Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = high-pressure multiphase flows

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2504 KB  
Article
Comparative Study of Single Cyclone Validation and Predictive Simulation of Multi-Cyclone Configurations
by Mihaela Constantin, Cătălina Dobre, Anca Chelmuș, Nicolae Băran, Daniel Taban, Beatrice Ibrean, Daniel Dima and Mugurel Oprea
Appl. Mech. 2025, 6(4), 82; https://doi.org/10.3390/applmech6040082 - 4 Nov 2025
Viewed by 195
Abstract
Cyclone separators are widely used for gas–solid separation due to their robustness and low operating cost. This study focuses on the experimental validation of a single cyclone configuration and the development of a MATLAB-based numerical framework. The model employs a Euler–Lagrange approach to [...] Read more.
Cyclone separators are widely used for gas–solid separation due to their robustness and low operating cost. This study focuses on the experimental validation of a single cyclone configuration and the development of a MATLAB-based numerical framework. The model employs a Euler–Lagrange approach to capture centrifugal, drag, and gravitational forces acting on spherical polyethylene particles (D = 5 mm). Laboratory-scale measurements of airflow, pressure drop, and separation efficiency showed strong agreement with the numerical model (deviation < 6%), confirming its reliability for the single cyclone case. Beyond this validated framework, exploratory simulations were carried out for series and parallel cyclone configurations to provide predictive insights into possible design trade-offs. Unlike high-fidelity CFD–DEM models, which are computationally intensive and allow detailed turbulence and particle–particle interactions, the present MATLAB model is simplified but transparent and fast to implement. Its originality lies in demonstrating a low-cost, experimentally calibrated tool that can support preliminary design decisions. The multi-cyclone results should be interpreted as predictive trends, as no direct experimental validation was possible within the present setup. These findings offer preliminary guidance for balancing efficiency, energy demand, and throughput in applied mechanics of multiphase flow systems. Full article
Show Figures

Figure 1

23 pages, 9802 KB  
Article
Influence of the Semicircular Cycle in a Labyrinth Weir on the Discharge Coefficient
by Erick Dante Mattos-Villarroel, Waldo Ojeda-Bustamante, Carlos Díaz-Delgado, Humberto Salinas-Tapia, Carlos Francisco Bautista-Capetillo, Jorge Flores-Velázquez and Cruz Ernesto Aguilar-Rodríguez
Water 2025, 17(21), 3151; https://doi.org/10.3390/w17213151 - 3 Nov 2025
Viewed by 345
Abstract
The labyrinth weir is an effective hydraulic structure, offering high discharge efficiency and economic advantages, making it a suitable option for dam construction or rehabilitation projects. Owing to its complex geometry, significant research efforts have been dedicated to enhancing its hydraulic performance. Since [...] Read more.
The labyrinth weir is an effective hydraulic structure, offering high discharge efficiency and economic advantages, making it a suitable option for dam construction or rehabilitation projects. Owing to its complex geometry, significant research efforts have been dedicated to enhancing its hydraulic performance. Since the beginning of this century, Computational Fluid Dynamics (CFD) has emerged as a vital approach, complementing traditional methods in the design of hydraulic structures. This study employs CFD ANSYS FLUENT to examine the discharge coefficient of a semicircular labyrinth weir, featuring a cyclic arrangement and a half-round crest profile. The numerical models and simulations address two-phase flow (air and water) under incompressible and free-surface conditions. The CFD ANSYS FLUENT approach used is multiphase flow modeling using the Volume of Fluid method to track the free water surface. For turbulence effects, it is complemented with the standard k-ε model and the Semi-Implicit Method for Pressure Linked Equations algorithm for pressure–velocity coupling. In addition, for boundary conditions, the flow velocity was defined as the inlet to the channel and atmospheric pressure as the outlet, and the walls of the channel and weir are considered solid, stationary, and non-sliding walls. The model was validated with experimental data reported in the literature. The results indicate that the semicircular labyrinth weir achieves greater discharge capacity when the headwater ratio HT/P increases for HT/P ≤ 0.25. A regression analysis mathematical model was also developed, using the HT/P ratio, to predict the discharge coefficient for 0.05 ≤ HT/P ≤ 1. Relative to other geometrical configurations, the semicircular labyrinth weir demonstrated a discharge capacity that was up to 88% higher than that of the trapezoidal labyrinth weir. Both weir and cycle efficiency were assessed, and maximum weir efficiency was observed when HT/P ≤ 0.1, while cycle efficiency peaked at HT/P ≤ 0.25. The geometric configuration under analysis demonstrated greater economic efficiency by providing a reduced total length and enhanced discharge capacity relative to trapezoidal designs, especially when the sidewall angle α is considered as α ≤ 12°. The study concludes by presenting a design sequence detailing the required concrete volume for construction, which is subsequently compared to the specifications of a trapezoidal labyrinth weir. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

21 pages, 5705 KB  
Article
Research on Internal Flow and Runner Force Characteristics of Francis Turbine
by Jianwen Xu, Peirong Chen, Yanhao Li, Xuelin Yang and An Yu
Water 2025, 17(20), 3004; https://doi.org/10.3390/w17203004 - 19 Oct 2025
Viewed by 347
Abstract
Francis turbines are widely used due to their large capacity and broad head adaptability, placing higher demands on the internal flow characteristics and runner performance of the units. In this paper, numerical simulations of a Francis turbine model were conducted using ANSYS CFX [...] Read more.
Francis turbines are widely used due to their large capacity and broad head adaptability, placing higher demands on the internal flow characteristics and runner performance of the units. In this paper, numerical simulations of a Francis turbine model were conducted using ANSYS CFX 2022 R1. The SST turbulence model, ZGB cavitation model, and VOF multiphase flow model were selected for the calculations. The internal flow characteristics and pressure pulsations in the runner and draft tube under different operating conditions were analyzed, and the variations in normal and tangential forces acting on the runner blades during operation were investigated. The results indicate significant differences in the internal flow within the runner and draft tube under various guide vane opening conditions. The pressure pulsation in the unit is influenced by both the internal flow in the draft tube and the rotation of the runner. The mechanical load on the runner blades is affected by multiple factors, including the wake from upstream fixed guide vanes, rotor–stator interaction, and downstream vortex ropes. Under low-flow conditions, the variation in forces acting on the runner blades is relatively small, whereas under high-flow conditions, the runner blades are prone to abrupt force fluctuations at 0.6–0.8 times the rotational frequency. This is manifested as periodic abrupt force changes in both the X and Y directions of the runner blades under high-flow conditions. The normal force in the Z-direction of the runner blades increases instantaneously and then decreases immediately, while the tangential force decreases instantaneously and then increases promptly. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

22 pages, 8367 KB  
Article
Coupling Changes in Pressure and Flow Velocity in Oil Pipelines Supported by Structures
by Chengbin Zhang, Zhaoyang Han, Bin Ma, Zhaofeng Yang, Yinshan Liu, Yaoqiang Hu, Zhenni Wang and Kejie Zhao
Processes 2025, 13(9), 2932; https://doi.org/10.3390/pr13092932 - 13 Sep 2025
Viewed by 718
Abstract
To investigate the time-varying influence of oil viscosity and water content on flow behavior in crossing pipelines, we developed a three-dimensional finite element/CFD model using advanced simulation software with fluid dynamics capabilities. Simulations were performed under varying viscosity and water-cut conditions, and the [...] Read more.
To investigate the time-varying influence of oil viscosity and water content on flow behavior in crossing pipelines, we developed a three-dimensional finite element/CFD model using advanced simulation software with fluid dynamics capabilities. Simulations were performed under varying viscosity and water-cut conditions, and the analyses covered fluid velocity, pressure distribution, and secondary flow characteristics. The results show clear quantitative trends: in the horizontal span, the stabilized centerline velocity reached 2.46 m/s (+23.0% versus the 2.00 m/s inlet). At Node 10, increasing viscosity from 0.306 to 0.603 Pa·s reduced the mean pressure by 11.2 kPa (−11.2% relative to a 0.10 MPa baseline), and a further increase to 1.185 Pa·s produced an additional 4.5 kPa (−4.5%) drop. At Node 1, the low-viscosity case yielded a centerline velocity 1.1× higher than the high-viscosity case (+10.0%). Consistent with these observations, higher viscosity and water cut decreased the average flow velocity and lengthened the duration of pressure fluctuations. These findings provide quantitative insight into the dynamic behavior of multiphase flow and offer a basis for understanding fluid–structure interaction phenomena in crude oil pipeline transport systems. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

26 pages, 2682 KB  
Article
A Novel Membrane Dehumidification Technology Using a Vacuum Mixing Condenser and a Multiphase Pump
by Jing Li, Chang Zhou, Xiaoli Ma, Xudong Zhao, Xiang Xu, Semali Perera, Joshua Nicks and Barry Crittenden
Technologies 2025, 13(9), 397; https://doi.org/10.3390/technologies13090397 - 3 Sep 2025
Viewed by 1133
Abstract
Vacuum membrane-based air dehumidification (MAD) is potentially more efficient than refrigeration cycles. Air permeance through a membrane is inevitable, especially when there is a large pressure difference between the supply and permeate sides. Given the high specific gas volume under vacuum conditions, removing [...] Read more.
Vacuum membrane-based air dehumidification (MAD) is potentially more efficient than refrigeration cycles. Air permeance through a membrane is inevitable, especially when there is a large pressure difference between the supply and permeate sides. Given the high specific gas volume under vacuum conditions, removing the permeating air from the dehumidifier is crucial for the stable operation of the vacuum compressor. Energy-efficient air removal techniques are still lacking, thereby hindering the development of MAD technology. This paper proposes a novel MAD approach using a vacuum mixing condenser. The cooling water directly condenses moisture from the vacuum compressor without any heat exchanger. The permeating air and water mixture in the condenser then experiences a quasi-isothermal pressurization process through a multiphase pump, enabling continuous dehumidification and air removal with low power consumption. The fundamentals of the proposed approach are illustrated, and mathematical models are built. Influences of air permeance rate, cooling water flow rate, condenser pressure, membrane area, and gravitational work are investigated. The results show that a COP of 8~12 is achievable to dehumidify air to 50%RH, 25 °C. The vacuum compressor consumes about 80% of the power. A low air permeance rate, low condenser pressure, large membrane area, and high gravitational work positively impact the COP, while the cooling water flow rate has a more complex effect. The proposed dehumidifier can use less selective membranes for higher permeability and cost-effectiveness. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

26 pages, 9137 KB  
Article
Synergistic Effects of Sediment Size and Concentration on Performance Degradation in Centrifugal Irrigation Pumps: A Southern Xinjiang Case Study
by Rui Xu, Shunjun Hong, Zihai Yang, Xiaozhou Hu, Yang Jiang, Yuqi Han, Chungong Gao and Xingpeng Wang
Agriculture 2025, 15(17), 1843; https://doi.org/10.3390/agriculture15171843 - 29 Aug 2025
Viewed by 667
Abstract
Centrifugal irrigation pumps in Southern Xinjiang face severe performance degradation due to high fine-sediment loads in canal water. This study combines Eulerian multiphase simulations with experimental validation to investigate the coupled effects of sediment size (0.05~0.8 mm) and concentration (5~20%) on hydraulic performance. [...] Read more.
Centrifugal irrigation pumps in Southern Xinjiang face severe performance degradation due to high fine-sediment loads in canal water. This study combines Eulerian multiphase simulations with experimental validation to investigate the coupled effects of sediment size (0.05~0.8 mm) and concentration (5~20%) on hydraulic performance. Numerical models incorporating Realizable kε turbulence closure and discrete phase tracking reveal two critical thresholds: (1) particle sizes ≥ 0.4 mm trigger a phase transition from localized disturbance to global flow disorder, expanding low-pressure zones by 37% at equivalent concentrations; (2) concentrations exceeding 13% accelerate nonlinear pressure decay through collective particle interactions. Velocity field analysis demonstrates size-dependent attenuation mechanisms: fine sediments (≤0.2 mm) cause gradual dissipation via micro-scale drag, while coarse sediments (≥0.6 mm) induce “cliff-like” velocity drops through inertial impact-blockade chains. Experimental wear tests confirm simulation accuracy in predicting erosion hotspots at impeller inlets/outlets. The identified synergistic thresholds provide critical guidelines for anti-wear design in sediment-laden irrigation systems. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

26 pages, 2731 KB  
Article
Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study
by Artur Wodołażski
Energies 2025, 18(17), 4557; https://doi.org/10.3390/en18174557 - 28 Aug 2025
Viewed by 788
Abstract
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the [...] Read more.
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the slurry flow rate on dynamic biocrude oil production is investigated through full transient CFD analysis in a scaled-up CSTR study. The kinetics of the HTL mechanism as a function of temperature, pressure, and residence time distribution were employed in the model through a user-defined function (UDF). The multiphysics simulation of the HTL process in a stirred tank reactor using the Lagrangian–Eulerian (LE) approach, along with a standard k-ε turbulence model, integrated HTL kinetics. The simulation accounts for particle–fluid interactions by coupling CFD-derived hydrodynamic fields with discrete particle motion, enabling prediction of individual particle trajectories based on drag, buoyancy, and interphase momentum exchange. The three-phase flow using a compressible non-ideal gas model and multiphase interaction as design requirements increased process efficiency in high-pressure and high-temperature model conditions. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

14 pages, 1446 KB  
Article
CFD-Based Analysis of Sound Wave Attenuation in Stratified Gas–Liquid Pipelines for Leak Detection Applications
by Birungi Joseph Kironde, Johnson Joachim Kasali and Yuxing Li
Processes 2025, 13(8), 2661; https://doi.org/10.3390/pr13082661 - 21 Aug 2025
Viewed by 537
Abstract
Sound wave attenuation in stratified gas–liquid flows is crucial for pipeline monitoring and leak detection. This study uses computational fluid dynamics (CFD) to investigate acoustic wave propagation in pipelines, employing the Volume of Fluid (VOF) model with interfacial tension and a pressure-based solver. [...] Read more.
Sound wave attenuation in stratified gas–liquid flows is crucial for pipeline monitoring and leak detection. This study uses computational fluid dynamics (CFD) to investigate acoustic wave propagation in pipelines, employing the Volume of Fluid (VOF) model with interfacial tension and a pressure-based solver. The effects of the gas volume fraction, pressure, frequency, and grid resolution are analyzed, with validation through mesh independence tests. The findings show that incorporating mesh refinement and boundary layer modeling improved attenuation prediction accuracy by approximately 25–30%. High-frequency waves (above 150 Hz) exhibited up to 30% greater attenuation when near-wall viscous effects were resolved, demonstrating the need for fine grid resolution in CFD-based multiphase diagnostic tools. This study highlights the importance of wave frequency, grid refinement, and boundary layer modeling for accurate attenuation predictions, offering insights for the improvement of CFD-based diagnostic tools in multiphase flow systems. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

16 pages, 3729 KB  
Article
Throttling Effect and Erosion Research of Ultra-High-Pressure Grease Nozzles
by Shaobo Feng, Zhixiong Xu, Hongtao Liu, Bao Zhang, Fumin Gao, Hongtao Jing and Pan Yang
Processes 2025, 13(8), 2555; https://doi.org/10.3390/pr13082555 - 13 Aug 2025
Viewed by 435
Abstract
To accommodate the extreme thermodynamic effects and erosion damage in throttling equipment for ultra-high-pressure natural gas wells (175 MPa), a coupled multiphase flow erosion numerical model for nozzles was established. This model incorporates a real gas compressibility factor correction and is based on [...] Read more.
To accommodate the extreme thermodynamic effects and erosion damage in throttling equipment for ultra-high-pressure natural gas wells (175 MPa), a coupled multiphase flow erosion numerical model for nozzles was established. This model incorporates a real gas compressibility factor correction and is based on the renormalized k-ε RNG (Renormalization Group k-epsilon model, a turbulence model that simulates the effects of vortices and rotation in the mean flow by modifying turbulent viscosity) turbulence model and the Discrete Phase Model (DPM, a multiphase flow model based on the Eulerian–Lagrangian framework). The study revealed that the nozzle flow characteristics follow an equal-percentage nonlinear regulation pattern. Choked flow occurs at the throttling orifice throat due to supersonic velocity (Ma ≈ 3.5), resulting in a mass flow rate governed solely by the upstream total pressure. The Joule–Thomson effect induces a drastic temperature drop of 273 K. The outlet temperature drops below the critical temperature for methane hydrate phase transition, thereby presenting a substantial risk of hydrate formation and ice blockage in the downstream outlet segment. Erosion analysis indicates that particles accumulate in the 180° backside region of the cage sleeve under the influence of secondary flow. At a 30% opening, micro-jet impact causes the maximum erosion rate to surge to 3.47 kg/(m2·s), while a minimum erosion rate is observed at a 50% opening. Across all opening levels, the maximum erosion rate consistently concentrates on the oblique section of the plunger front. Results demonstrate that removing the front chamfer of the plunger effectively improves the internal erosion profile. These findings provide a theoretical basis for the reliability design and risk prevention of surface equipment in deep ultra-high-pressure gas wells. Full article
(This article belongs to the Special Issue Multiphase Flow Process and Separation Technology)
Show Figures

Figure 1

24 pages, 11697 KB  
Article
Layered Production Allocation Method for Dual-Gas Co-Production Wells
by Guangai Wu, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han and Zhisheng Xing
Energies 2025, 18(15), 4039; https://doi.org/10.3390/en18154039 - 29 Jul 2025
Viewed by 505
Abstract
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones [...] Read more.
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones in their pore structure, permeability, water saturation, and pressure sensitivity, significant variations exist in their flow capacities and fluid production behaviors. To address the challenges of production allocation and main reservoir identification in the co-development of CBM and tight gas within deep gas-bearing basins, this study employs the transient multiphase flow simulation software OLGA to construct a representative dual-gas co-production well model. The regulatory mechanisms of the gas–liquid distribution, deliquification efficiency, and interlayer interference under two typical vertical stacking relationships—“coal over sand” and “sand over coal”—are systematically analyzed with respect to different tubing setting depths. A high-precision dynamic production allocation method is proposed, which couples the wellbore structure with real-time monitoring parameters. The results demonstrate that positioning the tubing near the bottom of both reservoirs significantly enhances the deliquification efficiency and bottomhole pressure differential, reduces the liquid holdup in the wellbore, and improves the synergistic productivity of the dual-reservoirs, achieving optimal drainage and production performance. Building upon this, a physically constrained model integrating real-time monitoring data—such as the gas and liquid production from tubing and casing, wellhead pressures, and other parameters—is established. Specifically, the model is built upon fundamental physical constraints, including mass conservation and the pressure equilibrium, to logically model the flow paths and phase distribution behaviors of the gas–liquid two-phase flow. This enables the accurate derivation of the respective contributions of each reservoir interval and dynamic production allocation without the need for downhole logging. Validation results show that the proposed method reliably reconstructs reservoir contribution rates under various operational conditions and wellbore configurations. Through a comparison of calculated and simulated results, the maximum relative error occurs during abrupt changes in the production capacity, approximately 6.37%, while for most time periods, the error remains within 1%, with an average error of 0.49% throughout the process. These results substantially improve the timeliness and accuracy of the reservoir identification. This study offers a novel approach for the co-optimization of complex multi-reservoir gas fields, enriching the theoretical framework of dual-gas co-production and providing technically adaptive solutions and engineering guidance for multilayer unconventional gas exploitation. Full article
Show Figures

Figure 1

15 pages, 5251 KB  
Article
Experimental Investigation of Flow Characteristics Inside a Venturi Tube Under Gas-Containing Conditions
by Qiang Guo, Chaoshan Lu, Xianbei Huang, Aibo Jiang and Xiaodong Liu
Water 2025, 17(14), 2080; https://doi.org/10.3390/w17142080 - 11 Jul 2025
Viewed by 967
Abstract
Gas–liquid two-phase flow is very common in fluid machinery and has complex multiphase flow characteristics. Under the gas-containing conditions, common issues in fluid machinery include the transport of liquid, bubble variations, and pressure drop characteristics; these can be analyzed using a simplified venturi [...] Read more.
Gas–liquid two-phase flow is very common in fluid machinery and has complex multiphase flow characteristics. Under the gas-containing conditions, common issues in fluid machinery include the transport of liquid, bubble variations, and pressure drop characteristics; these can be analyzed using a simplified venturi tube. In order to investigate the influence of incoming gas on the gas–liquid flow, a venturi tube with the range of inlet gas volume fraction (IGVF) from 0 to 16% was used in this experiment. The development of a two-phase flow was recorded by using high-speed photography. Under different initial liquid flow rates and gas content conditions, the evolution of the two-phase flow was similar, with the main difference being the rate of evolution. The incoming gas mainly underwent a process from column shape to expansion and then to fragmentation passing through the venturi tube. In the experimental images, the projected area of the main bubble increased linearly with the increase in IGVF. Meanwhile, the transporting ability of the venturi tube was weakened due to the blockage caused by high gas content, especially when the IGVF exceeded 10%. The pressure drop characteristics indicated an increase in losses with the increase in gas content. Full article
Show Figures

Figure 1

23 pages, 6326 KB  
Article
Suitability and Potential Evaluation of Carbon Dioxide Geological Storage: Case Study of Dezhou Subdepression
by Zhizheng Liu, Lin Ye, Hao Liu, Chao Jia, Henghua Zhu, Zeyu Li and Huafeng Liu
Sustainability 2025, 17(13), 5860; https://doi.org/10.3390/su17135860 - 25 Jun 2025
Viewed by 564
Abstract
Under the dual-carbon policy framework, geological CO2 storage, particularly in saline aquifers, is pivotal to achieving national emission reduction targets. However, selecting geologically favorable storage sites demands quantitative assessment of complex geological factors—a task hindered by subjective traditional methods. To address this, [...] Read more.
Under the dual-carbon policy framework, geological CO2 storage, particularly in saline aquifers, is pivotal to achieving national emission reduction targets. However, selecting geologically favorable storage sites demands quantitative assessment of complex geological factors—a task hindered by subjective traditional methods. To address this, the study employs an integrated approach combining multi-criteria decision analysis (Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation) with multiphase flow simulations to investigate the Dezhou Subdepression in Shandong Province. The results indicate that the Dezhou Subdepression is moderately favorable for CO2 geological storage, characterized by geologically optimal burial depth and favorable reservoir conditions. When the injection pressure increases from 1.1 times the original Group pressure (1.1P) to 1.5 times the original Group pressure (1.5P), the lateral migration distance of CO2 expands by 240%, and the total storage capacity increases by approximately 275%. However, under 1.5P conditions, the CO2 plume reaches the model boundary within 6.3 years, underscoring the increased risk of CO2 leakage under high-pressure injection scenarios. This study provides strategic insights for policymakers and supports strategic planning for a CO2 storage pilot project in the Dezhou Subdepression. It also serves as a reference framework for future assessments of CO2 geological storage potential. Full article
Show Figures

Figure 1

21 pages, 5078 KB  
Article
Experimental and Numerical Study of Slug-Flow Velocity Inside Microchannels Through In Situ Optical Monitoring
by Samuele Moscato, Emanuela Cutuli, Massimo Camarda and Maide Bucolo
Micromachines 2025, 16(5), 586; https://doi.org/10.3390/mi16050586 - 17 May 2025
Cited by 2 | Viewed by 924
Abstract
Miniaturization and reliable, real-time, non-invasive monitoring are essential for investigating microfluidic processes in Lab-on-a-Chip (LoC) systems. Progress in this field is driven by three complementary approaches: analytical modeling, computational fluid dynamics (CFD) simulations, and experimental validation techniques. In this study, we present an [...] Read more.
Miniaturization and reliable, real-time, non-invasive monitoring are essential for investigating microfluidic processes in Lab-on-a-Chip (LoC) systems. Progress in this field is driven by three complementary approaches: analytical modeling, computational fluid dynamics (CFD) simulations, and experimental validation techniques. In this study, we present an on-chip experimental method for estimating the slug-flow velocity in microchannels through in situ optical monitoring. Slug flow involving two immiscible fluids was investigated under both liquid–liquid and gas–liquid conditions via an extensive experimental campaign. The measured velocities were used to determine the slug length and key dimensionless parameters, including the Reynolds number and Capillary number. A comparison with analytical models and CFD simulations revealed significant discrepancies, particularly in gas–liquid flows. These differences are mainly attributed to factors such as gas compressibility, pressure fluctuations, the presence of a liquid film, and leakage flows, all of which substantially affect flow dynamics. Notably, the percentage error in liquid–liquid flows was lower than that in gas–liquid flows, largely due to the incompressibility assumption inherent in the model. The high-frequency monitoring capability of the proposed method enables in situ mapping of evolving multiphase structures, offering valuable insights into slug-flow dynamics and transient phenomena that are often difficult to capture using conventional measurement techniques. Full article
(This article belongs to the Special Issue Complex Fluid Flows in Microfluidics)
Show Figures

Figure 1

28 pages, 6655 KB  
Article
Investigation of Flowback Behavior for Multi-Fractured Horizontal Wells in Gulong Shale Oil Reservoir Based on Numerical Simulation
by Shuxin Yu, Yucheng Wu, Xiaogang Cheng, Binhui Li, Langyu Niu, Rui Wang, Pin Jia and Linsong Cheng
Energies 2025, 18(10), 2568; https://doi.org/10.3390/en18102568 - 15 May 2025
Cited by 1 | Viewed by 822
Abstract
After hydraulic fracturing, hydraulic fractures and opened beddings are intertwined, which results in a complex fracture network in shale oil reservoirs. In addition, the migration of multi-phase fluids during fracturing and shut-in processes leads to complex flowback performance and brings difficulty to flowback [...] Read more.
After hydraulic fracturing, hydraulic fractures and opened beddings are intertwined, which results in a complex fracture network in shale oil reservoirs. In addition, the migration of multi-phase fluids during fracturing and shut-in processes leads to complex flowback performance and brings difficulty to flowback strategies optimization. In this paper, taking the Daqing Gulong shale reservoir as an example, a numerical model, which considers oil–water–gas three-phase flow and the orthogonal fracture network, has been established for flowback period. The characteristics and influencing factors of flowback performance have been deeply studied, and the flowback modes of shale oil are reasonably optimized. Geological factors such as PTPG (pseudo-threshold pressure gradient), matrix permeability, and engineering factors such as opened bedding stress sensitivity, opened bedding permeability, and fracturing fluid distribution have obvious effects on the flowback performance, resulting in significant variations in production peaks, high production periods, and decline rates. Furthermore, three flowback modes distinguished by the BHP (bottom hole pressure) correspond to the three types of choke mode that have been optimized. This study reveals the main factors affecting the flowback performance. Meanwhile, the optimization method can be applied to optimize flowback strategies in Gulong and other similar shale reservoirs to obtain higher shale oil production. Full article
(This article belongs to the Topic Petroleum and Gas Engineering)
Show Figures

Figure 1

19 pages, 897 KB  
Article
Stable Multipoint Flux Approximation (MPFA) Saturation Solution for Two-Phase Flow on Non-K-Orthogonal Anisotropic Porous Media
by Pijus Makauskas and Mayur Pal
Technologies 2025, 13(5), 193; https://doi.org/10.3390/technologies13050193 - 9 May 2025
Cited by 1 | Viewed by 1612
Abstract
This paper extends the multipoint flux approximation (MPFA-O) method to model coupled pressure and saturation dynamics in subsurface reservoirs with heterogeneous anisotropic permeability and non-K-orthogonal grids. The MPFA method is widely used for reservoir simulation to address the limitations of the two-point flux [...] Read more.
This paper extends the multipoint flux approximation (MPFA-O) method to model coupled pressure and saturation dynamics in subsurface reservoirs with heterogeneous anisotropic permeability and non-K-orthogonal grids. The MPFA method is widely used for reservoir simulation to address the limitations of the two-point flux approximation (TPFA), particularly in scenarios involving full-tensor permeability and strong anisotropy. However, the MPFA-O method is known to suffer from spurious oscillations and numerical instability, especially in high-anisotropy scenarios. Existing stability-enhancing techniques, such as optimal quadrature schemes and flux-splitting methods, mitigate these issues but are computationally expensive and do not always ensure monotonicity or oscillation-free solutions. Building upon prior advancements in the MPFA-O method for pressure equations, this work incorporates the saturation equation to enable the simulation of a coupled multiphase flow in porous media. A unified framework is developed to address stability challenges associated with the tight coupling of pressure and saturation fields while ensuring local conservation and accuracy in the presence of full-tensor permeability. The proposed method introduces stability-enhancing modifications, including a local rotation transformation, to mitigate spurious oscillations and preserve physical principles such as monotonicity and the maximum principle. Numerical experiments on heterogeneous, anisotropic domains with non-K-orthogonal grids validate the robustness and accuracy of the extended MPFA-O method. The results demonstrate improved stability and performance in capturing the complex interactions between pressure and saturation fields, offering a significant advancement in subsurface reservoir modeling. This work provides a reliable and efficient tool for simulating coupled flow and transport processes, with applications in CO2 storage, hydrogen storage, geothermal energy, and hydrocarbon recovery. Full article
(This article belongs to the Section Construction Technologies)
Show Figures

Figure 1

Back to TopTop