water-logo

Journal Browser

Journal Browser

Advances in Hydrodynamics for Pumping Systems: Modeling, Optimization, and Applications

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydraulics and Hydrodynamics".

Deadline for manuscript submissions: 25 December 2025 | Viewed by 2945

Special Issue Editors

Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China
Interests: flow-induced vibration and noise of rotating machinery; multiphase flow in fluid en-gineering; pump hydraulic design and energy-saving mechanism research
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
ENSAM- Arts et Metiers ParisTech, Boulevard Louis XIV, 8 59046 Lille, France
Interests: rotor-stator interactions; pumps and pump-turbines; transient phenomena in axial compressors, inducers, and pumps; transonic axial and centrifugal compressors; ex-perimental techniques in turbomachinery
Special Issues, Collections and Topics in MDPI journals
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China
Interests: multiphase flow, noise, and vibration in centrifugal pumps; rotor-stator interactions; pumps and pump-turbines; transient phenomena in pumps; experimental techniques in turbomachinery

E-Mail Website
Guest Editor
College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, China
Interests: Impeller pumps; rotor-stator cavity; fluid lubrication; unteady flow; hydraulic design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Pumping systems are integral to industrial processes, water supply, and energy systems, where hydrodynamic performance directly impacts efficiency, reliability, and sustainability. This Special Issue explores cutting-edge advancements in the hydrodynamics of pumping systems, focusing on theoretical, numerical, and experimental approaches to optimize their design and operation. Topics of interest include (but are not limited to) flow instabilities, cavitation phenomena, turbulence modeling, energy-efficient pump designs, and the application of machine learning for predictive maintenance. Contributions addressing multiphase flows, renewable energy integration (e.g., pumped hydro storage), and smart pumping technologies are also encouraged.

This Issue aims to bridge the gap between fundamental fluid dynamics research and practical engineering solutions, fostering innovation in sectors such as agriculture, wastewater management, oil and gas, and HVAC (Heating, Ventilation, and Air Conditioning) systems. By collating high-quality research on novel materials, computational fluid dynamic (CFD) simulations, and experimental validations, this Special Issue will serve as a platform for researchers and practitioners to share insights on overcoming hydrodynamic challenges in pumping systems.

We invite original research articles, case studies, and reviews that address emerging trends, sustainability, and cost-effective strategies in this critical field.

Dr. Qiaorui Si
Prof. Dr. Gerard Bois
Dr. Asad Ali
Dr. Yandong Gu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pumping systems
  • hydrodynamics
  • multiphase flow
  • cavitation 
  • computational fluid dynamics (CFD) 
  • energy efficiency 
  • turbulence modeling 
  • design optimization
  • transient flow
  • renewable energy integration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 9001 KB  
Article
Research on the Energy Distribution of Hump Characteristics Under Pump Mode in a Pumped Storage Unit Based on Entropy Generation Theory
by Yunrui Fang, Jianyong Hu, Bin Liu, Puxi Li, Feng Xie, Xiujun Hu, Jingyuan Cui and Runlong Zhang
Water 2025, 17(16), 2458; https://doi.org/10.3390/w17162458 - 19 Aug 2025
Viewed by 444
Abstract
To alleviate the pressure on grid regulation and ensure grid safety, pumped storage power stations need to frequently start and stop and change operating conditions, leading to the pump-turbine easily entering the hump characteristic zone, causing flow oscillation within the unit and significant [...] Read more.
To alleviate the pressure on grid regulation and ensure grid safety, pumped storage power stations need to frequently start and stop and change operating conditions, leading to the pump-turbine easily entering the hump characteristic zone, causing flow oscillation within the unit and significant changes in its input power, resulting in increased vibration and grid connection failure. The spatial distribution of energy losses and the hydrodynamic flow features within the hump zone of a pump-turbine under pumped storage operation are the focus of the study. The SST k-ω turbulence model is applied in CFD simulations of the pump-turbine within this work, focusing on the unstable operating range of the positive slope, with model testing providing experimental support. The model test method combines numerical simulation with experimental verification. The LEPR method is used to quantitatively investigate the unstable phenomenon in the hump zone, and the distribution law of energy loss is discussed. The results show that, at operating points in the hump zone, up to 72–86% of the energy dissipation is attributed to the runner, the guide vane passage, and the double vane row assembly within the guide vane system. The flow separation in the runner’s bladeless area evolves into a vortex group, leading to an increase in runner energy loss. With decreasing flow rate, the impact and separation of the water flow intensify the energy dissipation. The high-speed gradient change and dynamic–static interference in the bladeless area cause high energy loss in the double vane row area, and energy loss mainly occurs near the bottom ring. In the hump operation zone, the interaction between adverse flows such as vortices and recirculation and the passage walls directly drive the sharp rise in energy dissipation. Full article
Show Figures

Figure 1

27 pages, 8070 KB  
Article
Study on Solid-Liquid Two-Phase Flow and Wear Characteristics in Multistage Centrifugal Pumps Based on the Euler-Lagrange Approach
by Zhengyin Yang, Yandong Gu, Yingrui Zhang and Zhuoqing Yan
Water 2025, 17(15), 2271; https://doi.org/10.3390/w17152271 - 30 Jul 2025
Viewed by 440
Abstract
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To [...] Read more.
Multistage centrifugal pumps, owing to their high head characteristics, are commonly applied in domains like subsea resource exploitation and groundwater extraction. However, the wear of flow passage components caused by solid particles in the fluid severely threatens equipment lifespan and system safety. To investigate the influence of solid-liquid two-phase flow on pump performance and wear, this study conducted numerical simulations of the solid-liquid two-phase flow within multistage centrifugal pumps based on the Euler–Lagrange approach and the Tabakoff wear model. The simulation results showed good agreement with experimental data. Under the design operating condition, compared to the clear water condition, the efficiency under the solid-liquid two-phase flow condition decreased by 1.64%, and the head coefficient decreased by 0.13. As the flow rate increases, particle momentum increases, the particle Stokes number increases, inertial forces are enhanced, and the coupling effect with the fluid weakens, leading to an increased impact intensity on flow passage components. This results in a gradual increase in the wear area of the impeller front shroud, back shroud, pressure side, and the peripheral casing. Under the same flow rate condition, when particles enter the pump chamber of a subsequent stage from a preceding stage, the fluid, after being rectified by the return guide vane, exhibits a more uniform flow pattern and reduced turbulence intensity. The particle Stokes number in the subsequent stage is smaller than that in the preceding stage, weakening inertial effects and enhancing the coupling effect with the fluid. This leads to a reduced impact intensity on flow passage components, resulting in a smaller wear area of these components in the subsequent stage compared to the preceding stage. This research offers critical theoretical foundations and practical guidelines for developing wear-resistant multistage centrifugal pumps in solid-liquid two-phase flow applications, with direct implications for extending service life and optimizing hydraulic performance. Full article
Show Figures

Figure 1

15 pages, 5251 KB  
Article
Experimental Investigation of Flow Characteristics Inside a Venturi Tube Under Gas-Containing Conditions
by Qiang Guo, Chaoshan Lu, Xianbei Huang, Aibo Jiang and Xiaodong Liu
Water 2025, 17(14), 2080; https://doi.org/10.3390/w17142080 - 11 Jul 2025
Viewed by 502
Abstract
Gas–liquid two-phase flow is very common in fluid machinery and has complex multiphase flow characteristics. Under the gas-containing conditions, common issues in fluid machinery include the transport of liquid, bubble variations, and pressure drop characteristics; these can be analyzed using a simplified venturi [...] Read more.
Gas–liquid two-phase flow is very common in fluid machinery and has complex multiphase flow characteristics. Under the gas-containing conditions, common issues in fluid machinery include the transport of liquid, bubble variations, and pressure drop characteristics; these can be analyzed using a simplified venturi tube. In order to investigate the influence of incoming gas on the gas–liquid flow, a venturi tube with the range of inlet gas volume fraction (IGVF) from 0 to 16% was used in this experiment. The development of a two-phase flow was recorded by using high-speed photography. Under different initial liquid flow rates and gas content conditions, the evolution of the two-phase flow was similar, with the main difference being the rate of evolution. The incoming gas mainly underwent a process from column shape to expansion and then to fragmentation passing through the venturi tube. In the experimental images, the projected area of the main bubble increased linearly with the increase in IGVF. Meanwhile, the transporting ability of the venturi tube was weakened due to the blockage caused by high gas content, especially when the IGVF exceeded 10%. The pressure drop characteristics indicated an increase in losses with the increase in gas content. Full article
Show Figures

Figure 1

37 pages, 5015 KB  
Article
Water Hammer Mitigation Using Hydro-Pneumatic Tanks: A Multi-Criteria Evaluation of Simulation Tools and Machine Learning Modelling
by Óscar J. Burgos-Méndez, Oscar E. Coronado-Hernández, Helena M. Ramos, Alfonso Arrieta-Pastrana and Modesto Pérez-Sánchez
Water 2025, 17(13), 1883; https://doi.org/10.3390/w17131883 - 24 Jun 2025
Viewed by 1263
Abstract
The water hammer phenomenon represents a significant challenge to the safe and efficient operation of pressurised water systems. This study investigates the application of hydro-pneumatic tanks (HPTs) as protective devices against transient flow events, with a particular focus on their integration into simplified [...] Read more.
The water hammer phenomenon represents a significant challenge to the safe and efficient operation of pressurised water systems. This study investigates the application of hydro-pneumatic tanks (HPTs) as protective devices against transient flow events, with a particular focus on their integration into simplified modelling frameworks. Rigid and elastic water column models are examined, and their performance is evaluated through a representative case study. A multi-criteria decision matrix was employed to select a suitable simulation tool, leading to the adoption of the ALLIEVI software for implementing both modelling approaches. Comparative results indicate that the rigid water column model offers a favourable compromise between accuracy and computational efficiency under appropriate conditions. This supports its practical application in installing HPTs in design and operational scenarios. To further assess the predictive capacity of each model, a confusion matrix analysis was conducted across 57 scenarios. This approach proved effective in evaluating the models’ ability to anticipate pipeline rupture based on the initial configuration of the hydraulic installation. The elastic model achieved accuracy levels ranging from 90.7% to 100%, whereas the rigid water column model exhibited a slightly broader accuracy range, from 76.7% to 97.7%. These findings suggest that integrating machine learning techniques could enhance the rapid assessment of failure risks in water utility networks. Such tools may enable operators to determine in advance whether a given operating condition will likely lead to system failure, thus improving resilience and decision-making in managing pressurised pipeline systems. Full article
Show Figures

Figure 1

Back to TopTop