Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = group anchor effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9423 KB  
Article
From Surface Energetics to Environmental Functionality: Mechanistic Insights into Hg(II) Removal by L-Cysteine-Modified Silica Gel
by Rene G. Moran-Salazar, Ricardo Manríquez-González, Alejandro A. Peregrina-Lucano, José A. Gutierréz-Ortega, Agustín Lara, Eulogio Orozco-Guareño, Adriana M. Macias-Lamas, Jessica Badillo-Camacho, Ilya G. Shenderovich, Milton Vazquez-Lepe and Sergio Gómez-Salazar
Gels 2026, 12(2), 141; https://doi.org/10.3390/gels12020141 - 3 Feb 2026
Viewed by 29
Abstract
The development of oxidation-resistant and regenerable materials remains a major challenge for mercury removal from contaminated waters and industrial effluents. In this study, a zwitterionic mesoporous silica gel functionalized with L-cysteine (SG-3PS-Cys) was synthesized, where the thiol group is covalently anchored to the [...] Read more.
The development of oxidation-resistant and regenerable materials remains a major challenge for mercury removal from contaminated waters and industrial effluents. In this study, a zwitterionic mesoporous silica gel functionalized with L-cysteine (SG-3PS-Cys) was synthesized, where the thiol group is covalently anchored to the silica framework, preventing oxidative degradation while preserving –NH3+ and –COO groups for Hg(II) coordination. Spectroscopic analyses (FTIR, XPS, and 13C NMR) confirmed the formation of a stable, thiol-free binding environment in which mercury interacts through carboxylate oxygen atoms, electrostatically stabilized by neighboring ammonium groups. The material exhibited a high surface area (134 m2 g−1) and uniform mesoporosity (9.8 nm), achieving a maximum Hg(II) uptake of 82.7 mg g−1 at pH 3 with rapid kinetics and cooperative S-type isotherms. The adsorbent retained 72% of its capacity after five regeneration cycles and maintained 38.7% selectivity toward Hg(II) in multicomponent solutions. DFT-based surface energy distribution analysis supported the zwitterionic coordination mechanism, revealing energetically homogeneous and high-affinity binding domains. Beyond its chemical stability, the material introduces a sustainable route for mercury remediation, linking surface energy, electrostatic effects, and porosity to achieve durable performance under acidic and complex aqueous conditions. These findings provide a mechanistic and design framework for the next generation of non-thiol adsorbents capable of selective and reusable Hg(II) removal in environmentally relevant scenarios. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Graphical abstract

21 pages, 546 KB  
Article
Integrating Community Economy Context-Based Learning and Entrepreneurship Education to Enhance Entrepreneurial Language Skills
by Paramee Wachirapathummut and Khajornsak Buaraphan
Sustainability 2026, 18(3), 1537; https://doi.org/10.3390/su18031537 - 3 Feb 2026
Viewed by 48
Abstract
The Thailand 4.0 agenda elevates entrepreneurship education (EE) as a lever to escape the middle-income, inequality, and imbalance traps, yet EE remains weakly embedded in basic education—especially in Thai language. We designed and piloted a community-economy context-based learning model integrating EE (CEC-EE) for [...] Read more.
The Thailand 4.0 agenda elevates entrepreneurship education (EE) as a lever to escape the middle-income, inequality, and imbalance traps, yet EE remains weakly embedded in basic education—especially in Thai language. We designed and piloted a community-economy context-based learning model integrating EE (CEC-EE) for Grade 12 Thai via a two-cycle R&D process: needs analysis (surveys and focus groups with teachers and students) and prototype development. The model operationalizes six instructional steps (6Cs: connect, comprehend, clarify, construct, carry over, and conclude) anchored in Mae Chan’s community economy and targets entrepreneurial language skills (ELSs) consisting of analytical reading and creative writing. In a one-group pretest–posttest with Grade 12 students (n = 32), academic achievement and ELSs—analytical reading and creative writing—improved markedly. Posttest means exceeded pretests with very large effect. Experts rated the model appropriate, feasible, and useful; teachers and students reported high perceived value alongside concerns about implementation cost, support capacity, and student readiness. The CEC-EE model offers a context-responsive pathway for embedding EE in Thai-language instruction; future work should employ comparative designs, multi-site samples, and cost-effectiveness analyses to assess scalability and sustained impact. Full article
(This article belongs to the Special Issue Towards Sustainable Futures: Innovations in Education)
Show Figures

Figure 1

20 pages, 9147 KB  
Article
Model Test Study on Group Under-Reamed Anchors Under Cyclic Loading
by Chen Chen, Zhe Liu and Junchao Yang
Buildings 2026, 16(3), 540; https://doi.org/10.3390/buildings16030540 - 28 Jan 2026
Viewed by 139
Abstract
This study conducted laboratory model tests, integrated with Particle Image Velocimetry (PIV) technology, to investigate the evolution of the uplift bearing capacity of an under-reamed anchor group subjected to cyclic loading. The tests considered various working conditions, including different spacing ratios (S [...] Read more.
This study conducted laboratory model tests, integrated with Particle Image Velocimetry (PIV) technology, to investigate the evolution of the uplift bearing capacity of an under-reamed anchor group subjected to cyclic loading. The tests considered various working conditions, including different spacing ratios (S/D = 4, 5, 6, where S was the center-to-center spacing and D was the diameter of the under-reamed body), varying cyclic amplitude ratios (λ = 0.3, 0.5, 0.6, 0.7, 0.8) and different cycle times (M = 1, 5, 10, 30). PIV was utilized to observe the displacement field of the surrounding soil, revealing the group effect of the anchors and the variation in their uplift capacity under diverse cyclic amplitudes and cyclic times. The results indicated that the load–displacement curves could be delineated into three distinct stages: elastic, elastoplastic, and plastic. Notably, the group effect primarily initiated during the elastoplastic stage and developed significantly within the plastic stage. The cyclic amplitude ratio was identified as a key factor influencing the uplift capacity. Furthermore, compared to results from single pull-out tests, both the vertical displacement of the surrounding soil and the shear strength of the sidewall adjacent to the under-reamed body decreased following cyclic loading. Finally, the influence of the cyclic times depended on the occurrence of anchor failure; in the absence of failure, the anchor maintained satisfactory performance even after multiple cycles. Full article
(This article belongs to the Special Issue Advanced Applications of AI-Driven Structural Control)
Show Figures

Figure 1

11 pages, 1026 KB  
Article
Effects of N3SA Analogues on Cerebral and Peripheral Arteriolar Vasomotion in Spontaneously Hypertensive Rats
by Dominga Lapi, Giuseppe Federighi, Maria Paola Tramonti Fantozzi, Gianpiero Garau and Rossana Scuri
Int. J. Mol. Sci. 2026, 27(2), 1006; https://doi.org/10.3390/ijms27021006 - 20 Jan 2026
Viewed by 123
Abstract
Thiazides are among the most efficacious and commonly used drugs for the treatment of hypertension. The nanomolar stabilizer N3SA binds specifically to the recently discovered thiazide-binding site of the membrane target NAPE-PLD, showing sustained arterial blood pressure-lowering effects and vasodilation in spontaneous hypertensive [...] Read more.
Thiazides are among the most efficacious and commonly used drugs for the treatment of hypertension. The nanomolar stabilizer N3SA binds specifically to the recently discovered thiazide-binding site of the membrane target NAPE-PLD, showing sustained arterial blood pressure-lowering effects and vasodilation in spontaneous hypertensive rats (SHRs). To further support the relation between stabilizers anchored to NAPE-PLD and their beneficial effects on hypertension, we selected compound analogues of N3SA with chemical modifications at the three target-interacting sulfonic groups, including the drug Suramin. Each compound was injected i.v in an adult SHR (systolic blood pressure of 217 ± 5 mmHg) to evaluate the frequency components contribution to cerebral and peripheral arteriolar vasomotion. We visualized the pial and rectus femoral muscle microcirculation by Epi-illumination, measuring changes in the rhythmic arteriolar diameter. Findings showed that the minor structural differences in compounds correlated with the contribution of the six different frequency components affecting the arterial tone, as well as their vasodilatory effects, in both cerebral and femoral muscle arterioles. These results provide evidence that the spectra analysis of the regulation mechanisms of vascular tone and arterial blood pressure can accurately reflect the structure–activity correlations of different analogues of an antihypertensive compound. Full article
Show Figures

Figure 1

11 pages, 1850 KB  
Article
Self-Assembling Conjugated Organic Materials with a Silazane Anchor Group: Synthesis, Self-Organization, and Semiconductor Properties
by Elizaveta A. Bobrova, Maxim S. Skorotetсky, Bogdan S. Kuleshov, Victoria P. Gaidarzhi, Askold A. Trul, Elena V. Agina, Oleg V. Borshchev and Sergey A. Ponomarenko
Nanomaterials 2026, 16(2), 124; https://doi.org/10.3390/nano16020124 - 16 Jan 2026
Viewed by 231
Abstract
An efficient synthetic method for the preparation of self-assembling conjugated organic materials with a silazane anchor group based on direct hydrosilylation reaction is reported. A novel organic semiconductor molecule, NH(Si-Und-BTBT-Hex)2, consisting of a polar silazane anchor group linked through undecylenic (Und) [...] Read more.
An efficient synthetic method for the preparation of self-assembling conjugated organic materials with a silazane anchor group based on direct hydrosilylation reaction is reported. A novel organic semiconductor molecule, NH(Si-Und-BTBT-Hex)2, consisting of a polar silazane anchor group linked through undecylenic (Und) aliphatic spacers to conjugated blocks based on benzothieno[3,2-b][1]benzothiophene (BTBT) and solubilizing hexyl (Hex) end groups, was synthesized. Its self-organization on the air-water interface and solid substrates into ultrathin layers obtained by the Langmuir–Schaefer or Langmuir–Blodgett methods was investigated. Monolayer organic field-effect transistors manufactured from NH(Si-Und-BTBT-Hex)2 showed operation in the p-type mode. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

37 pages, 1355 KB  
Review
Risk Assessment of Chemical Mixtures in Foods: A Comprehensive Methodological and Regulatory Review
by Rosana González Combarros, Mariano González-García, Gerardo David Blanco-Díaz, Kharla Segovia Bravo, José Luis Reino Moya and José Ignacio López-Sánchez
Foods 2026, 15(2), 244; https://doi.org/10.3390/foods15020244 - 9 Jan 2026
Viewed by 345
Abstract
Over the last 15 years, mixture risk assessment for food xenobiotics has evolved from conceptual discussions and simple screening tools, such as the Hazard Index (HI), towards operational, component-based and probabilistic frameworks embedded in major food-safety institutions. This review synthesizes methodological and regulatory [...] Read more.
Over the last 15 years, mixture risk assessment for food xenobiotics has evolved from conceptual discussions and simple screening tools, such as the Hazard Index (HI), towards operational, component-based and probabilistic frameworks embedded in major food-safety institutions. This review synthesizes methodological and regulatory advances in cumulative risk assessment for dietary “cocktails” of pesticides, contaminants and other xenobiotics, with a specific focus on food-relevant exposure scenarios. At the toxicological level, the field is now anchored in concentration/dose addition as the default model for similarly acting chemicals, supported by extensive experimental evidence that most environmental mixtures behave approximately dose-additively at low effect levels. Building on this paradigm, a portfolio of quantitative metrics has been developed to operationalize component-based mixture assessment: HI as a conservative screening anchor; Relative Potency Factors (RPF) and Toxic Equivalents (TEQ) to express doses within cumulative assessment groups; the Maximum Cumulative Ratio (MCR) to diagnose whether risk is dominated by one or several components; and the combined Margin of Exposure (MOET) as a point-of-departure-based integrator that avoids compounding uncertainty factors. Regulatory frameworks developed by EFSA, the U.S. EPA and FAO/WHO converge on tiered assessment schemes, biologically informed grouping of chemicals and dose addition as the default model for similarly acting substances, while differing in scope, data infrastructure and legal embedding. Implementation in food safety critically depends on robust exposure data streams. Total Diet Studies provide population-level, “as eaten” exposure estimates through harmonized food-list construction, home-style preparation and composite sampling, and are increasingly combined with conventional monitoring. In parallel, human biomonitoring quantifies internal exposure to diet-related xenobiotics such as PFAS, phthalates, bisphenols and mycotoxins, embedding mixture assessment within a dietary-exposome perspective. Across these developments, structured uncertainty analysis and decision-oriented communication have become indispensable. By integrating advances in toxicology, exposure science and regulatory practice, this review outlines a coherent, tiered and uncertainty-aware framework for assessing real-world dietary mixtures of xenobiotics, and identifies priorities for future work, including mechanistically and data-driven grouping strategies, expanded use of physiologically based pharmacokinetic modelling and refined mixture-sensitive indicators to support public-health decision-making. Full article
(This article belongs to the Special Issue Research on Food Chemical Safety)
Show Figures

Figure 1

21 pages, 4269 KB  
Article
Experimental Study on the Shear Mechanical Properties of Loess Modified by Rubber Particles Combined with Cementing Material
by Zongxi Xie, Xinyuan Liu, Tengfei Xiong, Yingbo Zhou and Shaobo Chai
Appl. Sci. 2026, 16(2), 697; https://doi.org/10.3390/app16020697 - 9 Jan 2026
Viewed by 229
Abstract
Rubber particles have been proven to have the advantages of improving the energy absorption effect and enhancing the friction between soil particles when used to modify the soil. The rubber-modified soil technology also provides a new solution for the pollution-free disposal of waste [...] Read more.
Rubber particles have been proven to have the advantages of improving the energy absorption effect and enhancing the friction between soil particles when used to modify the soil. The rubber-modified soil technology also provides a new solution for the pollution-free disposal of waste rubber. However, when rubber particles are used to modify collapsible loess, they cannot significantly enhance its strength. Previous studies have not systematically clarified whether combining rubber particles with different cementation mechanisms can overcome this limitation, nor compared their shear mechanical effectiveness under identical conditions. In view of this, a dual synergistic strategy is implemented by combining rubber with lime and rubber with enzyme-induced calcium carbonate precipitation (EICP). Direct shear tests and scanning electron microscopy are used to evaluate four modification approaches: rubber alone, lime alone, rubber with EICP, and rubber with lime. Accordingly, shear strength, cohesion, and internal friction angle are quantified. At a vertical normal stress of 100 kPa and above, samples modified with rubber and lime (7–9% lime and 6–8% rubber) achieve peak shear strength values of 200–203 kPa, representing an 86.4% increase compared to rubber alone. Microscopic analysis reveals that calcium silicate hydrate gel effectively anchored rubber particles, forming a composite structure with a rigid skeleton and elastic buffer. In comparison, the rubber and EICP group (10% rubber) shows a substantial increase in internal friction angle (24.25°) but only a modest improvement in cohesion (16.5%), which is due to limited continuity in the calcium carbonate bonding network. It should be noted that the performance of EICP-based modification is constrained by curing efficiency and reaction continuity, which may affect its scalability in conventional engineering applications. Overall, the combination of rubber and lime provided an optimal balance of strength, ductility, and construction efficiency. Meanwhile, the rubber and EICP method demonstrates notable advantages in environmental compatibility and long-term durability, making it suitable for ecologically sensitive applications. The results offer a framework for loess stabilization based on performance adaptation and resource recycling, supporting sustainable use of waste rubber in geotechnical engineering. Full article
Show Figures

Figure 1

24 pages, 6834 KB  
Article
Flame-Retardant and Hydrophobic Cotton via Alkoxysilyl-Functionalized Polysiloxanes, Cyclosiloxanes, and POSS with Surface Thiol-Ene Dithiophosphate Grafting
by Marcin Przybylak, Anna Szymańska, Weronika Gieparda, Mariusz Szołyga, Agnieszka Dutkiewicz and Hieronim Maciejewski
Materials 2026, 19(2), 265; https://doi.org/10.3390/ma19020265 - 8 Jan 2026
Viewed by 326
Abstract
In this work, a multifunctional surface engineering strategy was developed to impart both flame-retardant and hydrophobic properties to cotton fabrics. In the first stage, cellulose fibers were modified with poly(methylvinyl)siloxane containing trimethoxysilyl groups, 2,4,6,8-tetramethyl-divinyl-bis(trimethoxysilylpropyltioethyl)cyclotetrasiloxane, or tetrakis(vinyldimethylsiloxy)tetrakis(trimethoxysilylpropyltioethyl)octasilsesquioxane (POSS). All modifiers contained alkoxysilyl groups capable [...] Read more.
In this work, a multifunctional surface engineering strategy was developed to impart both flame-retardant and hydrophobic properties to cotton fabrics. In the first stage, cellulose fibers were modified with poly(methylvinyl)siloxane containing trimethoxysilyl groups, 2,4,6,8-tetramethyl-divinyl-bis(trimethoxysilylpropyltioethyl)cyclotetrasiloxane, or tetrakis(vinyldimethylsiloxy)tetrakis(trimethoxysilylpropyltioethyl)octasilsesquioxane (POSS). All modifiers contained alkoxysilyl groups capable of forming covalent bonds with cellulose hydroxyl groups. The modification was performed using a dip-coating process followed by thermal curing. This procedure enabled the formation of Si-O-C linkages and the generation of a reactive organosilicon layer on the cotton surface. In the second step, O,O′-diethyl dithiophosphate was grafted directly onto the vinyl-functionalized fabrics via a thiol-ene click reaction. This process resulted in the formation of a phosphorus- and sulfur-containing protective layer anchored within the siloxane-based network. The obtained hybrid coatings were characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and SEM-EDS. These analyses confirmed the presence and uniform distribution of the modifiers on the fiber surface. Microscale combustion calorimetry demonstrated a substantial reduction in the heat release rate. Thermogravimetric analysis (TG/DTG) revealed increased char formation and altered thermal degradation pathways. The limiting oxygen index (LOI) increased for all modified fabrics, confirming enhanced flame resistance. Water contact angle measurements showed values above 130°, indicating effective hydrophobicity. As a result, multifunctional textile surfaces were obtained. In addition, the modified fabrics exhibited partial durability toward laundering and retained measurable flame-retardant and hydrophobic performance after repeated washing cycles. Full article
Show Figures

Graphical abstract

31 pages, 8884 KB  
Article
Experimental Study and Mechanical Performance Analysis of Reinforcement and Strengthening of Grouted Sleeve Connection Joints
by Zihang Jiang, Changjun Wang, Sen Pang, Shengjie Ji, Dandan Xu and Yufei Chen
Buildings 2026, 16(2), 275; https://doi.org/10.3390/buildings16020275 - 8 Jan 2026
Viewed by 169
Abstract
Grouted sleeves are commonly used to connect prefabricated structural components, but construction defects can easily occur after installation, posing potential risks to the structure. This study conducts comparative uniaxial tensile tests on 39 grouted-sleeve specimens in 13 groups—including standard specimens, defective specimens, and [...] Read more.
Grouted sleeves are commonly used to connect prefabricated structural components, but construction defects can easily occur after installation, posing potential risks to the structure. This study conducts comparative uniaxial tensile tests on 39 grouted-sleeve specimens in 13 groups—including standard specimens, defective specimens, and specimens repaired with supplementary grouting. The strain distribution patterns under different grouting lengths and loading levels are analyzed to investigate the load-transfer mechanism between reinforcement bars and grouted sleeves, as well as the influence of various supplementary grouting amounts and material strengths on the mechanical performance of defective sleeves. In the uniaxial tensile test of grouted sleeves, with grout strengths of 85 MPa and 100 MPa and HRB400-grade steel bars, when the grouted anchorage length was 4 d, insufficient anchorage length resulted in low bond strength between the grout and the steel bar, leading to bond–slip failure. When the grouted anchorage length reached 6 d, steel bar fracture occurred inside the sleeve. When the total anchorage length formed by two grouting sessions reached 8 d, specimen slippage decreased, showing a trend where the strain growth rate of the sleeve gradually decreased from the grouted end to the anchored end, while the strain growth rate of the steel bar gradually increased. The longer the total anchorage length in the sleeve after grout repair, the stronger its anti-slip capability. The bearing capacity and failure mode of the specimens depend on the strength of the steel bars connected to the grouted sleeves and the strength of the threaded connection ends at the top. Experimental results show that the anchorage length and strength of high-strength grout materials have a significant reinforcing effect on defective sleeves. The ultimate bearing capacity of specimens with anchorage length of 6 d or more is basically the same as that of steel bars. Specimens with a total anchorage length of 8 d show approximately 10~20% less slippage than those with 6 d. The safe anchorage length for HRB400-grade steel bars in sleeve-grouted connections is 8 d, even though the bearing capacity of grouted sleeves with a 6 d anchorage length already meets the requirements. Bond strength analysis confirms that the critical anchorage length is 4.49 d. When the grouted anchorage length exceeds the critical length, the failure mode of the specimen is steel bar fracture. When the grouted anchorage length is less than the critical length, the failure mode is steel bar slippage. This conclusion aligns closely with experimental results. In engineering practice, the critical anchorage length can be used to predict the failure mode of grouted sleeve specimens. Based on experimental research and theoretical analysis, it is clear that using grout repair to reinforce defective grouted sleeve joints with a safe anchorage length of 8 d is a secure and straightforward strengthening method. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 3265 KB  
Article
Waterproof Fabric with Copper Ion-Loaded Multicompartmental Nanoparticle Coatings for Jellyfish Repellency
by Bo Wang, Muzi Yang, Ruiqian Yao, Haixia Zhao, Dengguang Yu, Lin Du, Shuaijun Zou and Yuanjie Zhu
Pharmaceutics 2026, 18(1), 47; https://doi.org/10.3390/pharmaceutics18010047 - 30 Dec 2025
Viewed by 308
Abstract
Background: Effective prevention of jellyfish stings is crucial for human safety during marine activities. Traditional protective methods are often limited in terms of coverage area and duration of protection; Methods: This study designed and tested a novel jellyfish-repellent textile by coating waterproof [...] Read more.
Background: Effective prevention of jellyfish stings is crucial for human safety during marine activities. Traditional protective methods are often limited in terms of coverage area and duration of protection; Methods: This study designed and tested a novel jellyfish-repellent textile by coating waterproof polyester fabric with copper ion-loaded multicompartmental nanoparticles, which repel jellyfish by disrupting their cellular membranes and physiological functions. The nanoparticles were synthesized to enable spatial separation of components, enhance stability, and allow controlled copper ion release. They were applied to the fabric in one step via high-voltage electrostatic spray technology, followed by characterization using SEM and FT-IR. The copper sulfate release profile and nanoparticle adhesion were analyzed. Jellyfish-repellent efficacy was evaluated, along with biocompatibility tests including skin sensitization (Magnusson and Kligman method), skin irritation (Draize test), and cytotoxicity (MTT assay on L929 cells and human dermal fibroblasts). Results: SEM confirmed the formation of uniform multicompartmental nanoparticles with sizes ranging from 2.28 to 3.15 μm. FT-IR verified successful anchoring of Cu2+ ions to fabric fibers through coordination with hydroxyl groups. Drug release tests demonstrated water-triggered controlled release of copper ions lasting over 168 h, with nanoparticle retention rates exceeding 70% on all fabrics. The textile showed significant effectiveness in repelling jellyfish. Moreover, no apparent sensitization, irritation, or cytotoxicity was observed. Conclusions: A novel jellyfish-repellent textile was successfully developed using copper ion-loaded multicompartmental nanoparticles. This textile provides a promising solution for preventing jellyfish stings and contributes to the advancement of protective gear for marine activities. Full article
Show Figures

Graphical abstract

23 pages, 1990 KB  
Article
CXCL1, RANTES, IFN-γ, and TMAO as Differential Biomarkers Associated with Cognitive Change After an Anti-Inflammatory Diet in Children with ASD and Neurotypical Peers
by Luisa Fernanda Méndez-Ramírez, Miguel Andrés Meñaca-Puentes, Luisa Matilde Salamanca-Duque, Marysol Valencia-Buitrago, Andrés Felipe Ruiz-Pulecio, Carlos Alberto Ruiz-Villa, Diana María Trejos-Gallego, Juan Carlos Carmona-Hernández, Sandra Bibiana Campuzano-Castro, Marcela Orjuela-Rodríguez, Vanessa Martínez-Díaz, Jessica Triviño-Valencia and Carlos Andrés Naranjo-Galvis
Med. Sci. 2026, 14(1), 11; https://doi.org/10.3390/medsci14010011 - 26 Dec 2025
Viewed by 358
Abstract
Background/Objective: Neuroimmune and metabolic dysregulation have been increasingly implicated in the cognitive heterogeneity of autism spectrum disorder (ASD). However, it remains unclear whether anti-inflammatory diets engage distinct biological and cognitive pathways in autistic and neurotypical children. This study examined whether a 12-week [...] Read more.
Background/Objective: Neuroimmune and metabolic dysregulation have been increasingly implicated in the cognitive heterogeneity of autism spectrum disorder (ASD). However, it remains unclear whether anti-inflammatory diets engage distinct biological and cognitive pathways in autistic and neurotypical children. This study examined whether a 12-week anti-inflammatory dietary protocol produces group-specific neuroimmune–metabolic signatures and cognitive responses in autistic children, neurotypical children receiving the same diet, and untreated neurotypical controls. Methods: Twenty-two children (11 with ASD, six a on neurotypical diet [NT-diet], and five neurotypical controls [NT-control]) completed pre–post assessments of plasma IFN-γ, CXCL1, RANTES (CCL5), trimethylamine-N-oxide (TMAO), and an extensive ENI-2/WISC-IV neuropsychological battery. Linear mixed-effects models were used to test the Time × Group effects on biomarkers and cognitive domains, adjusting for age, sex, and baseline TMAO. Bayesian estimation quantified individual changes (posterior means, 95% credible intervals, and posterior probabilities). Immune–cognitive coupling was explored using Δ–Δ correlation matrices, network metrics (node strength, degree centrality), exploratory mediation models, and responder (≥0.5 SD domain improvement) versus non-responder analyses. Results: In ASD, the diet induced robust reductions in IFN-γ, RANTES, CXCL1, and TMAO, with decisive Bayesian evidence for IFN-γ and RANTES suppression (posterior P(δ < 0) > 0.99). These shifts were selectively associated with gains in verbal learning, semantic fluency, verbal reasoning, attention, and visuoconstructive abilities, whereas working memory and executive flexibility changes were heterogeneous, revealing executive vulnerability in individuals with smaller TMAO reductions. NT-diet children showed modest but consistent improvements in visuospatial processing, attention, and processing speed, with minimal biomarker changes; NT controls remained biologically and cognitively stable. Network analyses in ASD revealed a dense chemokine-anchored architecture with CXCL1 and RANTES as central hubs linking biomarker reductions to improvements in fluency, memory, attention, and executive flexibility. ΔTMAO predicted changes in executive flexibility only in ASD (explaining >50% of the variance), functioning as a metabolic node of executive susceptibility. Responders displayed larger coordinated decreases in all biomarkers and broader cognitive gains compared to non-responders. Conclusions: A structured anti-inflammatory diet elicits an ASD-specific, coordinated neuroimmune–metabolic response in which suppression of CXCL1 and RANTES and modulation of TMAO are tightly coupled with selective improvements in verbal, attentional, and executive domains. Neurotypical children exhibit modest metabolism-linked cognitive benefits and minimal immune modulation. These findings support a precision-nutrition framework in ASD, emphasizing baseline immunometabolic profiling and network-level biomarkers (CXCL1, RANTES, TMAO) to stratify responders and design combinatorial interventions targeting neuroimmune–metabolic pathways. Full article
(This article belongs to the Section Translational Medicine)
Show Figures

Figure 1

23 pages, 1797 KB  
Review
Beyond Precision: Ambiomic Survivorship in Childhood and AYA Cancer
by Juan Antonio Ortega-García, Omar Shakeel, Nicole M. Wood, Antonio Pérez-Martínez, Jose Luís Fuster-Soler and Mark D. Miller
Cancers 2026, 18(1), 7; https://doi.org/10.3390/cancers18010007 - 19 Dec 2025
Viewed by 864
Abstract
Background: Survival among children and adolescents and young adults (AYA) with cancer has improved substantially over recent decades; however, dominant survivorship models remain reactive—activated post-treatment and anchored to static exposure- and organ-based screening. This design underuses the anticipatory window at diagnosis and overlooks [...] Read more.
Background: Survival among children and adolescents and young adults (AYA) with cancer has improved substantially over recent decades; however, dominant survivorship models remain reactive—activated post-treatment and anchored to static exposure- and organ-based screening. This design underuses the anticipatory window at diagnosis and overlooks environmental and social determinants that modulate outcomes across the life course. Methods: We narratively reviewed international frameworks including the Children’s Oncology Group (COG), the International Late Effects of Childhood Cancer Guideline Harmonization Group (IGHG), the Pan-European Network for Care of Survivors after Childhood and Adolescent Cancer (PanCare) and the National Comprehensive Cancer Network (NCCN), and synthesized evidence on environmental determinants, exposomics, toxicogenomics, and implementation. Building on two decades of real-world practice, we describe the evolution from the Pediatric Environmental History (PEHis) to the Ambiomic Health Compass (AHC), integrating genomic, exposomic, geospatial, clinical, and biomonitoring layers into routine care. In this framework, survivorship is conceptualized as beginning at the time of cancer diagnosis (“day 0”). Results: PEHis operationalizes guideline-based care with structured environmental and social assessment, personalized plans, and community integration, contributing to improved survival, healthier behaviors, reduced treatment-related mortality and stronger oncology–primary-care coordination. AHC extends PEHis with dynamic risk recalibration, contextual alerts, targeted biomonitoring, and toxicogenomic interpretation, enabling anticipatory decisions from day 0. The manuscript summarizes the paradigm shift (current vs. Ambiomic models), the domain-specific expansion over existing guidelines, the core clinical/system tools, and time-bound metrics (12, 24, 60 months) to support implementation and evaluation. Conclusions: Survivorship should move upstream—from late surveillance to ambiomic, exposure-aware care beginning at diagnosis. Integrating advanced exposomics, mutational epidemiology, and explainable analytics can reduce preventable events and chronicity, enhance equity, and align pediatric oncology with planetary health. The PEHis–AHC continuum offers a scalable blueprint for next-generation survivorship programs in Europe and beyond. Ambiomic medicine does not replace precision medicine—it completes and extends it by integrating exposomics, social context, and anticipatory analytics from day 0. Full article
Show Figures

Figure 1

30 pages, 1939 KB  
Article
Integrating Machine Learning and Scenario Modelling for Robust Population Forecasting Under Crisis and Data Scarcity
by Michael Politis, Nicholas Christakis, Zoi Dorothea Pana and Dimitris Drikakis
Mathematics 2025, 13(24), 4024; https://doi.org/10.3390/math13244024 - 18 Dec 2025
Viewed by 379
Abstract
This study introduces a new ensemble framework for demographic forecasting that systematically incorporates stylised crisis scenarios into rate and population projections. While scenario reasoning is common in qualitative foresight, its quantitative application in demography remains underdeveloped. Our method combines autoregressive lags, global predictors, [...] Read more.
This study introduces a new ensemble framework for demographic forecasting that systematically incorporates stylised crisis scenarios into rate and population projections. While scenario reasoning is common in qualitative foresight, its quantitative application in demography remains underdeveloped. Our method combines autoregressive lags, global predictors, and robust regression with a trend-anchoring mechanism, enabling stable projections from short official time series (15–20 years in length). Scenario shocks are operationalised through binary event flags for pandemics, refugee inflows, and financial crises, which influence fertility, mortality, and migration models before translating into cohort and population trajectories. Results demonstrate that shocks with strong historical precedence, such as Germany’s migration surges, are convincingly reproduced and leave enduring effects on projected populations. Conversely, weaker or non-recurrent shocks, typical in Norway and Portugal, produce muted scenario effects, with baseline momentum dominating long-term outcomes. At the national level, total population aggregates mitigate temporary shocks, while cohort-level projections reveal more pronounced divergences. Limitations include the short length of the training series, the reduction of signals when shocks do not surpass historical peaks, and the loss of granularity due to age grouping. Nevertheless, the framework shows how robust statistical ensembles can extend demographic forecasting beyond simple trend extrapolation, providing a formal and transparent quantitative tool for stress-testing population futures under both crisis and stability. Full article
Show Figures

Figure 1

16 pages, 847 KB  
Article
Common Ancestry from Southern Italy: Two Families with Dilated Cardiomyopathy Share the Same Homozygous Loss-of-Function Variant in NRAP
by Maria Elena Onore, Martina Caiazza, Catia Mio, Gioacchino Scarano, Pasquale Di Letto, Sarah Iffat Rahman, Emanuele Monda, Cristiano Amarelli, Rossella Nicoletta Borrelli, Flavio Faletra, Vincenzo Nigro, Giuseppe Limongelli and Giulio Piluso
Genes 2025, 16(12), 1470; https://doi.org/10.3390/genes16121470 - 8 Dec 2025
Viewed by 498
Abstract
Background: Cardiomyopathies are a heterogeneous group of heart muscle disorders with diverse genetic origins. Biallelic loss-of-function (LoF) variants in the nebulin-related anchoring protein (NRAP) gene have been linked to dilated cardiomyopathy (DCM) and left ventricular noncompaction cardiomyopathy, though only a few [...] Read more.
Background: Cardiomyopathies are a heterogeneous group of heart muscle disorders with diverse genetic origins. Biallelic loss-of-function (LoF) variants in the nebulin-related anchoring protein (NRAP) gene have been linked to dilated cardiomyopathy (DCM) and left ventricular noncompaction cardiomyopathy, though only a few families have been described. NRAP, a member of the Nebulin family, plays a key role in cardiomyocyte development, structural integrity, and muscle function. Methods: We investigated two Italian siblings with DCM born to consanguineous parents from a small village in Campania. Exome sequencing, homozygosity mapping, and comparative analyses with other reported cases were performed. Genealogical research was conducted using civil registry data to reconstruct extended family pedigrees. Results: Both siblings were homozygous for a LoF variant in NRAP (NM_198060.4:c.619del; p.Val207TrpfsTer20). A third brother with tachycardia-induced cardiomyopathy, as well as their living mother, who did not have cardiac abnormalities, were found to be heterozygous. The same homozygous variant was recently identified in another Italian family with DCM coming from North-eastern Italy, whose proband also originated from a nearby village in Campania. These two families exhibited heterogeneity in clinical presentation. Homozygosity analysis revealed a >25 Mb shared region on chromosome 10 encompassing NRAP, supporting a common ancestral origin. While genealogical reconstruction did not allow identification of a shared ancestor, it confirmed consanguinity and enabled the recognition of potential carriers across both families. Conclusions: Our findings strengthen the evidence for NRAP as a disease-causing gene in cardiomyopathies and highlight a likely founder effect in Campania. Incorporating NRAP into genetic testing panels is warranted, especially in populations with high rates of consanguinity or suspected founder variants. Full article
(This article belongs to the Special Issue Insights into the Genomic and Genetic Basis of Cardiovascular Disease)
Show Figures

Figure 1

22 pages, 4954 KB  
Article
Interband Consistency-Driven Structural Subspace Clustering for Unsupervised Hyperspectral Band Selection
by Zengke Wang and Wenhong Wang
Sensors 2025, 25(23), 7265; https://doi.org/10.3390/s25237265 - 28 Nov 2025
Viewed by 349
Abstract
In the classification applications of hyperspectral remote sensing images (HSIs), band selection is crucial for mitigating the curse of dimensionality while preserving the intrinsic physical information within HSIs. Although clustering-based band selection methods are widely applied, they often overlook the inherent physical properties [...] Read more.
In the classification applications of hyperspectral remote sensing images (HSIs), band selection is crucial for mitigating the curse of dimensionality while preserving the intrinsic physical information within HSIs. Although clustering-based band selection methods are widely applied, they often overlook the inherent physical properties of hyperspectral images. Such approaches typically operate in raw high-dimensional space, which is susceptible to noise and redundancy. This results in generated band combinations that fail to adequately characterize the spectral features of the underlying materials, leading to suboptimal band-grouping schemes. To address this, we propose a novel Interband Consistency-Constrained Structural Subspace Clustering (ICC-SSC) method. The core assumption is that the spectral characteristics of land cover inherently reside within a low-dimensional subspace, where bands within this subspace should exhibit strong physical consistency, which means that the spectral signatures of land covers show significant similarity across these bands. Driven by this physical interpretation, our method innovates in two ways. Specifically, we employ the l1,2 norm in the self-representation model to discover the inherent grouping structure of the bands. This enforces a small set of common, representative basis bands to reconstruct others, effectively identifying the most physically informative bands that anchor these material-specific subspaces. In addition, we incorporate a total variance (TV) regularization term into the proposed model to capture the smoothing characteristics between adjacent bands. This physics-based constraint enhances the consistency of representations among adjacent bands, ensuring that subspace representations across all bands maintain well-structured coherence. An efficient algorithm based on the Alternating Direction Method of Multipliers (ADMM) is derived to solve the proposed model. Extensive experiments on three real HSIs demonstrate that ICC-SSC significantly outperforms state-of-the-art methods. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Graphical abstract

Back to TopTop