. Evaluation of Fretting-Induced Degradation in Steel Wire Rope Strand Using Continuum Damage Mechanics. Fatigue Fract. Eng. Mater. Struct. 2025, 48, 2933–2948. [Google Scholar] [CrossRef]
- Ahmad, S.; Badshah, S.; Ul Haq, I.; Abdullah Malik, S.; Amjad, M.; Nasir Tamin, M. Numerical Investigation of 1 × 7 Steel Wire Strand under Fretting Fatigue Condition. Materials 2019, 12, 3463. [Google Scholar] [CrossRef]
- Hu, Z.; Liang, K.; Wang, E.Y.; Liu, X.F.; Jia, F.Y. Numerical Investigation on Fretting Wear in Steel Wires by Introducing System Stiffness and Dissipated Friction Energy. Adv. Eng. Softw. 2025, 209, 103999. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Z.; Wu, Y.Y. Numerical Simulation of Fretting Fatigue Damage Evolution of Cable Wires Considering Corrosion and Wear Effects. Comput. Model. Eng. Sci. 2023, 136, 1339–1370. [Google Scholar] [CrossRef]
- Raoof, M. Wire recovery length in a helical strand under axial-fatigue loading. Int. J. Fatigue 1991, 13, 127–132. [Google Scholar] [CrossRef]
- Peng, C.M.; Zhang, Q.W.; Li, Y.B. Damage model of multilayered semi-parallel wire cables for bridges with symmetric wire breaks. J. Tongji Univ. 2013, 41, 20–26. [Google Scholar]
- Peng, C.M.; Zhang, Q.W.; Li, Y.B. Mechanical properties analysis of semi-parallel wire cables for bridges with symmetric wire breaks. J. Tongji Univ. 2013, 41, 496–502. [Google Scholar]
- Peng, C.M.; Zhang, Q.W.; Li, Y.B. Damage model of multilayered semi-parallel wire cables with non-symmetric wire breaks. J. Tongji Univ. 2014, 42, 218–225. [Google Scholar]
- Peng, C.M.; Zhang, Q.W.; Ma, M.L. Mechanical properties analysis of bridge cables considering broken wires. Struct. Eng. 2022, 38, 25–30. [Google Scholar]
- Wang, X.X.; Yu, Y.J.; Yan, X.Y. Theoretical model of symmetric wire breaks in semi-parallel wire cables. J. Tianjin Univ. 2016, 49, 34–40. [Google Scholar]
- Sun, H.H.; Chen, W.Z.; Yang, J.X. A numerical study of the effect of corrosion and breakage of wires on mechanical properties of cable. J. South China Univ. Tech. 2018, 46, 137–144. [Google Scholar]















| Number | Keyword | Frequency | Number | Keyword | Frequency |
|---|---|---|---|---|---|
| 1 | Cable | 26 | 16 | Wire rope strand | 8 |
| 2 | Mechanical properties | 25 | 17 | Model | 7 |
| 3 | Wire rope | 17 | 18 | Mechanics | 7 |
| 4 | Steel wire | 13 | 19 | Tension | 7 |
| 5 | Steel wire rope | 13 | 20 | Engineering mechanical | 6 |
| 6 | Spiral strand | 12 | 21 | Locked coil wire rope | 6 |
| 7 | Creep | 12 | 22 | Residual strength | 5 |
| 8 | Corrosion | 11 | 23 | Friction and wear | 5 |
| 9 | Relaxation | 11 | 24 | Finite element simulation | 5 |
| 10 | Elevated temperature | 10 | 25 | Galfan-coated steel cable | 5 |
| 11 | Finite element analysis | 10 | 26 | Experimental investigation | 5 |
| 12 | Fretting fatigue | 10 | 27 | Constitutive equation | 5 |
| 13 | Behavior | 10 | 28 | Bending stiffness | 5 |
| 14 | Stiffness | 9 | 29 | Steel strand | 4 |
| 15 | Fatigue | 9 | 30 | Finite element model | 4 |
| Type | Elastic Modulus (MPa) | |
|---|---|---|
| SPWS | (1.9~2.0) × 105 | |
| Steel wire rope | Single-strand | 1.4 × 105 |
| Multi-strand | 1.1 × 105 | |
| SS | Galvanized | (1.85~1.95) × 105 |
| High-strength low-relaxation | (1.85~1.95) × 105 | |
| Steel rod | 2.06 × 105 | |
| Scholar | Specimen | Grade (MPa) | Treatment Conditions | Temp. Range (°C) |
|---|---|---|---|---|
| Zhou et al. [77] | SS | 1860 | Performed during exposure to high temperatures | 20–700 |
| Du et al. [78] | SS | 1860 | Performed during exposure to high temperatures | 20–800 |
| Liu et al. [9] | Steel wires | 1860 | Performed during exposure to high temperatures | 20–700 |
| SS | 1860 | Performed during exposure to high temperatures | 20–700 | |
| Performed after exposure to high temperatures | 100–1000 | |||
| Liu et al. [79] | Steel wires | 1860 | Performed after exposure to high temperatures | 15–1000 |
| SS | 1860 | 1000 | ||
| Lou et al. [11] | SS | 1860 | Performed during exposure to high temperatures | 20–600 |
| Sun et al. | GSS [80] | / | / | Room temperature |
| GSS [12] | 1670 | Performed during exposure to high temperatures | 30–600 | |
| GSS [81] | 1670 | Performed after exposure to high temperatures | 100–500 | |
| SSC [13] | 1500 | Performed during exposure to high temperatures | 30–600 | |
| SSC [82] | 1500 | Performed after exposure to high temperatures | 200–600 | |
| Wang et al. [83] | GSS LCR | 1670 1570 | Performed during exposure to high temperatures | 20–700 20–700 |
| Fontanari et al. [84] | Steel wires | / | Performed during exposure to high temperatures | 100–600 |
| LCR | / | / | Room temperature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhang, H.; Liu, H.; Wang, J.; Zhang, Y.; Guo, L.; Chen, Z.; Kosior-Kazberuk, M.; Krassowska, J. Mechanical Behavior and Performance Degradation of Structural Cables in Buildings: A Comprehensive Review. Materials 2025, 18, 5502. https://doi.org/10.3390/ma18245502
Chen X, Zhang H, Liu H, Wang J, Zhang Y, Guo L, Chen Z, Kosior-Kazberuk M, Krassowska J. Mechanical Behavior and Performance Degradation of Structural Cables in Buildings: A Comprehensive Review. Materials. 2025; 18(24):5502. https://doi.org/10.3390/ma18245502
Chicago/Turabian StyleChen, Xu, Hai Zhang, Hongbo Liu, Jianshuo Wang, Yutong Zhang, Liulu Guo, Zhihua Chen, Marta Kosior-Kazberuk, and Julita Krassowska. 2025. "Mechanical Behavior and Performance Degradation of Structural Cables in Buildings: A Comprehensive Review" Materials 18, no. 24: 5502. https://doi.org/10.3390/ma18245502
APA StyleChen, X., Zhang, H., Liu, H., Wang, J., Zhang, Y., Guo, L., Chen, Z., Kosior-Kazberuk, M., & Krassowska, J. (2025). Mechanical Behavior and Performance Degradation of Structural Cables in Buildings: A Comprehensive Review. Materials, 18(24), 5502. https://doi.org/10.3390/ma18245502

