Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,522)

Search Parameters:
Keywords = high frequency data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5712 KB  
Article
Experimental Investigation of Pressure Pulsation Characteristics on Guide Vane Surface of a Low-Specific-Speed Pump–Turbine in Turbine Mode
by Lei He, Lei He, Zhongxin Gao, Jianguang Zhang and Yanlin Yi
Energies 2026, 19(3), 666; https://doi.org/10.3390/en19030666 - 27 Jan 2026
Abstract
To investigate the hydraulic instability mechanisms of low-specific-speed pump–turbines operating in turbine mode, this study experimentally characterized the pressure distribution and pulsation evolution on the guide vanes of a model unit (ns = 28) using an embedded sensor technique. By overcoming the accessibility [...] Read more.
To investigate the hydraulic instability mechanisms of low-specific-speed pump–turbines operating in turbine mode, this study experimentally characterized the pressure distribution and pulsation evolution on the guide vanes of a model unit (ns = 28) using an embedded sensor technique. By overcoming the accessibility limitations of traditional measurement methods, this research reveals the distinct pressure response mechanisms on the guide vane Front Side (upstream-facing) and Back Side (runner-facing). The results demonstrate that the time-averaged pressure distribution is highly sensitive to the Guide Vane Opening (GVO). Specifically, pressure on the Front Side increases with GVO, dominated by the improvement of flow pattern and stagnation effect, whereas pressure on the Back Side decreases monotonically, governed by the Bernoulli effect. Increasing the GVO significantly improves pressure uniformity, reducing the surface pressure gradient by 55%. Regarding dynamic characteristics, pressure fluctuation intensity on the Back Side is significantly higher than that on the Front Side. Furthermore, fluctuations are notably amplified near the tongue, confirming that flow distortion induced by the tongue is a key factor driving circumferential non-uniformity. Spectral analysis identifies the Blade Passing Frequency (BPF) as the dominant frequency, verifying Rotor–Stator Interaction (RSI) as the primary excitation source, while the guide vane channel exhibits a significant low-pass filtering effect on high-order harmonics. These findings provide a solid theoretical foundation and data support for the optimal design and stability control of pump–turbine guide vanes. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

24 pages, 47010 KB  
Article
Real-Time Multi-Step Prediction Method of TBM Cutterhead Torque Based on Fusion Signal Decomposition Mechanism and Physical Constraints
by Junnan Feng, Yuzhe Hou, Youqian Liu, Shijia Chen and Ying You
Appl. Sci. 2026, 16(3), 1285; https://doi.org/10.3390/app16031285 - 27 Jan 2026
Abstract
The cutterhead torque of a full-face tunnel boring machine (TBM) is a pivotal parameter that characterises the rock-machine interaction. Its dynamic prediction is of considerable significance to achieve intelligent regulation of the boring parameters and enhance the construction efficiency and safety. In order [...] Read more.
The cutterhead torque of a full-face tunnel boring machine (TBM) is a pivotal parameter that characterises the rock-machine interaction. Its dynamic prediction is of considerable significance to achieve intelligent regulation of the boring parameters and enhance the construction efficiency and safety. In order to achieve high-precision time series prediction of cutterhead torque under complex geological conditions, this study proposes an intelligent prediction method (VBGAP) that integrates signal decomposition mechanism and physical constraints. At the data preprocessing level, a multi-step data cleaning process is designed. This process comprises the following steps: the processing of invalid values, the detection of outliers, and normalisation. The non-smooth torque time-series signal is decomposed by variational mode decomposition (VMD) into narrow-band sub-signals that serve as a data-driven, frequency-specific input for subsequent modelling, and a hybrid deep learning model based on Bi-GRU and self-attention mechanism is built for each sub-signal. Finally, the prediction results of each component are linearly superimposed to achieve signal reconstruction. Concurrently, a novel modal energy conservation loss function is proposed, with the objective of effectively constraining the information entropy decay in the decomposition-reconstruction process. The validity of the proposed method is supported by empirical evidence from a real tunnel project dataset in Northeast China, which demonstrates an average accuracy of over 90% in a multi-step prediction task with a time step of 30 s. This suggests that the proposed method exhibits superior adaptability and prediction accuracy in comparison to existing mainstream deep learning models. The findings of the research provide novel concepts and methodologies for the intelligent regulation of TBM boring parameters. Full article
Show Figures

Figure 1

22 pages, 16609 KB  
Article
A Unified Transformer-Based Harmonic Detection Network for Distorted Power Systems
by Xin Zhou, Qiaoling Chen, Li Zhang, Qianggang Wang, Niancheng Zhou, Junzhen Peng and Yongshuai Zhao
Energies 2026, 19(3), 650; https://doi.org/10.3390/en19030650 - 27 Jan 2026
Abstract
With the large-scale integration of power electronic converters, non-linear loads, and renewable energy generation, voltage and current waveform distortion in modern power systems has become increasingly severe, making harmonic resonance amplification and non-stationary distortion more prominent. Accurate and robust harmonic-level prediction and detection [...] Read more.
With the large-scale integration of power electronic converters, non-linear loads, and renewable energy generation, voltage and current waveform distortion in modern power systems has become increasingly severe, making harmonic resonance amplification and non-stationary distortion more prominent. Accurate and robust harmonic-level prediction and detection have become essential foundations for power quality monitoring and operational protection. However, traditional harmonic analysis methods remain highly dependent on pre-designed time–frequency transformations and manual feature extraction. They are sensitive to noise interference and operational variations, often exhibiting performance degradation under complex operating conditions. To address these challenges, a Unified Physics-Transformer-based harmonic detection scheme is proposed to accurately forecast harmonic levels in offshore wind farms (OWFs). This framework utilizes real-world wind speed data from Bozcaada, Turkey, to drive a high-fidelity electromagnetic transient simulation, constructing a benchmark dataset without reliance on generative data expansion. The proposed model features a Feature Tokenizer to project continuous physical quantities (e.g., wind speed, active power) into high-dimensional latent spaces and employs a Multi-Head Self-Attention mechanism to explicitly capture the complex, non-linear couplings between meteorological inputs and electrical states. Crucially, a Multi-Task Learning (MTL) strategy is implemented to simultaneously regress the Total Harmonic Distortion (THD) and the characteristic 5th Harmonic (H5), effectively leveraging shared representations to improve generalization. Comparative experiments with Random Forest, LSTM, and GRU systematically evaluate the predictive performance using metrics such as root mean square error (RMSE) and mean absolute percentage error (MAPE). Results demonstrate that the Physics-Transformer significantly outperforms baseline methods in prediction accuracy, robustness to operational variations, and the ability to capture transient resonance events. This study provides a data-efficient, high-precision approach for harmonic forecasting, offering valuable insights for future renewable grid integration and stability analysis. Full article
(This article belongs to the Special Issue Technology for Analysis and Control of Power Quality)
Show Figures

Figure 1

15 pages, 656 KB  
Article
The Paradoxical Effect of Cannabis Use on Cognition in Chronic Psychotic Disorders
by Fiorela Gorea, Martina Pelle, Federico Fiori Nastro, Carmine Gelormini, Fatime Elezi, Michele Ribolsi and Giorgio Di Lorenzo
Pathophysiology 2026, 33(1), 11; https://doi.org/10.3390/pathophysiology33010011 - 27 Jan 2026
Abstract
Background/Objectives: Cannabis use has a particularly high prevalence in individuals with psychotic disorders. Although cannabis use is generally associated with cognitive impairments in the general population, its impact on cognition in psychosis remains controversial. This study aimed to investigate the association between cannabis [...] Read more.
Background/Objectives: Cannabis use has a particularly high prevalence in individuals with psychotic disorders. Although cannabis use is generally associated with cognitive impairments in the general population, its impact on cognition in psychosis remains controversial. This study aimed to investigate the association between cannabis use and cognitive performance in a cohort of individuals affected by psychotic disorders. Methods: A total of 105 inpatients with psychotic disorders (mean age: 40.3 years; 34 females) were recruited from the University Hospital Center “Mother Teresa” in Tirana. Data collection included socio-demographic and clinical variables. Cognitive functioning was evaluated using the Montreal Cognitive Assessment (MoCA), while psychopathology was assessed with the Brief Negative Symptom Scale (BNSS), the Calgary Depression Scale for Schizophrenia (CDSS), the Psychotic Symptom Rating Scales (PSYRATS), and the Scale for the Assessment of Thought, Language, and Communication (TLC). Results: Cannabis users (CU) were more frequently male, younger, and exhibited an earlier onset of psychosis compared to non-users (No-CU). Importantly, CU demonstrated higher MoCA scores, with the most favorable outcomes observed among daily users. Conclusions: Contrary to the prevailing assumption that cannabis use exacerbates cognitive decline, our findings indicate an unexpected association between cannabis use and preserved cognitive functioning in psychosis. These results underscore the need to consider dosage, frequency, and cannabinoid composition (THC/CBD ratio) when interpreting cannabis-related cognitive outcomes in psychotic disorders. Full article
(This article belongs to the Section Neurodegenerative Disorders)
Show Figures

Figure 1

20 pages, 1908 KB  
Article
Research on Real-Time Rainfall Intensity Monitoring Methods Based on Deep Learning and Audio Signals in the Semi-Arid Region of Northwest China
by Yishu Wang, Hongtao Jiang, Guangtong Liu, Qiangqiang Chen and Mengping Ni
Atmosphere 2026, 17(2), 131; https://doi.org/10.3390/atmos17020131 - 26 Jan 2026
Abstract
With the increasing frequency extreme weather events associated with climate change, real-time monitoring of rainfall intensity is critical for water resource management, disaster warning, and other applications. Traditional methods, such as ground-based rain gauges, radar, and satellites, face challenges like high costs, low [...] Read more.
With the increasing frequency extreme weather events associated with climate change, real-time monitoring of rainfall intensity is critical for water resource management, disaster warning, and other applications. Traditional methods, such as ground-based rain gauges, radar, and satellites, face challenges like high costs, low resolution, and monitoring gaps. This study proposes a novel real-time rainfall intensity monitoring method based on deep learning and audio signal processing, using acoustic features from rainfall to predict intensity. Conducted in the semi-arid region of Northwest China, the study employed a custom-designed sound collection device to capture acoustic signals from raindrop-surface interactions. The method, combining multi-feature extraction and regression modeling, accurately predicted rainfall intensity. Experimental results revealed a strong linear relationship between sound pressure and rainfall intensity (r = 0.916, R2 = 0.838), with clear nonlinear enhancement of acoustic energy during heavy rainfall. Compared to traditional methods like CML and radio link techniques, the acoustic approach offers advantages in cost, high-density deployment, and adaptability to complex terrain. Despite some limitations, including regional and seasonal biases, the study lays the foundation for future improvements, such as expanding sample coverage, optimizing sensor design, and incorporating multi-source data. This method holds significant potential for applications in urban drainage, agricultural irrigation, and disaster early warning. Full article
Show Figures

Figure 1

22 pages, 14763 KB  
Article
Sedimentary Characteristics and Controls of Reef–Shoal Reservoirs, M Block, Eastern Sichuan Basin
by Yuwen Dong, Jingyuan Wang, Saijun Wu and Xu Chen
Appl. Sci. 2026, 16(3), 1257; https://doi.org/10.3390/app16031257 - 26 Jan 2026
Abstract
The marine carbonate reef–shoal reservoirs in the gentle slope platform margin of the M block, eastern Sichuan Basin, were well developed during the Changxing Period in late Permian and represent a favorable carbonate reservoir play for petroleum exploration. The lack of effective research [...] Read more.
The marine carbonate reef–shoal reservoirs in the gentle slope platform margin of the M block, eastern Sichuan Basin, were well developed during the Changxing Period in late Permian and represent a favorable carbonate reservoir play for petroleum exploration. The lack of effective research methods has hindered the analysis of their unique sedimentary characteristics and controlling factors. Based on cores, thin sections, well logs, testing analyses, and high-resolution 3D seismic data, this study analyzes the lithological associations, microfacies types, reservoir physical properties, and seismic reflection characteristics of reef–shoal reservoirs. On this basis, the reef–shoal sedimentary characteristics and controlling factors were analyzed. The main conclusions are as follows: (1) Two major categories and eight subcategories of petrography were identified in marine carbonate reef–shoals, and five microfacies were identified: reef base, reef core, reef flank, reef-top–shoal, and inter-reef sea. Among these, the reef-top–shoal constitutes the optimal reservoir, while the reef flank develops secondary reservoirs. (2) The reef–shoals exhibit an external mound or wedge-shaped reflection, with internally discontinuous or chaotic reflections. Discontinuous reflections are observed at the top, while onlap terminations are present on its flanks. (3) The vertical accretion of the marine reef–shoals is small, but the platform margin belt is wide in planar, multiple rows reef–shoal bodies are identified, reflecting their small scale, discrete planar distribution, rapid lateral migration, and diverse stacking patterns. (4) The regional gentle slope marine platform margin geological setting, tectonic paleogeomorphology, and high-frequency sea level fluctuation collectively control the sedimentary structure and the formation of high-quality reservoirs of the marine reef–shoal complex. This research provides guidance for petroleum exploration and favorable reservoir prediction in the marine carbonate reservoirs of the Sichuan Basin. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

25 pages, 2206 KB  
Article
Adaptive Bayesian System Identification for Long-Term Forecasting of Industrial Load and Renewables Generation
by Lina Sheng, Zhixian Wang, Xiaowen Wang and Linglong Zhu
Electronics 2026, 15(3), 530; https://doi.org/10.3390/electronics15030530 - 26 Jan 2026
Abstract
The expansion of renewables in modern power systems and the coordinated development of upstream and downstream industrial chains are promoting a shift on the utility side from traditional settlement by energy toward operation driven by data and models. Industrial electricity consumption data exhibit [...] Read more.
The expansion of renewables in modern power systems and the coordinated development of upstream and downstream industrial chains are promoting a shift on the utility side from traditional settlement by energy toward operation driven by data and models. Industrial electricity consumption data exhibit pronounced multi-scale temporal structures and sectoral heterogeneity, which makes unified long-term load and generation forecasting while maintaining accuracy, interpretability, and scalability a challenge. From a modern system identification perspective, this paper proposes a System Identification in Adaptive Bayesian Framework (SIABF) for medium- and long-term industrial load forecasting based on daily freeze electricity time series. By combining daily aggregation of high-frequency data, frequency domain analysis, sparse identification, and long-term extrapolation, we first construct daily freeze series from 15 min measurements, and then we apply discrete Fourier transforms and a spectral complexity index to extract dominant periodic components and build an interpretable sinusoidal basis library. A sparse regression formulation with 1 regularization is employed to select a compact set of key basis functions, yielding concise representations of sector and enterprise load profiles and naturally supporting multivariate and joint multi-sector modeling. Building on this structure, we implement a state-space-implicit physics-informed Bayesian forecasting model and evaluate it on real data from three representative sectors, namely, steel, photovoltaics, and chemical, using one year of 15 min measurements. Under a one-month-ahead evaluation using one year of 15 min measurements, the proposed framework attains a Mean Absolute Percentage Error (MAPE) of 4.5% for a representative PV-related customer case and achieves low single-digit MAPE for high-inertia sectors, often outperforming classical statistical models, sparse learning baselines, and deep learning architectures. These results should be interpreted as indicative given the limited time span and sample size, and broader multi-year, population-level validation is warranted. Full article
(This article belongs to the Section Systems & Control Engineering)
21 pages, 6374 KB  
Article
Identification of Microseismic Signals in Coal Mine Rockbursts Based on Hybrid Feature Selection and a Transformer
by Jizhi Zhang, Hongwei Wang and Tianwei Shi
Appl. Sci. 2026, 16(3), 1241; https://doi.org/10.3390/app16031241 - 26 Jan 2026
Abstract
Deep learning algorithms are pivotal in the identification and classification of microseismic signals in mines subjected to impact pressure. However, conventional machine learning techniques often struggle to balance interpretability, computational efficiency, and accuracy. To address these challenges, this paper presents a hybrid feature [...] Read more.
Deep learning algorithms are pivotal in the identification and classification of microseismic signals in mines subjected to impact pressure. However, conventional machine learning techniques often struggle to balance interpretability, computational efficiency, and accuracy. To address these challenges, this paper presents a hybrid feature selection and Transformer-based model for microseismic signal classification. The proposed model employs a hybrid feature selection method for data preprocessing, followed by an enhanced Transformer for signal classification. The study first outlines the underlying principles of the method, then extracts key seismic features—such as zero-crossing rate, maximum amplitude, and dominant frequency—from various microseismic signal types. These features undergo importance and correlation analyses to facilitate dimensionality reduction. Finally, a Transformer-based classification framework is developed and compared against several traditional deep learning models. The results reveal significant differences in the waveforms and spectra of different microseismic signal types. The selected feature parameters exhibit high representativeness and stability. The proposed model achieves an accuracy of 90.86%, outperforming traditional deep learning approaches such as CNN (85.2%) and LSTM (83.7%) by a considerable margin. This approach provides a reliable and efficient solution for the rapid identification of microseismic events in rockburst-prone mines. Full article
(This article belongs to the Special Issue Advanced Technology and Data Analysis in Seismology)
Show Figures

Figure 1

40 pages, 9833 KB  
Article
Decision-Level Fusion of PS-InSAR and Optical Data for Landslide Susceptibility Mapping Using Wavelet Transform and MAMBA
by Hongyi Guo, Antonio M. Martínez-Graña, Leticia Merchán, Agustina Fernández and Manuel Casado
Land 2026, 15(2), 211; https://doi.org/10.3390/land15020211 - 26 Jan 2026
Abstract
Landslides remain a critical geohazard in mountainous regions, where intensified extreme rainfall and rapid land-use changes exacerbate slope instability, challenging the reliability of traditional single-sensor susceptibility assessments. To overcome the limitations of data heterogeneity and noise, this study presents a decision-level fusion strategy [...] Read more.
Landslides remain a critical geohazard in mountainous regions, where intensified extreme rainfall and rapid land-use changes exacerbate slope instability, challenging the reliability of traditional single-sensor susceptibility assessments. To overcome the limitations of data heterogeneity and noise, this study presents a decision-level fusion strategy integrating Permanent Scatterer InSAR (PS-InSAR) deformation dynamics with multi-source optical remote sensing indicators via a Wavelet Transform (WT) enhanced Multi-source Additive Model Based on Bayesian Analysis (MAMBA). San Martín del Castañar (Spain), a region characterized by rugged terrain and active deformation, served as the study area. We utilized Sentinel-1A C-band datasets (January 2020–February 2025) as the primary source for continuous monitoring, complemented by L-band ALOS-2 observations to ensure coherence in vegetated zones, yielding 24,102 high-quality persistent scatterers. The WT-based multi-scale enhancement improved the signal-to-noise ratio by 23.5% and increased deformation anomaly detection by 18.7% across 24,102 validated persistent scatterers. Bayesian fusion within MAMBA produced high-resolution susceptibility maps, indicating that very-high and high susceptibility zones occupy 24.0% of the study area while capturing 84.5% of the inventoried landslides. Quantitative validation against 1247 landslide events (2020–2025) achieved an AUC of 0.912, an overall accuracy of 87.3%, and a recall of 84.5%, outperforming Random Forest, Logistic Regression, and Frequency Ratio models by 6.8%, 10.8%, and 14.3%, respectively (p < 0.001). Statistical analysis further demonstrates a strong geo-ecological coupling, with landslide susceptibility significantly correlated with ecological vulnerability (r = 0.72, p < 0.01), while SHapley Additive exPlanations identify land-use type, rainfall, and slope as the dominant controlling factors. Full article
(This article belongs to the Special Issue Ground Deformation Monitoring via Remote Sensing Time Series Data)
Show Figures

Figure 1

27 pages, 5100 KB  
Article
Hybrid Forecast-Enabled Adaptive Crowbar Coordination for LVRT Enhancement in DFIG Wind Turbines
by Xianlong Su, Hankil Kim, Changsu Kim, Mingxue Zhang and Hoekyung Jung
Entropy 2026, 28(2), 138; https://doi.org/10.3390/e28020138 - 25 Jan 2026
Viewed by 42
Abstract
This study proposes a hybrid forecast-enabled adaptive crowbar coordination strategy to enhance low-voltage ride-through (LVRT) performance of doubly fed induction generator (DFIG) wind turbines. A unified electro-mechanical model in the αβ/dq frames with dual closed-loop control for rotor- and grid-side converters is built [...] Read more.
This study proposes a hybrid forecast-enabled adaptive crowbar coordination strategy to enhance low-voltage ride-through (LVRT) performance of doubly fed induction generator (DFIG) wind turbines. A unified electro-mechanical model in the αβ/dq frames with dual closed-loop control for rotor- and grid-side converters is built in MATLAB/Simulink (R2018b), and LVRT constraints on current safety and DC-link energy are explicitly formulated, yielding an engineering crowbar-resistance range of 0.4–0.8 p.u. On the forecasting side, a CEEMDAN-based decomposition–modeling–reconstruction pipeline is adopted: high- and mid-frequency components are predicted by a dual-stream Informer–LSTM, while low-frequency components are modeled by XGBoost. Using six months of wind-farm data, the hybrid forecaster achieves best or tied-best MSE, RMSE, MAE, and R2 compared with five representative baselines. Forecasted power, ramp rate, and residual-based uncertainty are mapped to overcurrent and DC-link overvoltage risk indices, which adapt crowbar triggering, holding, and release in coordination with converter control. In a 9 MW three-phase deep-sag scenario, the strategy confines DC-link voltage within ±3% of nominal, shortens re-synchronization from ≈0.35 s to ≈0.15 s, reduces rotor-current peaks by ≈5.1%, and raises the reactive-support peak to 1.7 Mvar, thereby improving LVRT safety margins and grid-friendliness without hardware modification. Full article
(This article belongs to the Section Multidisciplinary Applications)
24 pages, 1066 KB  
Article
Is GaN the Enabler of High-Power-Density Converters? An Overview of the Technology, Devices, Circuits, and Applications
by Paul-Catalin Medinceanu, Alexandru Mihai Antonescu and Marius Enachescu
Electronics 2026, 15(3), 510; https://doi.org/10.3390/electronics15030510 - 25 Jan 2026
Viewed by 34
Abstract
The growing demand for electric vehicles, renewable energy systems, and portable electronics has led to the widespread adoption of power conversion systems. Although advanced structures like the superjunction MOSFET have prolonged the viability of silicon in power applications, maintaining its dominance through cost [...] Read more.
The growing demand for electric vehicles, renewable energy systems, and portable electronics has led to the widespread adoption of power conversion systems. Although advanced structures like the superjunction MOSFET have prolonged the viability of silicon in power applications, maintaining its dominance through cost efficiency, Si-based technology is ultimately constrained by its intrinsic limitations in critical electric fields. To address these constraints, research into wide bandgap semiconductors aims to minimize system footprint while maximizing efficiency. This study reviews the semiconductor landscape, demonstrating why Gallium Nitride (GaN) has emerged as the most promising technology for next-generation power applications. With a critical electric field of 3.75MV/cm (12.5× higher than Si), GaN facilitates power devices with lower conduction loss and higher frequency capability when compared to their Si counterpart. Furthermore, this paper surveys the GaN ecosystem, ranging from device modeling and packaging to monolithic ICs and switching converter implementations based on discrete transistors. While existing literature primarily focuses on discrete devices, this work addresses the critical gap regarding GaN monolithic integration. It synthesizes key challenges and achievements in the design of GaN integrated circuits, providing a comprehensive review that spans semiconductor technology, monolithic circuit architectures, and system-level applications. Reported data demonstrate monolithic stages reaching 30mΩ and 25MHz, exceeding Si performance limits. Additionally, the study reports on high-density hybrid implementations, such as a space-grade POL converter achieving 123.3kW/L with 90.9% efficiency. Full article
(This article belongs to the Section Microelectronics)
19 pages, 1666 KB  
Article
Fault Diagnosis Method for Reciprocating Compressors Based on Spatio-Temporal Feature Fusion
by Haibo Xu, Xiaolong Ji, Xiaogang Qin, Weizheng An, Fengli Zhang, Lixiang Duan and Jinjiang Wang
Sensors 2026, 26(3), 798; https://doi.org/10.3390/s26030798 - 25 Jan 2026
Viewed by 54
Abstract
Reciprocating compressors, which serve as core equipment in the petrochemical and natural gas transmission sectors, operate under prolonged variable loads and high-frequency impact conditions. Critical components, such as valves and piston rings, are prone to failure. Existing fault diagnosis methods suffer from inadequate [...] Read more.
Reciprocating compressors, which serve as core equipment in the petrochemical and natural gas transmission sectors, operate under prolonged variable loads and high-frequency impact conditions. Critical components, such as valves and piston rings, are prone to failure. Existing fault diagnosis methods suffer from inadequate spatio-temporal feature extraction and neglect spatio-temporal correlations. To address this, this paper proposes a spatio-temporal feature fusion-based fault diagnosis method for reciprocating compressors. This method constructs a spatio-temporal feature fusion model (STFFM) comprising three principal modules: First, a spatio-temporal feature extraction module employing a multi-layered stacked bidirectional gated recurrent unit (BiGRU) with batch normalisation to uncover temporal dependencies in long-term sequence data. A graph structure is constructed via k-nearest neighbours (KNN), and an enhanced graph isomorphism network (GIN) is integrated to capture spatial domain fault information variations. Second, the spatio-temporal bidirectional attention-gated fusion module employs a bidirectional multi-head attention mechanism to enhance temporal and spatial features. It incorporates a cross-modal gated update mechanism and learnable weight parameters to dynamically retain the highly discriminative features. Third, the classification output module enhances the model’s generalisation capability through multi-layer fully connected layers and regularisation design. Research findings demonstrate that this approach effectively integrates spatio-temporal coupled fault features, achieving an average accuracy of 99.14% on an experimental dataset. This provides an effective technical pathway for the precise identification of faults in the critical components of reciprocating compressors. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
16 pages, 5230 KB  
Article
Evaluating the Impact of Fog on Free Space Optical Communication Links in Mbeya and Morogoro, Tanzania
by Catherine Protas Tarimo, Florence Upendo Rashidi and Shubi Felix Kaijage
Photonics 2026, 13(2), 110; https://doi.org/10.3390/photonics13020110 - 25 Jan 2026
Viewed by 49
Abstract
Free-space optical (FSO) communication is a promising alternative to radio-frequency (RF) and optical fiber systems due to its high data rates and large bandwidth. However, its performance is highly susceptible to atmospheric conditions such as fog, rain, snow, and haze. This paper analyzes [...] Read more.
Free-space optical (FSO) communication is a promising alternative to radio-frequency (RF) and optical fiber systems due to its high data rates and large bandwidth. However, its performance is highly susceptible to atmospheric conditions such as fog, rain, snow, and haze. This paper analyzes fog-induced signal attenuation in the Morogoro and Mbeya regions of Tanzania using the Kim and Kruse attenuation models. To improve link performance, a quadrature amplitude modulation (QAM) multiple-input multiple-output (MIMO) FSO link was designed and analyzed using OptiSystem 22.0. In Mbeya, light fog conditions with 0.5 km visibility resulted in an attenuation of 32 dB/km, a bit error rate (BER) of 4.5 × 10−23, and a quality factor of 9.79 over a 2.62 km link. In Morogoro, dense fog with 0.05 km visibility led to an attenuation of 339 dB/km, a BER of 1.12 × 10−15, and a maximum link range of 0.305 km. Experimental measurements were further conducted under clear, moderate, and dense fog conditions to systematically evaluate the FSO link performance. The results demonstrated that MIMO techniques significantly enhanced link performance by mitigating fog effects. Moreover, a dedicated application was developed to analyze transmission errors and evaluate system performance metrics. Additionally, a mathematical model of the FSO link was developed to describe and forecast the performance of the MIMO FSO system in atmospheric conditions impacted by fog. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Wireless Optical Communication)
Show Figures

Figure 1

16 pages, 4695 KB  
Article
A Principal Component Analysis Framework for Evaluating Mining-Induced Risk: A Case Study of a Chilean Underground Mine
by Felipe Muñoz, Rodrigo Estay, Claudia Pavez-Orrego and Gonzalo Nelis
Appl. Sci. 2026, 16(3), 1211; https://doi.org/10.3390/app16031211 - 24 Jan 2026
Viewed by 86
Abstract
Mining-induced seismicity presents significant challenges to the safety and operational continuity of underground mines, particularly in deep and highly stressed environments. This study proposes a methodological framework for seismic risk evaluation inspired by predictive-maintenance principles and applied to a high-resolution microseismic catalog from [...] Read more.
Mining-induced seismicity presents significant challenges to the safety and operational continuity of underground mines, particularly in deep and highly stressed environments. This study proposes a methodological framework for seismic risk evaluation inspired by predictive-maintenance principles and applied to a high-resolution microseismic catalog from a Chilean underground mine. Using a combination of data filtering and correlation analyses, we identify the seismic parameters that control the most variability in the dataset: moment magnitude, frequency corner, and both dynamic and static stresses. Based on this, we perform a Principal Component Analysis (PCA), which clearly demonstrates the physical interconnection between the selected parameters, thereby helping to better characterize the seismic events and the mining environment. Using these results, a PCA-based risk map is constructed, enabling the delineation of zones with different levels of seismic risk. Additionally, a temporal tracking of potentially hazardous seismicity is included. The proposed methodology demonstrates that microseismic behavior can be effectively represented in a reduced-dimension space, offering a promising foundation for predictive and data-driven risk-assessment tools capable of supporting real-time decision-making in underground mining operations. Full article
(This article belongs to the Special Issue Machine Learning Applications in Seismology: 2nd Edition)
Show Figures

Figure 1

27 pages, 6866 KB  
Article
Recovering Gamma-Ray Burst Redshift Completeness Maps via Spherical Generalized Additive Models
by Zsolt Bagoly and Istvan I. Racz
Universe 2026, 12(2), 31; https://doi.org/10.3390/universe12020031 - 24 Jan 2026
Viewed by 58
Abstract
We present an advanced statistical framework for estimating the relative intensity of astrophysical event distributions (e.g., Gamma-Ray Bursts, GRBs) on the sky tofacilitate population studies and large-scale structure analysis. In contrast to the traditional approach based on the ratio of Kernel Density Estimation [...] Read more.
We present an advanced statistical framework for estimating the relative intensity of astrophysical event distributions (e.g., Gamma-Ray Bursts, GRBs) on the sky tofacilitate population studies and large-scale structure analysis. In contrast to the traditional approach based on the ratio of Kernel Density Estimation (KDE), which is characterized by numerical instability and bandwidth sensitivity, this work applies a logistic regression embedded in a Bayesian framework to directly model selection effects. It reformulates the problem as a logistic regression task within a Generalized Additive Model (GAM) framework, utilizing isotropic Splines on the Sphere (SOS) to map the conditional probability of redshift measurement. The model complexity and smoothness are objectively optimized using Restricted Maximum Likelihood (REML) and the Akaike Information Criterion (AIC), ensuring a data-driven bias-variance trade-off. We benchmark this approach against an Adaptive Kernel Density Estimator (AKDE) using von Mises–Fisher kernels and Abramson’s square root law. The comparative analysis reveals strong statistical evidence in favor of this Preconditioned (Precon) Estimator, yielding a log-likelihood improvement of ΔL74.3 (Bayes factor >1030) over the adaptive method. We show that this Precon Estimator acts as a spectral bandwidth extender, effectively decoupling the wideband exposure map from the narrowband selection efficiency. This provides a tool for cosmologists to recover high-frequency structural features—such as the sharp cutoffs—that are mathematically irresolvable by direct density estimators due to the bandwidth limitation inherent in sparse samples. The methodology ensures that reconstructions of the cosmic web are stable against Poisson noise and consistent with observational constraints. Full article
(This article belongs to the Section Astroinformatics and Astrostatistics)
Back to TopTop