Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = hexapod kinematic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15530 KiB  
Article
Research on the Single-Leg Compliance Control Strategy of the Hexapod Robot for Collapsible Terrains
by Peng Sun, Yinwei He, Shaojiang Feng, Xianyong Dai, Hanqi Zhang and Yanbiao Li
Appl. Sci. 2025, 15(10), 5312; https://doi.org/10.3390/app15105312 - 9 May 2025
Viewed by 412
Abstract
Legged robots often encounter the problem that the foot-end steps into empty spaces due to terrain collapse in complex environments such as mine tunnels and coal shafts, which in turn causes body instability. Aiming at this problem, this paper takes the hexapod robot [...] Read more.
Legged robots often encounter the problem that the foot-end steps into empty spaces due to terrain collapse in complex environments such as mine tunnels and coal shafts, which in turn causes body instability. Aiming at this problem, this paper takes the hexapod robot as the research object and proposes a multi-segmented electrically driven single-leg compliance control strategy for robots with tripod and quadrupedal gaits, to reduce the impact when the foot-end touches the ground, and thus to improve the stability of the robot. First, this paper analyzes the kinematic and dynamic models of the multi-segmented electrically driven single leg of the hexapod robot. Then, the minimum tipping angle of the fuselage is obtained based on force-angle stability margin (FASM) and used as the index to design the single-leg pit-probing control algorithm based on position impedance control and the single-leg touchdown force adjustment control algorithm based on inverse dynamics control. Finally, this paper designs a finite state machine to switch between different control strategies of the multi-segmented electrically driven single leg of the hexapod robot, and the vertical dynamic impact characteristic index is applied to evaluate the effect of single-leg impedance control. The simulation and prototype test results show that the proposed method significantly reduces the foot-end touchdown force and improves the walking stability of the hexapod robot in complex environments compared with the multi-segmented electrically driven single leg without the compliance control strategy. Full article
Show Figures

Figure 1

20 pages, 3776 KiB  
Article
Energy-Efficient Hydraulic System for Hexapod Robot Based on Two-Level Pressure System for Oil Supply
by Junkui Dong, Bo Jin, Ziqi Liu and Lei Chen
Biomimetics 2025, 10(3), 151; https://doi.org/10.3390/biomimetics10030151 - 1 Mar 2025
Cited by 1 | Viewed by 687
Abstract
This article proposes a two-level pressure system (TPS) inspired by mammalian energy supply mechanisms to enhance the energy efficiency of hydraulic hexapod robots (HHRs), In contrast to traditional one-level pressure systems (OPSs), the TPS contains both high-pressure and low-pressure oil supplies, which can [...] Read more.
This article proposes a two-level pressure system (TPS) inspired by mammalian energy supply mechanisms to enhance the energy efficiency of hydraulic hexapod robots (HHRs), In contrast to traditional one-level pressure systems (OPSs), the TPS contains both high-pressure and low-pressure oil supplies, which can switch the oil supply pressure according to the actuator load to reduce throttling loss and improve energy efficiency. Additionally, the TPS adopts a separate-meter-in and separate-meter-out (SMISMO) method to manage flow and pressure switching for the actuators. This article also analyzes the energy transfer process of an HHR and establishes kinematic and hydraulic system models. The energy-saving and control performance of the TPS is verified through simulations and experiments. The results show that compared to the OPS, the TPS achieves a 28.8% reduction in energy consumption while imposing higher demands on control performance. Full article
(This article belongs to the Special Issue Optimal Design Approaches of Bioinspired Robots)
Show Figures

Figure 1

29 pages, 19162 KiB  
Article
Research on Omnidirectional Gait Switching and Attitude Control in Hexapod Robots
by Min Yue, Xiaoyun Jiang, Liqiang Zhang and Yujin Zhang
Biomimetics 2024, 9(12), 729; https://doi.org/10.3390/biomimetics9120729 - 29 Nov 2024
Viewed by 1077
Abstract
To tackle the challenges of poor stability during real-time random gait switching and precise trajectory control for hexapod robots under limited stride and steering conditions, a novel real-time replanning gait switching control strategy based on an omnidirectional gait and fuzzy inference is proposed, [...] Read more.
To tackle the challenges of poor stability during real-time random gait switching and precise trajectory control for hexapod robots under limited stride and steering conditions, a novel real-time replanning gait switching control strategy based on an omnidirectional gait and fuzzy inference is proposed, along with an attitude control method based on the single-neuron adaptive proportional–integral–derivative (PID). To start, a kinematic model of a hexapod robot was developed through the Denavit–Hartenberg (D-H) kinematics analysis, linking joint movement parameters to the end foot’s endpoint pose, which formed the foundation for designing various gaits, including omnidirectional and compound gaits. Incorporating an omnidirectional gait could effectively resolve the challenge of precise trajectory control for the hexapod robot under limited stride and steering conditions. Next, a real-time replanning gait switching strategy based on an omnidirectional gait and fuzzy inference was introduced to tackle the issue of significant impacts and low stability encountered during gait transitions. Finally, in view of further enhancing the stability of the hexapod robot, an attitude adjustment algorithm based on the single-neuron adaptive PID was presented. Extensive experiments confirmed the effectiveness of this approach. The results show that our approach enabled the robot to switch gaits seamlessly in real time, effectively addressing the challenge of precise trajectory control under limited stride and steering conditions; moreover, it significantly improved the hexapod robot’s dynamic stability during its motion, enabling it to adapt to complex and changing environments. Full article
(This article belongs to the Special Issue Biologically Inspired Design and Control of Robots: Second Edition)
Show Figures

Figure 1

24 pages, 13928 KiB  
Article
Advances in the Kinematics of Hexapod Robots: An Innovative Approach to Inverse Kinematics and Omnidirectional Movement
by Jorge A. Lizarraga, Jose A. Garnica, Javier Ruiz-Leon, Gustavo Munoz-Gomez and Alma Y. Alanis
Appl. Sci. 2024, 14(18), 8171; https://doi.org/10.3390/app14188171 - 11 Sep 2024
Cited by 6 | Viewed by 3024
Abstract
Hexapod robots have gained significant attention due to their potential applications in complex terrains and dynamic environments. However, traditional inverse kinematics approaches often face challenges in meeting the precision required for adaptive omnidirectional movement. This work introduces a novel approach to addressing these [...] Read more.
Hexapod robots have gained significant attention due to their potential applications in complex terrains and dynamic environments. However, traditional inverse kinematics approaches often face challenges in meeting the precision required for adaptive omnidirectional movement. This work introduces a novel approach to addressing these challenges through the Directed Angular Restitution (DAR) method. The DAR method offers significant innovation by simplifying the calculation of rotational transformations necessary for aligning vectors across different planes, thus enhancing control, stability, and accuracy in robotic applications. Unlike conventional methods, the DAR method extends the range of trigonometric functions and incorporates spin functions to ensure continuous and smooth trajectory tracking. This innovative approach has been rigorously tested on a hexapod robot model, demonstrating superior performance in movement precision and stability. The results confirm that the DAR method provides a robust and scalable solution for the inverse kinematics of hexapod robots, making it a critical advancement for applications in robotics and automation where precise control and adaptability are paramount. Full article
(This article belongs to the Special Issue Intelligent Control of Dynamical Processes and Systems)
Show Figures

Figure 1

13 pages, 4353 KiB  
Article
Additive In-Time Manufacturing of Customised Orthoses
by Christian Friedrich, Stephan Rothstock, Laura Slabon and Steffen Ihlenfeldt
J. Manuf. Mater. Process. 2024, 8(2), 63; https://doi.org/10.3390/jmmp8020063 - 21 Mar 2024
Cited by 1 | Viewed by 2449
Abstract
Additive manufacturing of plastic components in medical technology enables greater freedom of design when designing patient-specific products, in particular, in production of customised medical products, such as orthoses. In the present contribution, the advantages of a digital process chain are combined, from the [...] Read more.
Additive manufacturing of plastic components in medical technology enables greater freedom of design when designing patient-specific products, in particular, in production of customised medical products, such as orthoses. In the present contribution, the advantages of a digital process chain are combined, from the 3D scan of the patient to CAD-supported modelling of the corrective form and the orthosis design until the path planning of a printable geometry. The main disadvantages of current additive printing techniques, such as the fused filament fabrication (FFF) process, are high printing times (>12 h) for larger components as well as the low degree of freedom in the 2.5D printing technique that prevent the subsequent application of geometry features to the product. The fast SEAMHex (Screw Extrusion Additive Manufacturing) printing technology with a hexapod kinematic printing bed provides a solution to the mentioned difficulties. Consequently, the high-performance printer has been prepared for the individual requirements of medical technology in terms of materials and geometries. An effective additive manufacturing process has been realised and tested in combination with a digital process chain for orthosis modelling. Full article
Show Figures

Figure 1

21 pages, 1280 KiB  
Article
Kinematic Tripod (K3P): A New Kinematic Algorithm for Gait Pattern Generation
by Daniel Soto-Guerrero, José Gabriel Ramírez-Torres and Eduardo Rodriguez-Tello
Appl. Sci. 2024, 14(6), 2564; https://doi.org/10.3390/app14062564 - 19 Mar 2024
Viewed by 1463
Abstract
Insects are good examples of ground locomotion because they can adapt their gait pattern to propel them in any direction, over uneven terrain, in a stable manner. Nevertheless, replicating such locomotion skills to a legged robot is not a straightforward task. Different approaches [...] Read more.
Insects are good examples of ground locomotion because they can adapt their gait pattern to propel them in any direction, over uneven terrain, in a stable manner. Nevertheless, replicating such locomotion skills to a legged robot is not a straightforward task. Different approaches have been proposed to synthesize the gait patterns for these robots; each approach exhibits different restrictions, advantages, and priorities. For the purpose of this document, we have classified gait pattern generators for multi-legged robots into three categories: precomputed, heuristic, and bio-inspired approaches. Precomputed approaches rely on a set of precalculated motion patterns obtained from geometric and/or kinematic models that are performed repeatedly whenever necessary and that cannot be modified on-the-fly to adapt to the terrain changes. On the other hand, heuristic and bio-inspired approaches offer on-line adaptability, but parameter-tuning and heading control can be difficult. In this document, we present the K3P algorithm, a real-time kinematic gait pattern generator conceived to command a legged robot. In contrast to other approaches, K3P enables the robot to adapt its gait to follow an arbitrary trajectory, at an arbitrary speed, over uneven terrain. No precomputed motions for the legs are required; instead, K3P modifies the motion of all mechanical joints to propel the body of the robot in the desired direction, maintaining a tripod stability at all times. In this paper, all the specific details of the aforementioned algorithm are presented, as well as different simulation results that validate its characteristics. Full article
(This article belongs to the Special Issue Advances in Robot Path Planning, Volume II)
Show Figures

Figure 1

21 pages, 9648 KiB  
Article
Kinematic Analysis and Application to Control Logic Development for RHex Robot Locomotion
by Piotr Burzyński, Ewa Pawłuszewicz, Leszek Ambroziak and Suryansh Sharma
Sensors 2024, 24(5), 1636; https://doi.org/10.3390/s24051636 - 2 Mar 2024
Cited by 2 | Viewed by 2096
Abstract
This study explores the kinematic model of the popular RHex hexapod robots which have garnered considerable interest for their locomotion capabilities. We study the influence of tripod trajectory parameters on the RHex robot’s movement, aiming to craft a precise kinematic model that enhances [...] Read more.
This study explores the kinematic model of the popular RHex hexapod robots which have garnered considerable interest for their locomotion capabilities. We study the influence of tripod trajectory parameters on the RHex robot’s movement, aiming to craft a precise kinematic model that enhances walking mechanisms. This model serves as a cornerstone for refining robot control strategies, enabling tailored performance enhancements or specific motion patterns. Validation conducted on a bespoke test bed confirms the model’s efficacy in predicting spatial movements, albeit with minor deviations due to motor load variations and control system dynamics. In particular, the derived kinematic framework offers valuable insights for advancing control logic, particularly navigating in flat terrains, thereby broadening the RHex robot’s application spectrum. Full article
(This article belongs to the Special Issue Mobile Robots: Navigation, Control and Sensing)
Show Figures

Figure 1

23 pages, 25897 KiB  
Article
On Constraints and Parasitic Motions of a Tripod Parallel Continuum Manipulator
by Oscar Altuzarra, Luigi Tagliavini, Yuhang Lei, Victor Petuya and Jose Luis Ruiz-Erezuma
Machines 2023, 11(1), 71; https://doi.org/10.3390/machines11010071 - 6 Jan 2023
Cited by 10 | Viewed by 2365
Abstract
A parallel continuum manipulator (PCM) is a mechanism of closed-loop morphology with flexible elements such that their deformation contributes to its mobility. Flexible hexapods are six-degrees-of-freedom (DoF) fully parallel continuum mechanisms already presented in the literature. Devices of reduced mobility, i.e., lower mobility [...] Read more.
A parallel continuum manipulator (PCM) is a mechanism of closed-loop morphology with flexible elements such that their deformation contributes to its mobility. Flexible hexapods are six-degrees-of-freedom (DoF) fully parallel continuum mechanisms already presented in the literature. Devices of reduced mobility, i.e., lower mobility than six DoF, have not been studied so far. An essential characteristic of lower mobility mechanisms is that reduced mobility is due to kinematic constraints generated by mechanical arrangements and passive joints. In rigid-link parallel manipulators, those constraints are expressed as a set of equations relating to the parameters representing the end effector’s pose. As a consequence, independent output pose variables are controllable with the position equations, while dependent output variables undergo parasitic motions. In this paper, the performance of a tripod-type parallel continuum manipulator, 3PF̲S, is compared with the operation of its rigid counterpart 3P̲RS. We will show that in PCMs there are no such geometric constraints expressible with algebraic equations, but it is difficult to perform some types of motion in the end effector with the input torques. Another goal of this paper is to evaluate such limitation of motion in a tripod-like PCM and compare it with the constraints of the rigid 3P̲RS. Finally, the paper shows that there are strong similarities in the reduced mobility of both mechanisms. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

13 pages, 2091 KiB  
Article
Two-Step Validation of a New Wireless Inertial Sensor System: Application in the Squat Motion
by Mathias Blandeau, Romain Guichard, Rémy Hubaut and Sébastien Leteneur
Technologies 2022, 10(3), 72; https://doi.org/10.3390/technologies10030072 - 9 Jun 2022
Cited by 7 | Viewed by 3291
Abstract
The use of Inertial Measurement Units (IMUs) can provide embedded motion data to improve clinical application. The objective of this study was to validate a newly designed IMU system. The validation is provided through two main methods, a classical sensor validation achieved on [...] Read more.
The use of Inertial Measurement Units (IMUs) can provide embedded motion data to improve clinical application. The objective of this study was to validate a newly designed IMU system. The validation is provided through two main methods, a classical sensor validation achieved on a six-degrees-of-freedom hexapod platform with controlled linear and rotation motions and a functional validation on subjects performing squats with segmental angle measurement. The kinematics of the sensors were measured by using an optoelectronic reference system (VICON) and then compared to the orientation and raw data of the IMUs. Bland–Altman plots and Lin’s concordance correlation coefficient were computed to assess the kinematic parameter errors between the IMUs and VICON system. The results showed suitable precision of the IMU system for linear, rotation and squat motions. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

27 pages, 10905 KiB  
Article
The Hybrid Position/Force Walking Robot Control Using Extenics Theory and Neutrosophic Logic Decision
by Ionel-Alexandru Gal, Alexandra-Cătălina Ciocîrlan and Luige Vlădăreanu
Sensors 2022, 22(10), 3663; https://doi.org/10.3390/s22103663 - 11 May 2022
Cited by 2 | Viewed by 2722
Abstract
This paper presents a hybrid force/position control. We developed it for a hexapod walking robot that combines multiple bipedal robots to increase its load. The control method integrated Extenics theory with neutrosophic logic to obtain a two-stage decision-making algorithm. The first stage was [...] Read more.
This paper presents a hybrid force/position control. We developed it for a hexapod walking robot that combines multiple bipedal robots to increase its load. The control method integrated Extenics theory with neutrosophic logic to obtain a two-stage decision-making algorithm. The first stage was an offline qualitative decision-applying Extenics theory, and the second was a real-time decision process using neutrosophic logic and DSmT theory. The two-stage algorithm separated the control phases into a kinematic control method that used a PID regulator and a dynamic control method developed with the help of sliding mode control (SMC). By integrating both control methods separated by a dynamic switching algorithm, we obtained a hybrid force/position control that took advantage of both kinematic and dynamic control properties to drive a mobile walking robot. The experimental and predicted results were in good agreement. They indicated that the proposed hybrid control is efficient in using the two-stage decision algorithm to drive the hexapod robot motors using kinematic and dynamic control methods. The experiment presents the robot’s foot positioning error while walking. The results show how the switching method alters the system precision during the pendulum phase compared to the weight support phase, which can better compensate for the robot’s dynamic parameters. The proposed switching algorithm directly influences the overall control precision, while we aimed to obtain a fast switch with a lower impact on the control parameters. The results show the error on all axes and break it down into walking stages to better understand the control behavior and precision. Full article
(This article belongs to the Special Issue Advanced Intelligent Control in Robots)
Show Figures

Figure 1

19 pages, 5025 KiB  
Article
Design and Control of a Hydraulic Hexapod Robot with a Two-Stage Supply Pressure Hydraulic System
by Ziqi Liu, Bo Jin, Junkui Dong, Shuo Zhai and Xuan Tang
Machines 2022, 10(5), 305; https://doi.org/10.3390/machines10050305 - 25 Apr 2022
Cited by 6 | Viewed by 3311
Abstract
This paper focuses on the system design and control strategies of a hydraulic hexapod robot (HHR) ZJUHEX01 with a two-stage supply pressure hydraulic system (TSS). Firstly, a brief introduction is given, including the mechanical structure, the onboard hydraulic system, and the control system [...] Read more.
This paper focuses on the system design and control strategies of a hydraulic hexapod robot (HHR) ZJUHEX01 with a two-stage supply pressure hydraulic system (TSS). Firstly, a brief introduction is given, including the mechanical structure, the onboard hydraulic system, and the control system architecture. Secondly, the kinematics model and hydraulic system model are built in preparation for the controller design. Then a sliding mode repetitive controller (SMRC) for the separate meter in and separate meter out (SMISMO) hydraulic system is proposed, as well as the valve configuration, to help HHR get better control performance and smaller tracking errors. Furthermore, a high order sliding mode differentiator (HOSMD) is developed to obtain the joint angular velocity and acceleration. Finally, the ADAMS and MATLAB/Simulink co-simulation model is established to verify the effectiveness of the control strategy. Also, the energy consumption of TSS is compared with that of one-stage supply pressure hydraulic system (OSS) to show a great energy-saving effect of 51.94%. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

33 pages, 23058 KiB  
Article
High-Precision Absolute Pose Sensing for Parallel Mechanisms
by Constantin Schempp and Stefan Schulz
Sensors 2022, 22(5), 1995; https://doi.org/10.3390/s22051995 - 3 Mar 2022
Cited by 7 | Viewed by 3987
Abstract
A parallel mechanism’s pose is usually obtained indirectly from the active joints’ coordinates by solving the direct kinematics problem. Its accuracy mainly depends on the accuracy of the measured active joints’ coordinates, the tolerances in the active and passive joints, possible backlash, axes [...] Read more.
A parallel mechanism’s pose is usually obtained indirectly from the active joints’ coordinates by solving the direct kinematics problem. Its accuracy mainly depends on the accuracy of the measured active joints’ coordinates, the tolerances in the active and passive joints, possible backlash, axes misalignment, limb deformations due to stress or temperature, the initial pose estimate that is used for the numerical method, and the accuracy of the kinematic model itself. Backlash and temperature deformations in the active joints especially hinder high-precision applications as they usually cannot be observed. By implementing a camera module on the base platform and an array of fiducial tags on the moveable manipulator platform of a parallel mechanism, a highly accurate, direct, and absolute pose measurement system can be obtained that can overcome those limitations. In this paper, such a measurement system is proposed, designed, and its accuracy is investigated on a state-of-the-art H-811.I2 6-axis miniature hexapod by Physik Instrumente (PI) GmbH & Co. KG. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Graphical abstract

15 pages, 5736 KiB  
Article
A Reconfiguration Algorithm for the Single-Driven Hexapod-Type Parallel Mechanism
by Alexey Fomin, Anton Antonov and Victor Glazunov
Robotics 2022, 11(1), 8; https://doi.org/10.3390/robotics11010008 - 2 Jan 2022
Viewed by 3185
Abstract
This paper presents a hexapod-type reconfigurable parallel mechanism that operates from a single actuator. The mechanism design allows reproducing diverse output link trajectories without using additional actuators. The paper provides the kinematic analysis where the analytical relationships between the output link coordinates and [...] Read more.
This paper presents a hexapod-type reconfigurable parallel mechanism that operates from a single actuator. The mechanism design allows reproducing diverse output link trajectories without using additional actuators. The paper provides the kinematic analysis where the analytical relationships between the output link coordinates and actuated movement are determined. These relations are used next to develop an original and computationally effective algorithm for the reconfiguration procedure. The algorithm enables selecting mechanism parameters to realize a specific output link trajectory. Several examples demonstrate the implementation of the proposed techniques. CAD simulations on a mechanism virtual prototype verify the correctness of the suggested algorithm. Full article
Show Figures

Figure 1

17 pages, 21795 KiB  
Article
Virtual and Physical Prototyping of Reconfigurable Parallel Mechanisms with Single Actuation
by Alexey Fomin, Daniil Petelin, Anton Antonov, Victor Glazunov and Marco Ceccarelli
Appl. Sci. 2021, 11(15), 7158; https://doi.org/10.3390/app11157158 - 3 Aug 2021
Cited by 4 | Viewed by 3814
Abstract
The paper presents novel models of reconfigurable parallel mechanisms (RPMs) with a single active degree-of-freedom (1-DOF). The mechanisms contain three to six identical kinematic chains, which provide three (for the tripod) to zero (for the hexapod) uncontrollable DOFs. Screw theory is applied to [...] Read more.
The paper presents novel models of reconfigurable parallel mechanisms (RPMs) with a single active degree-of-freedom (1-DOF). The mechanisms contain three to six identical kinematic chains, which provide three (for the tripod) to zero (for the hexapod) uncontrollable DOFs. Screw theory is applied to carry out mobility analysis and proves the existence of controllable and uncontrollable DOFs of these mechanisms. Each kinematic chain in the synthesized mechanisms consists of planar and spatial parts. Such a design provides them with reconfiguration capabilities even when the driving link is fixed. This allows reproduction of diverse output trajectories without using additional actuators. In this paper, the model of a mechanism with six kinematic chains (hexapod) has been virtually and physically prototyped. The designing and assembling algorithms are developed using the detailed computer-aided design (CAD) model, which was further used to carry out kinetostatic analysis considering complex geometry of mechanism elements and friction among all contacting surfaces of joints. The developed virtual prototype and its calculation data have been further applied to fabricate mechanism elements and assemble an actuated full-scale physical prototype for future testing. Full article
(This article belongs to the Special Issue Innovative Robot Designs and Approaches)
Show Figures

Figure 1

12 pages, 1508 KiB  
Article
Dimensional (Parametric) Synthesis of the Hexapod-Type Parallel Mechanism with Reconfigurable Design
by Alexey Fomin, Anton Antonov, Victor Glazunov and Giuseppe Carbone
Machines 2021, 9(6), 117; https://doi.org/10.3390/machines9060117 - 12 Jun 2021
Cited by 17 | Viewed by 3787
Abstract
The study provides a solution to a dimensional synthesis problem for a hexapod-type reconfigurable parallel mechanism, which can change its configuration to realize different trajectories of its output link while having a single drive. The work presents an original procedure to find the [...] Read more.
The study provides a solution to a dimensional synthesis problem for a hexapod-type reconfigurable parallel mechanism, which can change its configuration to realize different trajectories of its output link while having a single drive. The work presents an original procedure to find the dimensions of some mechanism’s links and their initial configuration to reproduce these trajectories. After describing the mechanism, the paper examines kinematic relations representing the basis for the subsequent synthesis algorithm. Next, the obtained expressions are extended and provide a system of equations to be solved. The structure of this equation system allows it to be solved effectively by numerical methods, which is demonstrated with an example. The proposed algorithm of dimensional synthesis does not require solving the optimization problems, in contrast to the familiar methods of dimensional synthesis of parallel mechanisms. Further, the suggested approach to the synthesis problem allows finding solution in a fast and computationally efficient manner. Full article
(This article belongs to the Special Issue Robotic Machine Tools)
Show Figures

Figure 1

Back to TopTop