Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study
Abstract
1. Introduction
2. Materials and Methods
2.1. CFD Multicomponent Modelling
2.2. Kinetics Model of Sludge Hydrothermal Liquefaction
2.3. Scale-Up
2.4. Geometry and Meshing
2.5. Numerical Procedure
2.6. Thermodynamics Model of Non-Ideal Gases
2.7. Coupling CFD-DEM Metod
2.8. CFD Multiphysics Model Experimental Setup
3. Results and Discussions
Hydrodynamics Flow Field of Biomass Slurry
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
flow velocity (m/s) | |
density of fluid phase (kg/m3) | |
liquid velocity (m/s) | |
static pressure (Pa) | |
stress tensor (N/m2) | |
gravitational body force (m/s2) | |
external force (N) | |
gas density (kg/m3) | |
gas velocity (m/s) | |
interphase mass transfer terms for the gas-solid interface reactions | |
second-order stress tensor of the gas | |
interaction force representing momentum transfer between gas and solid phase | |
effective mass diffusion coefficient (cm2·s−1) | |
Reynolds number of particles | |
specific heat of biomass particle (J/kg⋅K) | |
k | thermal conductivity coefficient (W/mK) |
particle temperature (K) | |
interphase mass transfer terms for the gas–solid interface reactions | |
h | heat transfer coefficient (W/m2K). |
surface area of biomass particles (m2) | |
Yi | mass fraction of gas species I |
species source term from particle | |
species source term from reactions | |
T | temperature (K) |
Sh | Sherwood number |
emissivity | |
incident radiation (Wh/m2) | |
Stefan–Boltzmann constant | |
energy source term | |
void fraction of fluid phase | |
velocity of fluid phase, (m/s) | |
momentum viscous tensor | |
Reynolds tensor | |
momentum of source term | |
mass of biomass particles (kg) | |
particle temperature (K) | |
Rq | impeller power number (depends on impeller type and dimensions) |
velocity of fluid phase | |
momentum viscous tensor | |
second-order stress tensor of the gas | |
interaction force representing momentum transfer between gas and solid phase | |
effective mass diffusion coefficient | |
Y | mass fraction of gas species I |
species source term from particle | |
species source term from reactions | |
mass of biomass particles | |
velocity of biomass particles | |
kt | heat conductivity due to turbulent transport |
specific heat of biomass particle | |
particle temperature heat transfer coefficient | |
surface area of biomass particles | |
emissivity | |
incident radiation | |
Stefan–Boltzmann constant | |
energy source term | |
Greek letters | |
gas volume fraction | |
void fraction of fluid phase | |
turbulence dissipation rate (m2·s−3) | |
viscosity (Pa·s) | |
σ | surface tension (N/m) |
turbulent Prandtl number | |
Subscript | |
l | liquid phase |
m | mixture |
s | solid phase |
t | turbulence |
j | phase j |
i | phase i |
References
- Gai, C.; Zhang, Y.; Chen, W.-T.; Zhang, P.; Dong, Y. An investigation of reaction pathways of hydrothermal liquefaction using chlorella pyrenoidosa and Spirulina platensis. Energy Convers. Manag. 2015, 96, 330–339. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Kishore, N.; Gu, S. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2018, 81, 1378–1392. [Google Scholar] [CrossRef]
- Jensen, C.U.; Rosendahl, L.A.; Olofsson, G. Impact of nitrogenous alkaline agent on continuous HTL of lignocellulosic biomass and crude bio-oil upgrading. Fuel Process Technol. 2017, 159, 376–385. [Google Scholar] [CrossRef]
- Zhang, Y.; Minaret, J.; Yuan, Z.; Dutta, A.; Xu, C. Mild hydrothermal liquefaction of high water content agricultural residue for bio-crude oil production: A parametric study. Energies 2018, 11, 3129–3142. [Google Scholar] [CrossRef]
- Dote, Y.; Sawayama, S.; Inoue, S.; Minowa, T.; Yokoyama, S. Recovery of liquid fuel from hydrocarbon- rich microalgae by thermochemical liquefaction. Fuel 1994, 73, 1855–1857. [Google Scholar] [CrossRef]
- Ginzburg, B.Z. Liquid fuel (oil) from halophilic algae: A renewable source of nonpolluting energy. Renew. Energy 1993, 3, 249–252. [Google Scholar] [CrossRef]
- Miao, X.; Wu, Q. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 2006, 97, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Minowa, T.; Yokoyama, S.Y.; Kishimoto, M.; Okakurat, T. Oil production from algal cells of Dunaliellatertiolecta by direct thermochemical liquefaction. Fuel 1995, 74, 1735–1738. [Google Scholar] [CrossRef]
- Panahi, H.K.S.; Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Rehan, M.; Nizami, A.S. Recent updates on the production and upgrading of bio-crude oil from microalgae. Bioresour. Technol. Rep. 2019, 7, 100216. [Google Scholar] [CrossRef]
- Elliott, D.C.; Biller, P.; Ross, A.B.; Schmidt, A.J.; Jones, S.B. Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresour. Technol. 2015, 178, 147–156. [Google Scholar] [CrossRef]
- Joshi, T.; Parkash, O.; Krishan, G. CFD modeling for slurry flow through a horizontal pipe bend at different Prandtl number. Int. J. Hydrogen Energy 2022, 47, 23731–23750. [Google Scholar] [CrossRef]
- Joshi, T.; Parkash, O.; Krishan, G. Numerical Investigation of Slurry Pressure Drop at Different Pipe Roughness in a Straight Pipe Using CFD. Arab. J. Sci. Eng. 2022, 47, 15391–15414. [Google Scholar] [CrossRef]
- Biller, P.; Ross, A. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 2011, 102, 215–225. [Google Scholar] [CrossRef]
- Vardon, D.R.; Sharma, B.K.; Blazina, G.V.; Rajagopalan, K.; Strathmann, T.J. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol. 2012, 109, 178–187. [Google Scholar] [CrossRef]
- Ranganathan, P.; Savithri, S. Computational fluid dynamics simulation of hydrothermal liquefaction of microalgae in a continuous plug-flow reactor. Bioresour. Technol. 2018, 258, 151–157. [Google Scholar] [CrossRef]
- Qian, L.; Ni, J.; Xu, Z.; Yu, B.; Wang, S.; Gu, H.; Xiang, D. Biocrude production from hydrothermal liquefaction of Chlorella: Thermodynamic modelling and reactor design. Energies 2021, 14, 6602. [Google Scholar] [CrossRef]
- Chu, W.-X.; Tsai, C.-A.; Lee, B.-H.; Cheng, K.-Y.; Wang, C.-C. Experimental investigation on heat transfer enhancement with twisted tape having various V-cut configurations. Appl. Therm. Eng. 2020, 172, 115148. [Google Scholar] [CrossRef]
- Campolo, M.; Paglianti, A.; Soldati, A. Fluid dynamic efficiency and scale-up of a retreated blade impeller CSTR. Ind. Eng. Chem. Res. 2002, 41, 164–172. [Google Scholar] [CrossRef]
- Campolo, M.; Soldati, A. Appraisal of fluid dynamic efficiency of retreated-blade and turbofoil impellers in industrial-size CSTRs. Ind. Eng. Chem. Res. 2002, 41, 1370–1377. [Google Scholar] [CrossRef]
- Wodołażski, A.; Skiba, J.; Zarębska, K.; Polański, J.; Smoliński, A. CFD modeling of the catalyst oil slurry hydrodynamics in a high pressure and temperature as potential for biomass liquefaction. Energies 2020, 13, 5694. [Google Scholar] [CrossRef]
- Wodołażski, A. Multiphase numerical CFD simulation of the hydrothermal liquefaction process (HTL) of sewage sludge in a tubular reactor. Appl. Sci. 2024, 14, 4513. [Google Scholar] [CrossRef]
- Ross, A.; Biller, P.; Kubacki, M.; Li, H.; Lea-Langton, A.; Jones, J. Hydrothermal processing of microalgae using alkali and organic acids. Fuel 2010, 89, 2234–2243. [Google Scholar] [CrossRef]
- Madsen, R.B.; Bernberg, R.Z.K.; Biller, P.; Becker, J.; Iversen, B.B.; Glasius, M. Hydrothermal co-liquefaction of biomasses quantitative analysis of bio-crude and aqueous phase composition. Sustain. Energy Fuels 2017, 1, 789–805. [Google Scholar] [CrossRef]
- Biller, P.; Ross, A.B. Hydrothermal processing of algal biomass for the production of biofuels and chemicals. Biofuels 2012, 3, 603–623. [Google Scholar] [CrossRef]
- Demirbas, A. Competitive liquid biofuels from biomass. Appl. Energy 2011, 88, 17–28. [Google Scholar] [CrossRef]
- Yu, J.; Biller, P.; Mamahkel, A.; Klemmer, M.; Becker, J.; Glasius, M.; Iversen, B.B. Catalytic hydrotreatment of bio-crude produced from the hydrothermal liquefaction of aspen wood: A catalyst screening and parameter optimization study. Sustain. Energy Fuels 2017, 1, 832–841. [Google Scholar] [CrossRef]
- Davis, H. Chemistry and stoichiometry of wood liquefaction. Biotechnol. Bioenergy Symp. 1981, 11, 151–170. [Google Scholar]
- Jarvis, J.M.; Albrecht, K.O.; Billing, J.M.; Schmidt, A.J.; Hallen, R.T.; Schaub, T.M. Assessment of hydrotreatment for hydrothermal liquefaction biocrudes from sewage sludge, microalgae, and pine feedstocks. Energy Fuels 2018, 32, 8483–8493. [Google Scholar] [CrossRef]
- Shi, W.; Liu, C.; Shu, Y.; Feng, C.; Lei, Z.; Zhang, Z. Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge: Fate and environmental risk of heavy metals. Bioresour. Technol. 2013, 149, 496–502. [Google Scholar] [CrossRef]
- Xu, D.; Lin, G.; Liu, L.; Wang, Y.; Jing, Z.; Wang, S. Comprehensive evaluation on product characteristics of fast hydrothermal liquefaction of sewage sludge at different temperatures. Energy 2018, 159, 686–695. [Google Scholar] [CrossRef]
- Huang, H.J.; Yuan, X.Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour. Technol. 2016, 200, 991–998. [Google Scholar] [CrossRef]
- Mathew, M. Scaling up of a Continuous Stirred Tank Reactor for Hydrothermal Liquefaction of Biomass: A Concept Study on Local Mass Transfer Coefficients. 2016. Available online: https://www.researchgate.net/publication/307430186_Scaling_up_of_a_continuous_stirred_tank_reactor_for_hydrothermal_liquefaction_of_biomass_A_concept_study_on_local_mass_transfer_coefficients?channel=doi&linkId=57c5747508ae6db2cc769677&showFulltext=true (accessed on 11 July 2025).
- Alba, L.G.; Torri, C.; Fabbri, D.; Kersten, S.R.; Brilman, D.W. Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae. Chem. Eng. J. 2013, 228, 214–223. [Google Scholar] [CrossRef]
- Di Lauro, F.; Balsamo, M.; Solimene, R.; Alfieri, M.L.; Manini, P.; Migliaccio, R.; Salatino, P.; Montagnaro, F. Characterization of Biocrude Produced by Hydrothermal Liquefaction of Municipal Sewage Sludge in a 500 mL Batch Reactor. Ind. Eng. Chem. Res. 2024, 63, 955–967. [Google Scholar] [CrossRef]
- Balsamo, M.; Di Lauro, F.; Alfieri, M.L.; Manini, P.; Salatino, P.; Montagnaro, F.; Solimene, R. Unravelling the role of biochemical compounds within the hydrothermal liquefaction process of real sludge mixtures. Sustainability 2024, 16, 1770. [Google Scholar] [CrossRef]
- Liu, H.; Basar, I.A.; Eskicioglu, C. Hydrothermal liquefaction for sludge-to-energy conversion: An evaluation of biocrude production and management of waste streams. Energy 2023, 281, 128268. [Google Scholar] [CrossRef]
- Balsamo, M.; Hejazi, B.; Di Lauro, F.; Marotta, G.; Solimene, R.; Salatino, P.; Montagnaro, F. Kinetic modelling and elemental balances applied to the hydrothermal liquefaction of sewage sludge. Chem. Eng. J. 2025, 505, 158767. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, D.; Wang, J.; Zeng, M.; Wang, Q.; Ma, T. Thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical fluids: A review. Renew. Sustain. Energy Rev. 2025, 208, 115051. [Google Scholar] [CrossRef]
- Sun, Z.; Yao, Q.; Jin, H.; Xu, Y.; Hang, W.; Chen, H.; Li, K.; Shi, L.; Gu, J.; Zhang, Q.; et al. A novel in-situ sensor calibration method for building thermal systems based on virtual samples and autoencoder. Energy 2024, 297, 131314. [Google Scholar] [CrossRef]
- Wodołazski, A. Co-simulation of CFD-multiphase population balance coupled model aeration of sludge flocs in stirrer tank bioreactor. Int. J. Multiph. Flow 2020, 123, 103162. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, Y.; Guan, H.; Wu, S.; Jia, H. A general drag coefficient model for a spherical particle incorporating rarefaction and particle-to-gas temperature ratio effects. Chem. Eng. Sci. 2024, 298, 120442. [Google Scholar] [CrossRef]
- ANSYS. Fluent Theory Guide; Ansys Inc.: Canonsburg, PA, USA, 2015. [Google Scholar]
- Launder, B.E.; Spalding, D.B. Lectures in Mathematical Models of Turbulence; Academic Press: London, UK, 1972. [Google Scholar]
Scale (Reactor Volume), L | Total Nodes (mln) | Total Elements (mln) |
---|---|---|
3 | 0.00052863 | 0.00015233 |
6 | 0.00628456 | 0.00245768 |
9 | 0.02487536 | 0.00981112 |
12 | 0.58643548 | 0.08258419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wodołażski, A. Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study. Energies 2025, 18, 4557. https://doi.org/10.3390/en18174557
Wodołażski A. Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study. Energies. 2025; 18(17):4557. https://doi.org/10.3390/en18174557
Chicago/Turabian StyleWodołażski, Artur. 2025. "Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study" Energies 18, no. 17: 4557. https://doi.org/10.3390/en18174557
APA StyleWodołażski, A. (2025). Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study. Energies, 18(17), 4557. https://doi.org/10.3390/en18174557