Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = grounding system defects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5560 KiB  
Article
Design of Reconfigurable Handling Systems for Visual Inspection
by Alessio Pacini, Francesco Lupi and Michele Lanzetta
J. Manuf. Mater. Process. 2025, 9(8), 257; https://doi.org/10.3390/jmmp9080257 (registering DOI) - 31 Jul 2025
Abstract
Industrial Vision Inspection Systems (VISs) often struggle to adapt to increasing variability of modern manufacturing due to the inherent rigidity of their hardware architectures. Although the Reconfigurable Manufacturing System (RMS) paradigm was introduced in the early 2000s to overcome these limitations, designing such [...] Read more.
Industrial Vision Inspection Systems (VISs) often struggle to adapt to increasing variability of modern manufacturing due to the inherent rigidity of their hardware architectures. Although the Reconfigurable Manufacturing System (RMS) paradigm was introduced in the early 2000s to overcome these limitations, designing such reconfigurable machines remains a complex, expert-dependent, and time-consuming task. This is primarily due to the lack of structured methodologies and the reliance on trial-and-error processes. In this context, this study proposes a novel theoretical framework to facilitate the design of fully reconfigurable handling systems for VISs, with a particular focus on fixture design. The framework is grounded in Model-Based Definition (MBD), embedding semantic information directly into the 3D CAD models of the inspected product. As an additional contribution, a general hardware architecture for the inspection of axisymmetric components is presented. This architecture integrates an anthropomorphic robotic arm, Numerically Controlled (NC) modules, and adaptable software and hardware components to enable automated, software-driven reconfiguration. The proposed framework and architecture were applied in an industrial case study conducted in collaboration with a leading automotive half-shaft manufacturer. The resulting system, implemented across seven automated cells, successfully inspected over 200 part types from 12 part families and detected more than 60 defect types, with a cycle below 30 s per part. Full article
Show Figures

Figure 1

27 pages, 2034 KiB  
Article
LCFC-Laptop: A Benchmark Dataset for Detecting Surface Defects in Consumer Electronics
by Hua-Feng Dai, Jyun-Rong Wang, Quan Zhong, Dong Qin, Hao Liu and Fei Guo
Sensors 2025, 25(15), 4535; https://doi.org/10.3390/s25154535 - 22 Jul 2025
Viewed by 287
Abstract
As a high-market-value sector, the consumer electronics industry is particularly vulnerable to reputational damage from surface defects in shipped products. However, the high level of automation and the short product life cycles in this industry make defect sample collection both difficult and inefficient. [...] Read more.
As a high-market-value sector, the consumer electronics industry is particularly vulnerable to reputational damage from surface defects in shipped products. However, the high level of automation and the short product life cycles in this industry make defect sample collection both difficult and inefficient. This challenge has led to a severe shortage of publicly available, comprehensive datasets dedicated to surface defect detection, limiting the development of targeted methodologies in the academic community. Most existing datasets focus on general-purpose object categories, such as those in the COCO and PASCAL VOC datasets, or on industrial surfaces, such as those in the MvTec AD and ZJU-Leaper datasets. However, these datasets differ significantly in structure, defect types, and imaging conditions from those specific to consumer electronics. As a result, models trained on them often perform poorly when applied to surface defect detection tasks in this domain. To address this issue, the present study introduces a specialized optical sampling system with six distinct lighting configurations, each designed to highlight different surface defect types. These lighting conditions were calibrated by experienced optical engineers to maximize defect visibility and detectability. Using this system, 14,478 high-resolution defect images were collected from actual production environments. These images cover more than six defect types, such as scratches, plain particles, edge particles, dirt, collisions, and unknown defects. After data acquisition, senior quality control inspectors and manufacturing engineers established standardized annotation criteria based on real-world industrial acceptance standards. Annotations were then applied using bounding boxes for object detection and pixelwise masks for semantic segmentation. In addition to the dataset construction scheme, commonly used semantic segmentation methods were benchmarked using the provided mask annotations. The resulting dataset has been made publicly available to support the research community in developing, testing, and refining advanced surface defect detection algorithms under realistic conditions. To the best of our knowledge, this is the first comprehensive, multiclass, multi-defect dataset for surface defect detection in the consumer electronics domain that provides pixel-level ground-truth annotations and is explicitly designed for real-world applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 5255 KiB  
Article
Health Status Assessment of Passenger Ropeway Bearings Based on Multi-Parameter Acoustic Emission Analysis
by Junjiao Zhang, Yongna Shen, Zhanwen Wu, Gongtian Shen, Yilin Yuan and Bin Hu
Sensors 2025, 25(14), 4403; https://doi.org/10.3390/s25144403 - 15 Jul 2025
Viewed by 219
Abstract
This study presents a comprehensive investigation of acoustic emission (AE) characteristics for condition monitoring of rolling bearings in passenger ropeway systems. Through controlled laboratory experiments and field validation across multiple operational ropeways, we establish an optimized AE-based diagnostic framework. Key findings demonstrate that [...] Read more.
This study presents a comprehensive investigation of acoustic emission (AE) characteristics for condition monitoring of rolling bearings in passenger ropeway systems. Through controlled laboratory experiments and field validation across multiple operational ropeways, we establish an optimized AE-based diagnostic framework. Key findings demonstrate that resonant VS150-RIC sensors outperform broadband sensors in defect detection, showing greater energy response at characteristic frequencies for inner race defects. The RMS parameter emerges as a robust diagnostic indicator, with defective bearings exhibiting periodic peaks and higher mean RMS values. Field tests reveal progressive RMS escalation preceding visible damage, enabling predictive maintenance. Furthermore, we develop a novel Paligemma LLM model for automated wear detection using AE time-domain images. The research validates the AE technology’s superiority over conventional vibration methods for low-speed bearing monitoring, providing a scientifically grounded approach for safety-critical ropeway maintenance. Full article
(This article belongs to the Special Issue Sensor-Based Condition Monitoring and Non-Destructive Testing)
Show Figures

Figure 1

8 pages, 1252 KiB  
Proceeding Paper
Investigation of an Open Loop Resonator for Crack Detection
by Adithya Krishna Menon, C. B. Abhinav, Sreedevi K. Menon and M. P. Hariprasad
Eng. Proc. 2025, 93(1), 6; https://doi.org/10.3390/engproc2025093006 - 1 Jul 2025
Viewed by 274
Abstract
Structural Health Monitoring (SHM) of composite systems is challenging due to multiple factors unique to composites. Early detection of any defects in composites is essential to ensure structural integrity and prevent catastrophic failure. In this work, a square Open Loop Resonator (OLR) sensor [...] Read more.
Structural Health Monitoring (SHM) of composite systems is challenging due to multiple factors unique to composites. Early detection of any defects in composites is essential to ensure structural integrity and prevent catastrophic failure. In this work, a square Open Loop Resonator (OLR) sensor is proposed for the evaluation of cracks in composite structures. Radio frequency characteristics of the newly designed sensors are analyzed, and their efficiency is studied with respect to various crack sizes and orientations. For the present study, early detection of the crack is focused, and cracking is considered to have occurred in the ground plane of the sensor. A band-pass resonator centered at 2.5 GHz is selected for the study. Structural and HFSS simulations are carried out using commercially available software packages. The proposed sensor is found to be effective in early detection of the cracks and is a viable choice for structural health monitoring applications. Full article
Show Figures

Figure 1

22 pages, 3862 KiB  
Review
Rail Maintenance, Sensor Systems and Digitalization: A Comprehensive Review
by Higinio Gonzalez-Jorge, Eduardo Ríos-Otero, Enrique Aldao, Eduardo Balvís, Fernando Veiga-López and Gabriel Fontenla-Carrera
Future Transp. 2025, 5(3), 83; https://doi.org/10.3390/futuretransp5030083 - 1 Jul 2025
Viewed by 364
Abstract
Railway infrastructures necessitate the inspection of various elements to ensure operational safety. This study concentrates on five key components: rail, sleepers and ballast, track geometry, and catenary. The operational principles of the primary defect measurement sensors are elaborated, emphasizing the use of ultrasound, [...] Read more.
Railway infrastructures necessitate the inspection of various elements to ensure operational safety. This study concentrates on five key components: rail, sleepers and ballast, track geometry, and catenary. The operational principles of the primary defect measurement sensors are elaborated, emphasizing the use of ultrasound, eddy currents, active and passive optical elements, accelerometers, and ground penetrating radar. Each sensor type is evaluated in terms of its advantages and limitations. Examples of mobile inspection platforms are provided, ranging from laboratory trains to draisines and track trolleys. The authors foresee future trends in railway inspection, including the implementation of IoT sensors, autonomous robots, and geospatial intelligence technologies. It is anticipated that the integration of sensors within both infrastructure and rolling stock will enhance maintenance and safety, with an increased utilization of autonomous robotic systems for hazardous and hard-to-reach areas. Full article
Show Figures

Figure 1

20 pages, 5762 KiB  
Article
Multi-Band Unmanned Aerial Vehicle Antenna for Integrated 5G and GNSS Connectivity
by Suguna Gunasekaran, Manikandan Chinnusami, Rajesh Anbazhagan, Karunyaa Sureshkumar and Shreela Sridhar
Telecom 2025, 6(2), 38; https://doi.org/10.3390/telecom6020038 - 3 Jun 2025
Viewed by 502
Abstract
This paper proposes a dual-band antenna to support 5G communication with linear polarization and the global navigation satellite system (GNSS) band with circular polarization. A single inverted T-shaped patch antenna with a defective ground was designed on the Schott Foturan II (Ceramized 560 [...] Read more.
This paper proposes a dual-band antenna to support 5G communication with linear polarization and the global navigation satellite system (GNSS) band with circular polarization. A single inverted T-shaped patch antenna with a defective ground was designed on the Schott Foturan II (Ceramized 560 degrees) substrate. Then, an L-shaped stub and slot were inserted into the ground to achieve the 5G and GNSS bands. The antenna was then designed as a 1 × 2 multiple-input and multiple-output (MIMO) antenna to increase the directivity. A square ring-shaped frequency selective surface (FSS) was intended on the FR-4 substrate to improve the gain of the MIMO antenna. The FSS MIMO antenna increased the 3D gain from 2.8 to 5.4 dBi for the GNSS band and from 4.9 to 6.43 dBi for the 5G n79 band. The proposed antenna can receive and transmit the frequency bands covering sub-6 GHz 5G band n79 (4400–5000 MHz) and GNSS band E6 (1260–1300 MHz), respectively. A multi-port unmanned aerial vehicle antenna was fabricated, and its performance was characterized in terms of bandwidth, axial ratio, and gain. Full article
Show Figures

Figure 1

28 pages, 4904 KiB  
Review
Nondestructive Testing of Externally Bonded FRP Concrete Structures: A Comprehensive Review
by Eyad Alsuhaibani
Polymers 2025, 17(9), 1284; https://doi.org/10.3390/polym17091284 - 7 May 2025
Cited by 1 | Viewed by 969
Abstract
The growing application of Fiber-Reinforced Polymer (FRP) composites in rehabilitating deteriorating concrete infrastructure underscores the need for reliable, cost-effective, and automated nondestructive testing (NDT) methods. This review provides a comprehensive analysis of existing and emerging NDT techniques used to assess externally bonded FRP [...] Read more.
The growing application of Fiber-Reinforced Polymer (FRP) composites in rehabilitating deteriorating concrete infrastructure underscores the need for reliable, cost-effective, and automated nondestructive testing (NDT) methods. This review provides a comprehensive analysis of existing and emerging NDT techniques used to assess externally bonded FRP (EB-FRP) systems, emphasizing their accuracy, limitations, and practicality. Various NDT methods, including Ground-Penetrating Radar (GPR), Phased Array Ultrasonic Testing (PAUT), Infrared Thermography (IRT), Acoustic Emission (AE), and Impact–Echo (IE), are critically evaluated in terms of their effectiveness in detecting debonding, voids, delaminations, and other defects. Recent technological advancements, particularly the integration of artificial intelligence (AI) and machine learning (ML) in NDT applications, have significantly improved defect characterization, automated inspections, and real-time data analysis. This review highlights AI-driven NDT approaches such as automated crack detection, hybrid NDT frameworks, and drone-assisted thermographic inspections, which enhance accuracy and efficiency in large-scale infrastructure assessments. Additionally, economic considerations and cost–performance trade-offs are analyzed, addressing the feasibility of different NDT methods in real-world FRP-strengthened structures. Finally, the review identifies key research gaps, including the need for standardization in FRP-NDT applications, AI-enhanced defect quantification, and hybrid inspection techniques. By consolidating state-of-the-art research and emerging innovations, this paper serves as a valuable resource for engineers, researchers, and practitioners involved in the assessment, monitoring, and maintenance of FRP-strengthened concrete structures. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

19 pages, 4730 KiB  
Article
Power Quality in the Context of Aircraft Operational Safety
by Tomasz Tokarski, Sławomir Michalak, Barbara Kaczmarek, Mariusz Zieja and Tomasz Polus
Energies 2025, 18(8), 1945; https://doi.org/10.3390/en18081945 - 10 Apr 2025
Viewed by 407
Abstract
The article presents the use of ground power sources for aircraft ground support. Both military and civil aircraft (A/C) require high-performance and reliable Ground Power Units (GPUs) to ensure safe operation in diverse environmental conditions. The power quality provided by these GPUs plays [...] Read more.
The article presents the use of ground power sources for aircraft ground support. Both military and civil aircraft (A/C) require high-performance and reliable Ground Power Units (GPUs) to ensure safe operation in diverse environmental conditions. The power quality provided by these GPUs plays a crucial role in determining the reliability, cost efficiency and operational safety of the aircraft. The main objective of the article is to signal and propose a solution to the problems associated with the operation of GPUs in the Polish Armed Forces (PAF), resulting from the diversity of the equipment used (type, duration of operation, defects occurrence, etc.). Currently, the PAF utilize various types of GPUs to provide electrical power to aircraft while they are on the ground. Many of those devices have already been in service for many years. The presented statistics of defects registered in the airworthiness management system showed several dozen A/C failures or defects related to the operation of GPU. The authors highlight the importance and feasibility of diagnosing these ground-based power sources. The presented sample test results confirm that, following the methodology outlined in the article, it is possible to conduct comprehensive diagnostic assessment of the GPU systems currently in use by the PAF, as well as evaluate the quality of the electrical power they deliver in both steady and transient states. Full article
(This article belongs to the Special Issue Energy-Efficient Advances in More Electric Aircraft)
Show Figures

Figure 1

8 pages, 8967 KiB  
Proceeding Paper
Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications
by Ankur Jyoti Kalita, Nairit Barkataki and Utpal Sarma
Eng. Proc. 2025, 87(1), 25; https://doi.org/10.3390/engproc2025087025 - 24 Mar 2025
Viewed by 410
Abstract
Ground-Penetrating Radar (GPR) systems with ultra-wideband (UWB) antennas introduce the benefits of both high and low frequencies. Higher frequencies offer finer spatial resolution, enabling the detection of small-scale features and details, while lower frequencies improve depth penetration by minimising signal attenuation, allowing the [...] Read more.
Ground-Penetrating Radar (GPR) systems with ultra-wideband (UWB) antennas introduce the benefits of both high and low frequencies. Higher frequencies offer finer spatial resolution, enabling the detection of small-scale features and details, while lower frequencies improve depth penetration by minimising signal attenuation, allowing the system to explore deeper subsurface layers. This combination optimises the performance of GPR systems by balancing the need for detailed imaging with the requirement for deeper penetration. This work presents the design of a wideband inverted U-shaped patch antenna with a wide rectangular slot centred at a frequency of 1.5 GHz. The antenna is fed through a microstrip feed line and employs a partial ground plane. Through simulation, the antenna is optimised by varying the patch dimensions and slot size. Further modifications to the partial ground plane improve the UWB and gain characteristics of the antenna. The optimised antenna is fabricated using a double-sided copper-clad FR4 substrate with a thickness of 1.6 mm and characterised using a Vector Network Analyser (VNA), with final dimensions of 200 mm × 300 mm. The experimental results demonstrate a return loss below −10 dB across the operational band from 1.068 GHz to 4 GHz and a maximum gain of 7.29 dB at 4 GHz. In addition to other bands, the antenna exhibits a return loss consistently below −20 dB in the frequency range of 1.367 GHz to 1.675 GHz. These results confirm the antenna’s UWB performance and its suitability for GPR applications in utility mapping, landmine and artefact detection, and identifying architectural defects. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

24 pages, 4942 KiB  
Article
Identification and Localization Study of Grounding System Defects in Cross-Bonded Cables
by Qiying Zhang, Kunsheng Li, Lian Chen, Jian Luo and Zhongyong Zhao
Electronics 2025, 14(3), 622; https://doi.org/10.3390/electronics14030622 - 5 Feb 2025
Viewed by 701
Abstract
Cross-bonded cables improve transmission efficiency by optimizing the grounding method. However, due to the complexity of their grounding system, they are prone to multiple types of defects, making defect state identification more challenging. Additionally, accurately locating sheath damage defects becomes more difficult in [...] Read more.
Cross-bonded cables improve transmission efficiency by optimizing the grounding method. However, due to the complexity of their grounding system, they are prone to multiple types of defects, making defect state identification more challenging. Additionally, accurately locating sheath damage defects becomes more difficult in cases of high transition resistance. To address these issues, this paper constructs a distributed parameter circuit model for cross-bonded cables and proposes a particle swarm optimization support vector machine (PSO-SVM) defect classification model based on the sheath voltage and current phase angle and amplitude characteristics. This model effectively classifies 25 types of grounding system states. Furthermore, for two types of defects—open joints and sheath damage short circuits—this paper proposes an accurate segment-based location method based on fault impedance characteristics, using zero-crossing problems to achieve efficient localization. The results show that the distributed parameter circuit model for cross-bonded cables is feasible for simulating electrical quantities, as confirmed by both simulation and real-world applications. The defect classification model achieves an accuracy of over 97%. Under low transition resistance, the defect localization accuracy exceeds 95.4%, and the localization performance is significantly improved under high transition resistance. Additionally, the defect localization method is more sensitive to variations in cable segment length and grounding resistance impedance but less affected by fluctuations in core voltage and current. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

36 pages, 55356 KiB  
Article
High-Gain Miniaturized Multi-Band MIMO SSPP LWA for Vehicular Communications
by Tale Saeidi, Sahar Saleh, Nick Timmons, Christopher McDaid, Ahmed Jamal Abdullah Al-Gburi, Faroq Razzaz and Saeid Karamzadeh
Technologies 2025, 13(2), 66; https://doi.org/10.3390/technologies13020066 - 4 Feb 2025
Cited by 1 | Viewed by 1655
Abstract
This paper introduces a novel miniaturized, four-mode, semi-flexible leaky wave Multiple-Input Multiple-Output (MIMO) antenna specifically designed to advance vehicular communication systems. The proposed antenna addresses key challenges in 5G low- and high-frequency bands, including millimeter-wave communication, by integrating innovative features such as a [...] Read more.
This paper introduces a novel miniaturized, four-mode, semi-flexible leaky wave Multiple-Input Multiple-Output (MIMO) antenna specifically designed to advance vehicular communication systems. The proposed antenna addresses key challenges in 5G low- and high-frequency bands, including millimeter-wave communication, by integrating innovative features such as a periodic Spoof Surface Plasmon Polariton Transmission Line (SSPP-TL) and logarithmic-spiral-like semi-circular strip patches parasitically fed via orthogonal ports. These design elements facilitate stable impedance matching and wide impedance bandwidths across operating bands, which is essential for vehicular networks. The hybrid combination of leaky wave and SSPP structures, along with a defected wide-slot ground structure and backside meander lines, enhances radiation characteristics by reducing back and bidirectional radiation. Additionally, a naturalization network incorporating chamfered-edge meander lines minimizes mutual coupling and introduces a fourth radiation mode at 80 GHz. Compact in size (14 × 12 × 0.25 mm3), the antenna achieves high-performance metrics, including S11 < −18.34 dB, dual-polarization, peak directive gains of 11.6 dBi (free space) and 14.6 dBi (on vehicles), isolation > 27 dB, Channel Capacity Loss (CCL) < 3, Envelope Correlation Coefficient (ECC) < 0.001, axial ratio < 2.25, and diversity gain (DG) > 9.85 dB. Extensive testing across various vehicular scenarios confirms the antenna’s robustness for Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), and Vehicle-to-Infrastructure (V2I) communication. Its exceptional performance ensures seamless connectivity with mobile networks and enhances safety through Specific Absorption Rate (SAR) compliance. This compact, high-performance antenna is a transformative solution for connected and autonomous vehicles, addressing critical challenges in modern automotive communication networks and paving the way for reliable and efficient vehicular communication systems. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

14 pages, 9128 KiB  
Article
Determining Moisture Condition of External Thermal Insulation Composite System (ETICS) of an Existing Building
by Paweł Krause, Iwona Pokorska-Silva and Łukasz Kosobucki
Materials 2025, 18(3), 614; https://doi.org/10.3390/ma18030614 - 29 Jan 2025
Viewed by 917
Abstract
ETICS is a popular external wall insulation system, which is not without possible defects and damages. A frequent cause, direct or indirect, of damage to buildings is the impact of water (moisture). This article presents, among others, the results of tests of the [...] Read more.
ETICS is a popular external wall insulation system, which is not without possible defects and damages. A frequent cause, direct or indirect, of damage to buildings is the impact of water (moisture). This article presents, among others, the results of tests of the moisture content of ETICS layers, the water absorption and capillary absorption of the render by means of the Karsten tube method, numerical thermo-moisture simulations, and tests of interlayer adhesion, in sample residential buildings. Mass moisture content testing of the wall substrate showed acceptable moisture levels (1–4%m) within masonry walls made of silicate blocks, as well as locally elevated moisture levels (4–8%m) in the case of reinforced concrete walls. Moisture testing of the insulation samples showed a predominantly dry condition, and testing of the reinforcement layer showed an acceptable level of moisture. Severe moisture was found in the sample taken in the ground-floor zone at the interface between mineral wool and EPS-P insulation underneath the reinforced layer. Capillary water absorption tests helped classify silicone render as an impermeable and surface hydrophobic coating. Tests of the water absorption of the facade plaster showed that the value declared by the manufacturer (<0.5 kg/m2) was mostly met (not in the ground-floor zone). The simulation calculations gave information that there was no continuous increase in condensation during the assumed analysis time (the influence of interstitial condensation on the observed anomalies was excluded). The tests carried out indicated the occurrence of numerous errors in the implementation of insulation works affecting the moisture content and durability of external partitions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 15082 KiB  
Article
A Sub-6GHz Two-Port Crescent MIMO Array Antenna for 5G Applications
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Electronics 2025, 14(3), 411; https://doi.org/10.3390/electronics14030411 - 21 Jan 2025
Cited by 2 | Viewed by 1469
Abstract
The fifth generation of wireless communication (5G) technology is becoming more innovative with the increasing need for high data rates because of the incremental rapidity of mobile data growth. In 5G systems, enhancing device-to-device communication, ultra-low latency (1 ms), outstanding dependability, significant flexibility, [...] Read more.
The fifth generation of wireless communication (5G) technology is becoming more innovative with the increasing need for high data rates because of the incremental rapidity of mobile data growth. In 5G systems, enhancing device-to-device communication, ultra-low latency (1 ms), outstanding dependability, significant flexibility, and data throughput (up to 20 Gbps) is considered one of the most essential factors for wireless networks. To meet these objectives, a sub-6 5G wideband multiple-input multiple-output (MIMO) array microstrip antenna for 5G Worldwide Interoperability for Microwave Access (WiMAX) applications on hotspot devices has been proposed in this research. The 1 × 4 MIMO array radiating element antenna with a partial ground proposed in this research complies with the 5G application standard set out by the Federal Communications Commission. The planned antenna configuration consists of a hollow, regular circular stub patch antenna shaped like a crescent with a rectangular defect at the top of the patch. The suggested structure is mounted on an FR-4 substrate with a thickness “h” of 1.6, a permittivity “εr” of 4.4, and a tangential loss of 0.02. The proposed antenna achieves a high radiation gain and offers a frequency spectrum bandwidth of 3.01 GHz to 6.5 GHz, covering two 5G resonant frequencies “fr” of 3.5 and 5.8 GHz as the mid-band, which yields a gain of 7.66 dBi and 7.84 dBi, respectively. MIMO antenna parameters are examined and introduced to assess the system’s performance. Beneficial results are obtained, with the channel capacity loss (CCL) tending to 0.2 bit/s/Hz throughout the operating frequency band, the envelope correlation coefficient (ECC) yielding 0.02, a mean effective gain (MEG) of less than −6 dB over the operating frequency band, and a total active reflection coefficient (TARC) of less than −10 dB; the radiation efficiency is equal to 71.5%, maintaining impedance matching as well as good mutual coupling among the adjacent parameters. The suggested antenna has been implemented and experimentally tested using the 5G system Open Air Interface (OAI) platform, which operates at sub-6 GHz, yielding −67 dBm for the received signal strength indicator (RSSI), and superior frequency stability, precision, and reproducibility for the signal-to-interference-plus-noise ratio (SINR) and a high level of positivity in the power headroom report (PHR) 5G system performance report, confirming its operational effectiveness in 5G WiMAX (Worldwide Interoperability for Microwave Access) application. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

25 pages, 7034 KiB  
Article
Diagnosis of Reverse-Connection Defects in High-Voltage Cable Cross-Bonded Grounding System Based on ARO-SVM
by Yuhao Ai, Bin Song, Shaocheng Wu, Yongwen Li, Li Lu and Linong Wang
Sensors 2025, 25(2), 590; https://doi.org/10.3390/s25020590 - 20 Jan 2025
Viewed by 1001
Abstract
High-voltage (HV) cables are increasingly used in urban power grids, and their safe operation is critical to grid stability. Previous studies have analyzed various defects, including the open circuit in the sheath loop, the flooding in the cross-bonded link box, and the sheath [...] Read more.
High-voltage (HV) cables are increasingly used in urban power grids, and their safe operation is critical to grid stability. Previous studies have analyzed various defects, including the open circuit in the sheath loop, the flooding in the cross-bonded link box, and the sheath grounding fault. However, there is a paucity of research on the defect of the reverse direction between the inner core and the outer shield of the coaxial cable. Firstly, this paper performed a theoretical analysis of the sheath current in the reversed-connection state and established a simulation model for verification. The outcomes of the simulation demonstrate that there are significant variations in the amplitudes of the sheath current under different reversed-connection conditions. Consequently, a feature vector was devised based on the amplitude of the sheath current. The support vector machine (SVM) was then applied to diagnose the reversed-connection defects in the HV cable cross-bonded grounding system. The artificial rabbits optimization (ARO) algorithm was adopted to optimize the SVM model, attaining an impressively high diagnostic accuracy rate of 99.35%. The effectiveness and feasibility of the proposed algorithm are confirmed through the analysis and validation of the practical example. Full article
Show Figures

Figure 1

17 pages, 3760 KiB  
Article
Method and Experimental Research of Transmission Line Tower Grounding Body Condition Assessment Based on Multi-Parameter Time-Domain Pulsed Eddy Current Characteristic Signal Extraction
by Yun Zuo, Jie Wang, Xiaoju Huang, Yuan Liu, Zhiwu Zeng, Ruiqing Xu, Yawen Chen, Kui Liu, Hongkang You and Jingang Wang
Energies 2025, 18(2), 322; https://doi.org/10.3390/en18020322 - 13 Jan 2025
Cited by 1 | Viewed by 669
Abstract
Pole tower grounding bodies are part of the normal structure of the power system, providing relief from fault currents and equalizing overvoltage channels. They are important devices; however, in the harsh environment of the soil, they are prone to corrosion or even fracture, [...] Read more.
Pole tower grounding bodies are part of the normal structure of the power system, providing relief from fault currents and equalizing overvoltage channels. They are important devices; however, in the harsh environment of the soil, they are prone to corrosion or even fracture, which in turn affects the normal utilization of the transmission line, so accurately assessing the condition of grounding bodies of the power grid is critical. To assess the operational status of a grounding body in a timely manner, this paper proposes a multi-parameter pulsed eddy current (PEC) time-domain characteristic signal corrosion classification method for the detection of the state of a pole tower grounding body. The method firstly theoretically analysed the influence of multi-parameter changes on the PEC response time-domain feature signal caused by grounding body corrosion and extracts the decay time constant (DTC), and the decay time constant stabilization value (DTCSV) and time to stabilization (TTS) were obtained based on the DTC time domain characteristics for describing the corrosion of the grounding body. Subsequently, DTCSV and TTS were used as inputs to a support vector machine (SVM) to classify the corrosion of the grounding body. A simulation model was constructed to investigate the effect of multiparameter time on the DTCSV and TTS of the tower grounding body based on the single-variable method, and the multiparameter time-domain characterization method used for corrosion assessment was validated. Four defects with different corrosion levels were classified using the optimized SVM model, with an accuracy rate of 95%. Finally, a PEC inspection system platform was built to conduct classification tests on steel bars with different degrees of corrosion, and the results show that the SVM classification model based on DTCSV and TTS has a better discriminatory ability for different corrosive grounders and can be used to classify corrosion in the grounders of poles towers to improve the stability of power transmission. Full article
Show Figures

Figure 1

Back to TopTop