Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,948)

Search Parameters:
Keywords = heating energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 (registering DOI) - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

10 pages, 1801 KiB  
Article
Strong Radiative Cooling Coating Containing In Situ Grown TiO2/CNT Hybrids and Polyacrylic Acid Matrix
by Jiaziyi Wang, Yong Liu, Dapeng Liu, Yong Mu and Xilai Jia
Coatings 2025, 15(8), 921; https://doi.org/10.3390/coatings15080921 (registering DOI) - 7 Aug 2025
Abstract
Traditional forced-air cooling systems suffer from excessive energy consumption and noise pollution. This study proposes an innovative passive cooling strategy through developing aqueous radiative cooling coatings made from a combination of TiO2-decorated carbon nanotube (TiO2-CNT) hybrids and polyacrylic acid [...] Read more.
Traditional forced-air cooling systems suffer from excessive energy consumption and noise pollution. This study proposes an innovative passive cooling strategy through developing aqueous radiative cooling coatings made from a combination of TiO2-decorated carbon nanotube (TiO2-CNT) hybrids and polyacrylic acid (PAA), designed to simultaneously enhance the heat dissipation and improve the mechanical strength of the coating films. Based on CNTs’ exceptional thermal conductivity and record-high infrared emissivity, bead-like TiO2-CNT architectures have been prepared as the filler in PAA. The TiO2 nanoparticles were in situ grown on CNTs, forming a rough surface that can produce asperity contacts and enhance the strength of the TiO2-CNT/PAA composite. Moreover, this composite enhanced heat dissipation and achieved remarkable cooling efficiency at a small fraction of the filler (0.1 wt%). The optimized coating demonstrated a temperature reduction of 23.8 °C at an operation temperature of 180.7 °C, coupled with obvious mechanical reinforcement (tensile strength from 13.7 MPa of pure PAA to 17.1 MPa). This work achieves the combination of CNT and TiO2 nanoparticles for strong radiative cooling coating, important for energy-efficient thermal management. Full article
Show Figures

Figure 1

25 pages, 2458 KiB  
Article
Numerical Analysis of Heat Transfer in a Double-Pipe Heat Exchanger for an LPG Fuel Supply System
by Seongwoo Lee, Younghun Kim, Ancheol Choi and Sungwoong Choi
Energies 2025, 18(15), 4179; https://doi.org/10.3390/en18154179 - 6 Aug 2025
Abstract
LPG fuel supply systems are increasingly important for improving energy efficiency and reducing carbon emissions in the shipping industry. The primary objective of this research is to investigate the heat transfer phenomena to enhance the thermal performance of double-pipe heat exchangers (DPHEs) in [...] Read more.
LPG fuel supply systems are increasingly important for improving energy efficiency and reducing carbon emissions in the shipping industry. The primary objective of this research is to investigate the heat transfer phenomena to enhance the thermal performance of double-pipe heat exchangers (DPHEs) in LPG fuel supply systems. This study investigates the heat transfer performance of a glycol–steam double-pipe heat exchanger (DPHE) within an LPG fuel supply system under varying operating conditions. A computational model and methodology were developed and validated by comparing the numerical results with experimental data obtained from commissioning tests. Additionally, the effects of turbulence models and parametric variations were evaluated by analyzing the glycol–water mixing ratio and flow direction—both of which are critical operational parameters for DPHE systems. Numerical validation against the commissioning data showed a deviation of ±2% under parallel-flow conditions, confirming the reliability of the proposed model. With respect to the glycol–water mixing ratio and flow configuration, thermal conductance (UA) decreased by approximately 11% in parallel flow and 13% in counter flow for every 20% increase in glycol concentration. Furthermore, parallel flow exhibited approximately 0.6% higher outlet temperatures than counter flow, indicating superior heat transfer efficiency under parallel-flow conditions. Finally, the heat transfer behavior of the DPHE was further examined by considering the effects of geometric characteristics, pipe material, and fluid properties. This study offers significant contributions to the engineering design of double-pipe heat exchanger systems for LPG fuel supply applications. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

22 pages, 1183 KiB  
Review
Progress in Caking Mechanism and Regulation Technologies of Weakly Caking Coal
by Zhaoyang Li, Shujun Zhu, Ziqu Ouyang, Zhiping Zhu and Qinggang Lyu
Energies 2025, 18(15), 4178; https://doi.org/10.3390/en18154178 - 6 Aug 2025
Abstract
Efficient and clean utilization remains a pivotal development focus within the coal industry. Nevertheless, the application of weakly caking coal results in energy loss due to the caking property, thereby leading to a waste of resources. This paper, therefore, concentrates on the caking [...] Read more.
Efficient and clean utilization remains a pivotal development focus within the coal industry. Nevertheless, the application of weakly caking coal results in energy loss due to the caking property, thereby leading to a waste of resources. This paper, therefore, concentrates on the caking property, offering insights into the relevant caking mechanism, evaluation indexes, and regulation technologies associated with it. The caking mechanism delineates the transformation process of coal into coke. During pyrolysis, the active component generates the plastic mass in which gas, liquid, and solid phases coexist. With an increase in temperature, the liquid phase is diminished gradually, causing the inert components to bond. Based on the caking mechanism, evaluation indexes such as that characteristic of char residue, the caking index, and the maximal thickness of the plastic layer are proposed. These indexes are used to distinguish the strength of the caking property. However, they frequently exhibit a poor differentiation ability and high subjectivity. Additionally, some technologies have been demonstrated to regulate the caking property. Technologies such as rapid heating treatment and hydrogenation modification increase the amount of plastic mass generated, thereby improving the caking property. Meanwhile, technologies such as mechanical breaking and pre-oxidation reduce the caking property by destroying agglomerates or consuming plastic mass. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
16 pages, 4746 KiB  
Article
Experimental Study on Millisecond Laser Percussion Drilling of Heat-Resistant Steel
by Liang Wang, Changjian Wu, Yefei Rong, Long Xu and Kaibo Xia
Materials 2025, 18(15), 3699; https://doi.org/10.3390/ma18153699 - 6 Aug 2025
Abstract
Millisecond lasers, with their high processing efficiency and large power, are widely used in manufacturing fields such as aerospace. This study aims to investigate the effects of different processing parameters on the micro-hole processing of 316 heat-resistant steel using millisecond lasers. Through the [...] Read more.
Millisecond lasers, with their high processing efficiency and large power, are widely used in manufacturing fields such as aerospace. This study aims to investigate the effects of different processing parameters on the micro-hole processing of 316 heat-resistant steel using millisecond lasers. Through the control variable method, the study examines the impact of pulse energy, pulse count, and pulse width on the quality of micro-holes, including the entrance diameter, exit diameter, and taper. Furthermore, combined with orthogonal experiments and COMSOL Multiphysics 6.2 simulations, the study explores the influence of pulse width on the formation of blind holes. The experimental results show that when the pulse energy is 2.2 J, the taper is minimal (2.2°), while the taper reaches its peak (2.4°) at 2.4 J pulse energy. As the pulse count increases to 55–60 pulses, the exit diameter stabilizes, and the taper decreases to 1.8°. Blind holes begin to form when the pulse width exceeds 1.2 ms. When the pulse width is 1.2 ms, pulse energy is 2.4 J, and pulse count is 50, the entrance diameter of the blind hole reaches its maximum, indicating that longer pulse widths result in more significant energy reflection and thermal accumulation effects. COMSOL simulations reveal that high-energy pulses cause intense melt ejection, while longer pulse widths exacerbate thermal accumulation at the micro-hole entrance, leading to blind hole formation. This study provides important process references for laser processing of through-holes and blind holes in heat-resistant steel. Full article
Show Figures

Figure 1

16 pages, 5284 KiB  
Article
Hydration, Soundness, and Strength of Low Carbon LC3 Mortar Using Waste Brick Powder as a Source of Calcined Clay
by Saugat Humagain, Gaurab Shrestha, Mini K. Madhavan and Prabir Kumar Sarker
Materials 2025, 18(15), 3697; https://doi.org/10.3390/ma18153697 - 6 Aug 2025
Abstract
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker [...] Read more.
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker with calcined clay and limestone. This study investigated the use of waste clay brick powder (WBP), a waste material, as a source of calcined clay in LC3 formulations, addressing both environmental concerns and SCM scarcity. Two LC3 mixtures containing 15% limestone, 5% gypsum, and either 15% or 30% WBP, corresponding to clinker contents of 65% (LC3-65) or 50% (LC3-50), were evaluated against general purpose (GP) cement mortar. Tests included setting time, flowability, soundness, compressive and flexural strengths, drying shrinkage, isothermal calorimetry, and scanning electron microscopy (SEM). Isothermal calorimetry showed peak heat flow reductions of 26% and 49% for LC3-65 and LC3-50, respectively, indicating a slower reactivity of LC3. The initial and final setting times of the LC3 mixtures were 10–30 min and 30–60 min longer, respectively, due to the slower hydration kinetics caused by the reduced clinker content. Flowability increased in LC3-50, which is attributed to the lower clinker content and higher water availability. At 7 days, LC3-65 retained 98% of the control’s compressive strength, while LC3-50 showed a 47% reduction. At 28 days, the compressive strengths of mixtures LC3-65 and LC3-50 were 7% and 46% lower than the control, with flexural strength reductions being 8% and 40%, respectively. The porosity calculated from the SEM images was found to be 7%, 11%, and 15% in the control, LC3-65, and LC3-50, respectively. Thus, the reduction in strength is attributed to the slower reaction rate and increased porosity associated with the reduced clinker content in LC3 mixtures. However, the results indicate that the performance of LC3-65 was close to that of the control mix, supporting the viability of WBP as a low-carbon partial replacement of clinker in LC3. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

18 pages, 5831 KiB  
Article
Cure Kinetics-Driven Compression Molding of CFRP for Fast and Low-Cost Manufacturing
by Xintong Wu, Ming Zhang, Zhongling Liu, Xin Fu, Haonan Liu, Yuchen Zhang and Xiaobo Yang
Polymers 2025, 17(15), 2154; https://doi.org/10.3390/polym17152154 - 6 Aug 2025
Abstract
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal–exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun–Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method’s reliability and its significance for improving production efficiency. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials, 2nd Edition)
Show Figures

Figure 1

22 pages, 9502 KiB  
Article
Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions
by Guo Tang, Dianbin Guo, Wei Zhong, Li Du, Xiang Mao and Man Li
Appl. Sci. 2025, 15(15), 8693; https://doi.org/10.3390/app15158693 (registering DOI) - 6 Aug 2025
Abstract
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled [...] Read more.
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled thermo-mechanical phase-field model (TM-PFM) was developed in COMSOL 6.2 Multiphysics to probe thermal fracturing mechanisms in reservoir rocks. The TM-PFM was validated against the analytical solutions for the temperature and stress fields under steady-state heat conduction in a thin-walled cylinder, three-point bending tests, and thermal shock tests. Subsequently, two distinct thermal fracturing modes in reservoir rock under high-temperature conditions were investigated: (i) fracture initiation driven by sharp temperature gradients during instantaneous thermal shocks, and (ii) crack propagation resulting from heterogeneous thermal expansion of constituent minerals. The proposed TM-PFM has been validated through systematic comparison between the simulation results and the corresponding experimental data, thereby demonstrating its capability to accurately simulate thermal fracturing. These findings provide mechanistic insights for optimizing geothermal energy extraction in EGS. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

24 pages, 2863 KiB  
Article
An Integrated Bond Graph Methodology for Building Performance Simulation
by Abdelatif Merabtine
Energies 2025, 18(15), 4168; https://doi.org/10.3390/en18154168 - 6 Aug 2025
Abstract
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate [...] Read more.
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate and analyze the thermal behavior of an integrated trigeneration system within an experimental test cell. Unlike conventional simulation approaches, the BG framework enables unified modeling of thermal and hydraulic subsystems, offering a physically consistent and energy-based representation of system dynamics. The study investigates the system’s performance under both dynamic and steady-state conditions across two distinct climatic periods. Validation against experimental data reveals strong agreement between measured and simulated temperatures in heating and cooling scenarios, with minimal deviations. This confirms the method’s reliability and its capacity to capture transient thermal behaviors. The results also demonstrate the BG model’s effectiveness in supporting predictive control strategies, optimizing energy efficiency, and maintaining thermal comfort. By integrating hydraulic circuits and thermal exchange processes within a single modeling framework, this work highlights the potential of bond graphs as a robust and scalable tool for advanced building performance simulation. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

19 pages, 13584 KiB  
Article
Enhanced Diffraction and Spectroscopic Insight into Layer-Structured Bi6Fe2Ti3O18 Ceramics
by Zbigniew Pędzich, Agata Lisińska-Czekaj, Dionizy Czekaj, Agnieszka Wojteczko and Barbara Garbarz-Glos
Materials 2025, 18(15), 3690; https://doi.org/10.3390/ma18153690 - 6 Aug 2025
Abstract
Bi6Fe2Ti3O18 (BFTO) ceramics were synthesized via a solid-state reaction route using stoichiometric amounts of Bi2O3, TiO2, and Fe2O3 powders. A thermal analysis of the powder mixture was [...] Read more.
Bi6Fe2Ti3O18 (BFTO) ceramics were synthesized via a solid-state reaction route using stoichiometric amounts of Bi2O3, TiO2, and Fe2O3 powders. A thermal analysis of the powder mixture was conducted to optimize the heat treatment parameters. Energy-dispersive X-ray spectroscopy (EDS) confirmed the conservation of the chemical composition following calcination. Final densification was achieved through hot pressing. The crystal structure of the sintered samples, examined via X-ray diffraction at room temperature, revealed a tetragonal symmetry for BFTO ceramics sintered at 850 °C. Electron backscatter diffraction (EBSD) provided detailed insight into the crystallographic orientation and microstructure. Broadband dielectric spectroscopy (BBDS) was employed to investigate the dielectric response of BFTO ceramics over a frequency range of 10 mHz to 10 MHz and a temperature range of −30 °C to +200 °C. The temperature dependence of the relative permittivity (εr) and dielectric loss tangent (tan δ) were measured within a frequency range of 100 kHz to 900 kHz and a temperature range of 25 °C to 570 °C. The impedance data obtained from the BBDS measurements were validated using the Kramers–Kronig test and modeled using the Kohlrausch–Williams–Watts (KWW) function. The stretching parameter (β) ranged from ~0.72 to 0.82 in the impedance formalism within the temperature range from 200 °C to 20 °C. Full article
Show Figures

Figure 1

22 pages, 5509 KiB  
Article
Kinetic Analysis of Thermal Degradation of Styrene–Butadiene Rubber Compounds Under Different Aging Conditions
by Imen Hamouda, Masoud Tayefi, Mostafa Eesaee, Meysam Hassanipour and Phuong Nguyen-Tri
J. Compos. Sci. 2025, 9(8), 420; https://doi.org/10.3390/jcs9080420 - 6 Aug 2025
Abstract
This study examined the impact of storage and operational aging on the thermal stability, structural degradation, and electrical properties of styrene–butadiene rubber (SBR) compound by analyzing three distinct materials: a laboratory-stored sample, an operationally aged one, and an original unaged reference. Thermal degradation [...] Read more.
This study examined the impact of storage and operational aging on the thermal stability, structural degradation, and electrical properties of styrene–butadiene rubber (SBR) compound by analyzing three distinct materials: a laboratory-stored sample, an operationally aged one, and an original unaged reference. Thermal degradation was analyzed through thermogravimetric analysis (TGA), which examined weight loss as a function of temperature and time at different heating rates. Results showed that the onset temperature and peak position in the 457 °C to 483 °C range remained stable. The activation energy (Ea) was determined using the Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Friedman methods, with the original unaged sample’s (OUS) Ea averaging 203.7 kJ/mol, decreasing to 163.47 kJ/mol in the laboratory-stored sample (LSS), and increasing to 224.18 kJ/mol in the operationally aged sample (OAS). The Toop equation was applied to estimate the thermal degradation lifetime at a 50% conversion rate. Since the material had been exposed to electricity, the evolution of electrical conductivity was studied and found to have remained stable after storage at around 0.070 S/cm. However, after operational aging, it showed a considerable increase in conductivity, to 0.321 S/cm. Scanning Electron Microscopy (SEM) was employed to analyze microstructural degradation and chemical changes, providing insights into the impact of aging on thermal stability and electrical properties. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

31 pages, 13266 KiB  
Article
Emission of Total Volatile Organic Compounds from the Torrefaction Process: Meadow Hay, Rye, and Oat Straw as Renewable Fuels
by Justyna Czerwinska, Szymon Szufa, Hilal Unyay and Grzegorz Wielgosinski
Energies 2025, 18(15), 4154; https://doi.org/10.3390/en18154154 - 5 Aug 2025
Abstract
This study aims to quantify total VOC emissions and evaluate how torrefaction alters the heat of combustion of three agricultural residues. The work examines the amount of VOC emissions during the torrefaction process at various temperatures and investigates the changes in the heat [...] Read more.
This study aims to quantify total VOC emissions and evaluate how torrefaction alters the heat of combustion of three agricultural residues. The work examines the amount of VOC emissions during the torrefaction process at various temperatures and investigates the changes in the heat of combustion of agri-biomass resulting from the torrefaction process. The process was carried out at the following temperatures: 225, 250, 275, and 300 °C. Total VOC emission factors were determined. The reaction kinetics analysis revealed that meadow hay exhibited the most stable thermal behavior with the lowest activation energy. At the same time, rye straw demonstrated higher thermal resistance and complex multi-step degradation characteristics. The authors analyze three types of agricultural biomass: meadow hay, rye straw, and oat straw. The research was divided into five stages: determination of moisture content in the sample, determination of ash content, thermogravimetric analysis, measurement of total VOC emissions from the biomass torrefaction process, and determination of the heat of combustion of the obtained torrefied biomass. Based on the research, it was found that torrefaction of biomass causes the emission of torgas containing VOC in the amount of 2–10 mg/g of torrefied biomass, which can be used energetically, e.g., to support the torrefaction process, and the torrefied biomass shows a higher value of the heat of combustion. Unlike prior studies focused on single feedstocks or limited temperature ranges, this work systematically compares three major crop residues across four torrefaction temperatures and directly couples VOC quantifications. Full article
Show Figures

Figure 1

88 pages, 9998 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
15 pages, 2053 KiB  
Article
Unveiling Radon Concentration in Geothermal Installation: The Role of Indoor Conditions and Human Activity
by Dimitrios-Aristotelis Koumpakis, Savvas Petridis, Apostolos Tsakirakis, Ioannis Sourgias, Alexandra V. Michailidou and Christos Vlachokostas
Gases 2025, 5(3), 18; https://doi.org/10.3390/gases5030018 - 5 Aug 2025
Viewed by 49
Abstract
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The [...] Read more.
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The accumulation of radon indoors in sealed or poorly ventilated areas leads to dangerous concentrations that elevate human health risks of lung cancer. The research examines environmental variables affecting radon concentration indoors by studying geothermal installations and their drilling activities, which potentially increase radon emissions. The study was conducted in the basement of the plumbing educational building at the Aristotle University of Thessaloniki to assess the potential impact of geothermal activity on indoor radon levels, as the building is equipped with a geothermal heating system. The key findings based on 150 days of continuous data showed that radon levels peak during the cold days, where the concentration had a mean value of 41.5 Bq/m3 and reached a maximum at about 95 Bq/m3. The reason was first and foremost poor ventilation and pressure difference. The lowest concentrations were on days with increased human activity with measures that had a mean value of 14.8 Bq/m3, which is reduced by about 65%. The results that are presented confirm the hypotheses and the study is making clear that ventilation and human activity are crucial in radon mitigation, especially on geothermal and energy efficient structures. Full article
Show Figures

Figure 1

Back to TopTop