Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,126)

Search Parameters:
Keywords = high strain rate and temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 20135 KiB  
Article
Strain-Rate Effects on the Mechanical Behavior of Basalt-Fiber-Reinforced Polymer Composites: Experimental Investigation and Numerical Validation
by Yuezhao Pang, Chuanlong Wang, Yue Zhao, Houqi Yao and Xianzheng Wang
Materials 2025, 18(15), 3637; https://doi.org/10.3390/ma18153637 (registering DOI) - 1 Aug 2025
Abstract
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in [...] Read more.
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in aerospace and shipbuilding. This study experimentally investigated the mechanical properties of BFRP plates under various strain rates (10−4 s−1 to 103 s−1) and directions using an electronic universal testing machine and a split Hopkinson pressure bar (SHPB).The results demonstrate significant strain rate dependency and pronounced anisotropy. Based on experimental data, relationships linking the strength of BFRP composites in different directions to strain rate were established. These relationships effectively predict mechanical properties within the tested strain rate range, providing reliable data for numerical simulations and valuable support for structural design and engineering applications. The developed strain rate relationships were successfully validated through finite element simulations of low-velocity impact. Full article
(This article belongs to the Special Issue Mechanical Properties of Advanced Metamaterials)
Show Figures

Figure 1

17 pages, 5839 KiB  
Article
Hydrogen Bond-Regulated Rapid Prototyping and Performance Optimization of Polyvinyl Alcohol–Tannic Acid Hydrogels
by Xiangyu Zou and Jun Huang
Gels 2025, 11(8), 602; https://doi.org/10.3390/gels11080602 (registering DOI) - 1 Aug 2025
Abstract
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by [...] Read more.
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by the evaporation of ethanol. Rheological testing and analysis of the liquid-solid transformation process of the hydrogel were performed. The gelation onset time (GOT) could be tuned from 10 s to over 100 s by adjusting the ethanol content and temperature. The addition of polyhydroxyl components (e.g., glycerol) significantly enhances the hydrogel’s water retention capacity (by 858%) and tensile strain rate (by 723%), while concurrently increasing the gelation time. Further studies have shown that the addition of alkaline substances (such as sodium hydroxide) promotes the entanglement of PVA molecular chains, increasing the tensile strength by 23% and the fracture strain by 41.8%. The experimental results indicate that the optimized PVA-TA hydrogels exhibit a high tensile strength (>2 MPa) and excellent tensile properties (~600%). Moreover, the addition of an excess of weakly alkaline substances (such as sodium acetate) reduces the degree of hydrolysis of PVA, enabling the system to form a hydrogel with extrudable characteristics before the ethanol has completely evaporated. This property allows for patterned printing and thus demonstrates the potential of the hydrogel in 3D printing. Overall, this study provides new insights for the application of PVA-TA based hydrogels in the fields of rapid prototyping and strength optimization. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (3rd Edition))
Show Figures

Graphical abstract

16 pages, 5622 KiB  
Article
Molecular Dynamics Simulations on the Deformation Behaviors and Mechanical Properties of the γ/γ′ Superalloy with Different Phase Volume Fractions
by Xinmao Qin, Wanjun Yan, Yilong Liang and Fei Li
Crystals 2025, 15(8), 706; https://doi.org/10.3390/cryst15080706 (registering DOI) - 31 Jul 2025
Abstract
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, [...] Read more.
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, high-strain-rate service environments. Our investigation revealed that the tensile behavior of the superalloy depends critically on the Vγ. When the Vγ increased from 13.5 to 67%, the system’s tensile strength exhibited a non-monotonic response, peaking at Vγ = 40.3% before progressively decreasing. Conversely, the maximum uniform plastic strain decreased linearly and significantly when Vγ increased. These results establish an atomistically informed framework that elucidates the composition–microstructure–property relationships in γ(Ni)/γ(Ni3Al) superalloys, specifically addressing how Vγ governs variations in deformation mechanisms and mechanical performance. Furthermore, this work provides quantitative design paradigm for optimizing γ(Ni3Al) precipitate architecture and compositional tuning in the Ni-based γ(Ni)/γ(Ni3Al) superalloy. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

17 pages, 4426 KiB  
Article
Analysis of Dynamic Properties and Johnson–Cook Constitutive Relationship Concerning Polytetrafluoroethylene/Aluminum Granular Composite
by Fengyue Xu, Jiabo Li, Denghong Yang and Shaomin Luo
Materials 2025, 18(15), 3615; https://doi.org/10.3390/ma18153615 (registering DOI) - 31 Jul 2025
Abstract
The polytetrafluoroethylene/aluminum (PTFE/Al) granular composite, a common formulation in impact-initiated energetic materials, undergoes mechanochemical coupling reactions under sufficiently strong dynamic loading. This investigation discusses the dynamic properties and the constitutive relationship of the PTFE/Al granular composite to provide a preliminary guide for the [...] Read more.
The polytetrafluoroethylene/aluminum (PTFE/Al) granular composite, a common formulation in impact-initiated energetic materials, undergoes mechanochemical coupling reactions under sufficiently strong dynamic loading. This investigation discusses the dynamic properties and the constitutive relationship of the PTFE/Al granular composite to provide a preliminary guide for the research on mechanical properties of a series of composite materials based on PTFE/Al as the matrix. Firstly, the 26.5Al-73.5PTFE (wt.%) composite specimens are prepared by preprocessing, mixing, molding, high-temperature sintering, and cooling. Then, the quasi-static compression and Hopkinson bar tests are performed to explore the mechanical properties of the PTFE/Al composite. Influences of the strain rate of loading on the yield stress, the ultimate strength, and the limited strain are also analyzed. Lastly, based on the experimental results, the material parameters in the Johnson–Cook constitutive model are obtained by the method of piecewise fitting to describe the stress–strain relation of the PTFE/Al composite. Combining the experimental details and the obtained material parameters, the numerical simulation of the dynamic compression of the PTFE/Al composite specimen is carried out by using the ANSYS/LS-DYNA platform. The results show that the computed stress–strain curves present a reasonable agreement with the experimental data. It should be declared that this research does not involve the energy release behavior of the 26.5Al-73.5PTFE (wt.%) reactive material because the material is not initiated within the strain rate range of the dynamic test in this paper. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

28 pages, 3272 KiB  
Review
Research Advancements in High-Temperature Constitutive Models of Metallic Materials
by Fengjuan Ding, Tengjiao Hong, Fulong Dong and Dong Huang
Crystals 2025, 15(8), 699; https://doi.org/10.3390/cryst15080699 (registering DOI) - 31 Jul 2025
Viewed by 82
Abstract
The constitutive model is widely employed to characterize the rheological properties of metallic materials under high-temperature conditions. It is typically derived from a series of high-temperature tests conducted at varying deformation temperatures, strain rates, and strains, including hot stretching, hot compression, separated Hopkinson [...] Read more.
The constitutive model is widely employed to characterize the rheological properties of metallic materials under high-temperature conditions. It is typically derived from a series of high-temperature tests conducted at varying deformation temperatures, strain rates, and strains, including hot stretching, hot compression, separated Hopkinson pressure bar testing, and hot torsion. The original experimental data used for establishing the constitutive model serves as the foundation for developing phenomenological models such as Arrhenius and Johnson–Cook models, as well as physical-based models like Zerilli–Armstrong or machine learning-based constitutive models. The resulting constitutive equations are integrated into finite element analysis software such as Abaqus, Ansys, and Deform to create custom programs that predict the distributions of stress, strain rate, and temperature in materials during processes such as cutting, stamping, forging, and others. By adhering to these methodologies, we can optimize parameters related to metal processing technology; this helps to prevent forming defects while minimizing the waste of consumables and reducing costs. This study provides a comprehensive overview of commonly utilized experimental equipment and methods for developing constitutive models. It discusses various types of constitutive models along with their modifications and applications. Additionally, it reviews recent research advancements in this field while anticipating future trends concerning the development of constitutive models for high-temperature deformation processes involving metallic materials. Full article
Show Figures

Figure 1

23 pages, 6098 KiB  
Article
Performance Optimization of Stacked Weld in Hydrogen Production Reactor Based on Response Surface Methodology–Genetic Algorithm
by Yu Liu, Hongtao Gu, Jincheng Zhang, Zhiyi Leng, Ziguang Wang and Shengfang Zhang
Coatings 2025, 15(8), 889; https://doi.org/10.3390/coatings15080889 (registering DOI) - 31 Jul 2025
Viewed by 67
Abstract
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials [...] Read more.
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials to enhance weld performance. Given the varying performance requirements of different weld layers in the stacked weld, a gradient performance optimization method for the stacked weld of hydrogen production reactors based on the response surface methodology (RSM)–genetic algorithm (GA) is proposed. Using tensile strength, the hydrogen embrittlement sensitivity index, fatigue strain strength, creep rate and weld performance evaluation indices, a high-precision regression model for Si and Mo contents and weld performance indices was established through RSM and analysis of variance (ANOVA). A multi-objective optimization mathematical model for gradient improvement of the stacked weld was also established. This model was solved using a GA to obtain the optimal element content combination added to the welding wire and the optimal weld thickness for each weld layer. Finally, submerged arc welding experiments of the stacked weld were conducted according to the optimization results. The results show that the tensile strength of the base layer, filling layer and cover layer of the stacked weld increased by 5.60%, 6.16% and 4.53%, respectively. Hydrogen embrittlement resistance increased by 70.56%, 52.40% and 45.16%, respectively. The fatigue and creep resistance were also improved. The experimental results validate the feasibility and accuracy of the proposed optimization method. Full article
Show Figures

Figure 1

20 pages, 6318 KiB  
Article
Mesoscale Damage Evolution, Localization, and Failure in Solid Propellants Under Strain Rate and Temperature Effects
by Bo Gao, Youcai Xiao, Wanqian Yu, Kepeng Qu and Yi Sun
Polymers 2025, 17(15), 2093; https://doi.org/10.3390/polym17152093 - 30 Jul 2025
Viewed by 89
Abstract
High-energy solid propellants are multiphase engineering materials, whose mechanical behavior is predominantly governed by the characteristics of embedded crystalline particles. While microstructural influences have been extensively examined, quantitative correlations between microstructure and macroscopic mechanical properties remain underexplored. This work develops a cohesive finite [...] Read more.
High-energy solid propellants are multiphase engineering materials, whose mechanical behavior is predominantly governed by the characteristics of embedded crystalline particles. While microstructural influences have been extensively examined, quantitative correlations between microstructure and macroscopic mechanical properties remain underexplored. This work develops a cohesive finite element method (CFEM) framework to quantify the thermomechanical response of high-energy solid propellants at the microstructural scale. The analysis focuses on impact loading at strain rates ranging from 103 to 104 s−1, accounting for large deformation, thermomechanical coupling, and microcrack-induced failure. Damage evolution under impact conditions was evaluated using a combined neural network-based inverse identification method and a three-dimensional cohesive finite element model to determine temperature-dependent bilinear-polynomial cohesive parameters. Results demonstrate a strong dependence of the propellant’s mechanical behavior on both strain rate and temperature. Validation against experimental data confirms that the proposed temperature-sensitive CFEM accurately predicts both damage progression and macroscopic mechanical responses. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

18 pages, 4813 KiB  
Article
Dynamic Recrystallization Model of High-Temperature Deformation and Finite Element Analysis of Microstructure Evolution of 14Cr1Mo Pressure Vessel Steel
by Baoning Yu, Bo Zhang, Ruxing Shi, Feng Mao, Shizhong Wei and Duhang Yang
Materials 2025, 18(15), 3531; https://doi.org/10.3390/ma18153531 - 28 Jul 2025
Viewed by 247
Abstract
Due to the frequent occurrence of coarse-grained structures in large hydrogenation tube sheets, their hydrogen resistance and corrosion resistance deteriorate, significantly shortening their service life. Therefore, microstructure evolution must be strictly controlled during the forging process. High-temperature compression tests were simulated using a [...] Read more.
Due to the frequent occurrence of coarse-grained structures in large hydrogenation tube sheets, their hydrogen resistance and corrosion resistance deteriorate, significantly shortening their service life. Therefore, microstructure evolution must be strictly controlled during the forging process. High-temperature compression tests were simulated using a Gleeble-1500D thermal simulator to investigate the hot deformation behavior of 14Cr1Mo pressure vessel steel under deformation conditions of 1050–1250 °C and strain rates of 0.01–1 s−1. Based on the experimental data, the flow stress curve of 14Cr1Mo steel was obtained, and its thermal deformation behavior was analyzed. Furthermore, the dynamic recrystallization (DRX) kinetic model and grain size model of 14Cr1Mo steel were established. These models were then integrated into the finite element software Forge® to validate the accuracy of the DRX models. The results showed excellent agreement between the simulated and experimentally measured grain sizes, with a maximum deviation of less than 8%, confirming the high accuracy of the dynamic recrystallization models. These models provide a theoretical basis for finite element simulation and microstructure control in the manufacturing of super-large pressure vessel tube sheet forgings. Full article
Show Figures

Figure 1

17 pages, 8482 KiB  
Article
The Optimization of Culture Conditions for the Cellulase Production of a Thermostable Cellulose-Degrading Bacterial Strain and Its Application in Environmental Sewage Treatment
by Jiong Shen, Konglu Zhang, Yue Ren and Juan Zhang
Water 2025, 17(15), 2225; https://doi.org/10.3390/w17152225 - 25 Jul 2025
Viewed by 229
Abstract
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, [...] Read more.
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, incubation period, substrate concentration, nitrogen and carbon sources, and response surface methods. The results indicated that the optimal conditions for maximum cellulase activity were an incubation time of 91.7 h, a temperature of 41.8 °C, and a pH of 4.9, which resulted in a maximum cellulase activity of 16.67 U/mL, representing a 165% increase compared to pre-optimization levels. The above experiment showed that, when maize straw flour was utilized as a natural carbon source, strain D3-1 exhibited relatively high cellulase production. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis of products in the degradation liquid revealed the presence of primary sugars. The results indicated that, in the denitrification of simulated sewage, supplying maize straw flour degradation liquid (MSFDL) as the carbon source resulted in a carbon/nitrogen (C/N) ratio of 6:1 after a 24 h reaction with the denitrifying strain WH-01. The total nitrogen (TN) reduction was approximately 70 mg/L, which is equivalent to the removal efficiency observed in the glucose-fed denitrification process. Meanwhile, during a 4 h denitrification reaction in urban sewage without any denitrifying bacteria, but with MSFDL supplied as the carbon source, the TN removal efficiency reached 11 mg/L, which is approximately 70% of the efficiency of the glucose-fed denitrification process. Furthermore, experimental results revealed that strain D3-1 exhibits some capacity for nitrogen removal; when the cellulose-degrading strain D3-1 is combined with the denitrifying strain WH-01, the resulting TN removal rate surpasses that of a single denitrifying bacterium. In conclusion, as a carbon source in municipal sewage treatment, the degraded maize straw flour produced by strain D3-1 holds potential as a substitute for the glucose carbon source, and strain D3-1 has a synergistic effect with the denitrifying strain WH-01 on TN elimination. Thus, this research offers new insights and directions for advancement in environmental sewage treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

29 pages, 8597 KiB  
Article
Study on the Damage Mechanisms in the Forming Process of High-Strength Steel Laser Tailor Welded Blanks Based on the Johnson–Cook Damage Model
by Xianping Sun, Huaqiang Li, Song Gao and Qihan Li
Materials 2025, 18(15), 3497; https://doi.org/10.3390/ma18153497 - 25 Jul 2025
Viewed by 597
Abstract
This paper, based on the Johnson–Cook damage model, investigates the damage mechanism of high-strength steel tailor welded blanks (TWBs) (Usibor1500P and Ductibor500) during the forming process. Initially, specimens with varying notch sizes were designed and fabricated to perform uniaxial tensile tests to determine [...] Read more.
This paper, based on the Johnson–Cook damage model, investigates the damage mechanism of high-strength steel tailor welded blanks (TWBs) (Usibor1500P and Ductibor500) during the forming process. Initially, specimens with varying notch sizes were designed and fabricated to perform uniaxial tensile tests to determine their mechanical properties. Then, the deformation process of the notched specimens was simulated using finite element software, revealing the distribution and variation of stress triaxiality at the fracture surface. By combining both experimental and simulation data, the parameters of the Johnson–Cook (J–C) damage model were calibrated, and the effects of temperature, strain rate, and stress triaxiality on material fracture behavior were further analyzed. Based on finite element analysis, the relevant coefficients for stress triaxiality, strain rate, and temperature were systematically calibrated, successfully establishing a J–C fracture criterion for TWB welds, Usibor1500P, and Ductibor500 high-strength steels. Finally, the calibrated damage model was further validated through the Nakajima-type bulge test, and the simulated Forming Limit Diagram (FLD) closely matched the experimental data. The results show that the analysis based on the J–C damage model can effectively predict the fracture behavior of tailor welded blanks (TWB) during the forming process. This study provides reliable numerical predictions for the damage behavior of high-strength steel laser-customized welded sheets and offers a theoretical basis for engineering design and material performance optimization. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 2566 KiB  
Article
Human Responses to Different Built Hyperthermal Environments After Short-Term Heat Acclimation
by Shuai Zhang, Qingqin Wang, Haizhu Zhou, Tianyang Wang and Guanguan Jia
Buildings 2025, 15(14), 2581; https://doi.org/10.3390/buildings15142581 - 21 Jul 2025
Viewed by 223
Abstract
Hyperthermal environments are encountered in many situations, and significant heat stress can exacerbate the fatigue perception of individuals and potentially threaten their safety. Heat acclimation (HA) interventions have many benefits in preventing the risk of incidents. However, whether HA interventions in specific environments [...] Read more.
Hyperthermal environments are encountered in many situations, and significant heat stress can exacerbate the fatigue perception of individuals and potentially threaten their safety. Heat acclimation (HA) interventions have many benefits in preventing the risk of incidents. However, whether HA interventions in specific environments can cope with other different hyperthermal environments remains uncertain. In this study, forty-three young male participants were heat-acclimated over 10 days of training on a motorized treadmill in a fixed hyperthermal environment, and they were tested in different hyperthermal environments. Physiological indices (rectal temperature (Tr), heart rate (HR), skin temperature (Tsk), and total sweat loss (Msl)) and subjective perception (rating of perceived exertion (RPE) and thermal sensation votes (TSVs)) were measured during both the heat stress test (HST) sessions and HA training sessions. The results show that HR and Tsk significantly differed between pre- and post-heat acclimation (p < 0.05 for all) following the acclimation program. However, after heat acclimation training, the reduction in Tr (ΔTr) was more notable in lower-ET* environments, and Msl showed distinct changes in different ET* environments. The RPE and TSV decreased after HA interventions, although the difference was not significant. The results indicate that HA can effectively reduce the peak of physiological parameters. However, when subjected to stronger heat stress, the improvement effects of heat acclimation on human responses will be affected. In addition, HA can alleviate physiological thermal strain, thereby reducing the adverse effects on mobility, but it has no effect on the supervisor’s ability to perceive the environment. This study suggests that additional HA training can reduce the risk of activities in high-temperature environments but exhibits different effects under different environmental conditions, indicating that hot acclimation suits have selective effects on the environment. This study provides recommendations for additional HA training before high-temperature activities. Full article
(This article belongs to the Special Issue Low-Carbon Urban Areas and Neighbourhoods)
Show Figures

Figure 1

24 pages, 5801 KiB  
Article
A Study on the Performance of Gel-Based Polyurethane Prepolymer/Ceramic Fiber Composite-Modified Asphalt
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Hao Huang, Zhi Li, Haijun Chen and Jiachen Wang
Gels 2025, 11(7), 558; https://doi.org/10.3390/gels11070558 - 20 Jul 2025
Viewed by 238
Abstract
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide [...] Read more.
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide elasticity and gel-like behavior, while CFs contribute to structural stability and high-temperature resistance, making them ideal for enhancing asphalt performance. PUPs, a thermoplastic and elastic polyurethane gel material, not only enhance the flexibility and adhesion properties of asphalt but also significantly improve the structural stability of composite materials when synergistically combined with CF. Using response surface methodology, an optimized preparation scheme for PUP/CF composite-modified asphalt was investigated. Through aging tests, dynamic shear rate (DSR) testing, bending rate (BBR) testing, microstructure scanning (MSCR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and infrared spectroscopy (IR), the aging performance, rheological properties, permanent deformation resistance, microstructure, and modification mechanism of PUP/CF composite-modified asphalt were investigated. The results indicate that the optimal preparation scheme is a PUP content of 7.4%, a CF content of 2.1%, and a shear time of 40 min. The addition of the PUP and CF significantly enhances the asphalt’s aging resistance, and compared with single-CF-modified asphalt and base asphalt, the PUP/CF composite-modified asphalt exhibits superior high- and low-temperature rheological properties, demonstrating stronger strain recovery capability. The PUP forms a gel network structure in the material, effectively filling the gaps between CF and asphalt, enhancing interfacial bonding strength, and making the overall performance more stable. AFM microscopic morphology shows that PUP/CF composite-modified asphalt has more “honeycomb structures” than matrix asphalt and CF-modified asphalt, forming more structural asphalt and enhancing overall structural stability. This study indicates that the synergistic effect of PUP gel and CF significantly improves the macro and micro properties of asphalt. The PUP forms a three-dimensional elastic gel network in asphalt, improving adhesion and deformation resistance. Using response surface methodology, the optimal formulation (7.4% PUP, 2.1% CF) improves penetration (↓41.5%), softening point (↑6.7 °C), and ductility (↑9%), demonstrating the relevance of gel-based composites for asphalt modification. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

13 pages, 1242 KiB  
Article
The Investigation of the Effect of Feeds with Probiotic Additives on Growth and Functional State of Juvenile Steelhead Salmo (Salmo gairdneri)
by Elena N. Ponomareva, Marina N. Sorokina, Vadim A. Grigoriev, Mariya S. Mazanko, Vladimir A. Chistyakov and Dmitry V. Rudoy
Fishes 2025, 10(7), 349; https://doi.org/10.3390/fishes10070349 - 14 Jul 2025
Viewed by 193
Abstract
The research on the effect of feed with probiotic additives on the growth and functional state of young steelhead salmon (Salmo gairdneri) is presented in this study. For the first time, target strains selected not only by antagonism to pathogens but [...] Read more.
The research on the effect of feed with probiotic additives on the growth and functional state of young steelhead salmon (Salmo gairdneri) is presented in this study. For the first time, target strains selected not only by antagonism to pathogens but also by their ability to produce lytic enzymes or secondary metabolites with antioxidant activity were used to create probiotic preparations for aquaculture. This study presents findings showing that groups of fish fed probiotic feeds showed an improved growth performance and higher survival rate compared to the control. It was noted that the weights of fish in the first variant and the second variant of the experiment were higher by 8.8% and 6.8%, respectively. This research showed that juvenile steelhead salmon reared with probiotic-supplemented feeds had an improved ability to survive in high salinity and sublethal temperatures. This indicates that probiotics may play a significant role in enhancing the adaptive system of fish. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

17 pages, 5008 KiB  
Article
Biodegradation of Microcystins by Aquatic Bacteria Klebsiella spp. Isolated from Lake Kasumigaura
by Thida Lin, Kazuya Shimizu, Tianxiao Liu, Qintong Li and Motoo Utsumi
Toxins 2025, 17(7), 346; https://doi.org/10.3390/toxins17070346 - 10 Jul 2025
Viewed by 442
Abstract
Microcystins (MCs) are the most toxic and abundant cyanotoxins found in natural waters during harmful cyanobacterial blooms. These toxins pose a significant threat to plant, animal, and human health due to their toxicity. Degradation of MCs by MC-degrading bacteria is a promising method [...] Read more.
Microcystins (MCs) are the most toxic and abundant cyanotoxins found in natural waters during harmful cyanobacterial blooms. These toxins pose a significant threat to plant, animal, and human health due to their toxicity. Degradation of MCs by MC-degrading bacteria is a promising method for controlling these toxins, demonstrating safety, high efficiency, and cost-effectiveness. In this study, we isolated potential MC-degrading bacteria (strains TA13, TA14, and TA19) from Lake Kasumigaura in Japan and found that they possess a high capacity for MC degradation. Based on 16S rRNA gene sequencing, all three isolated strains were identified as belonging to the Klebsiella species. These bacteria effectively degraded MC-RR, MC-YR, and MC-LR under various temperature and pH conditions within 10 h, with the highest degrading activity and degradation rate observed at 40 °C. Furthermore, the isolated strains efficiently degraded MCs not only under neutral pH conditions, but also in alkaline environments. Additionally, we detected the MC-degrading gene (mlrA) in all three isolated strains, marking the first report of the mlrA gene in Klebsiella species. The copy number of the mlrA gene in the strains increased after exposure to MCs. These findings indicate that strains TA13, TA14, and TA19 significantly contribute of MC bioremediation in Lake Kasumigaura during cyanobacterial blooms. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

16 pages, 4888 KiB  
Article
Hot Tensile Behavior of 05Cr17Ni4Cu4Nb Stainless Steel: Damage Model and Fracture Characteristics
by Jing Yuan, Hongjun Jiang, Liwei Zheng and Kuangyu Zhang
Metals 2025, 15(7), 776; https://doi.org/10.3390/met15070776 - 9 Jul 2025
Viewed by 221
Abstract
This study investigates the hot tensile behavior and fracture characteristics of 05Cr17Ni4Cu4Nb stainless steel through isothermal tensile tests conducted under various deformation parameters. An improved Cockroft & Latham (C&L) damage model, incorporating the effects of temperature and strain rate, was developed to quantitatively [...] Read more.
This study investigates the hot tensile behavior and fracture characteristics of 05Cr17Ni4Cu4Nb stainless steel through isothermal tensile tests conducted under various deformation parameters. An improved Cockroft & Latham (C&L) damage model, incorporating the effects of temperature and strain rate, was developed to quantitatively evaluate the influence of these parameters on the high-temperature deformation behavior of 05Cr17Ni4Cu4Nb stainless steel. Microstructural analysis revealed the features of ductile fracture and provided insights into the mechanism by which δ-ferrite influences microvoid evolution. These findings contribute to a deeper understanding of the high-temperature deformation behavior of 05Cr17Ni4Cu4Nb stainless steel and provide practical guidance for optimizing hot forming parameters in industrial applications. Full article
Show Figures

Figure 1

Back to TopTop