Nondestructive Testing of Externally Bonded FRP Concrete Structures: A Comprehensive Review
Abstract
:1. Introduction
- Examining the capabilities and limitations of different NDT methods in detecting common EB-FRP concrete defects, including debonding, delamination, voids, and cracks.
- Evaluating the effectiveness of traditional and emerging NDT technologies, particularly in automated and hybrid inspection methods.
- Exploring practical applications, cost–performance trade-offs, and economic feasibility of NDT in real-world EB-FRP concrete structures.
- Investigating the integration of AI, ML, and automated SHM solutions to enhance defect detection, predictive maintenance, and long-term structural monitoring.
2. Defects in EB-FRP Structures
3. Nondestructive Testing (NDT) Methods
3.1. Visual Testing (VT)
3.2. Tap Testing (TT)
3.3. Impact–Echo (IE)
3.4. Ground-Penetrating Radar (GPR)
3.5. Ultrasonic Testing (UT)
3.6. Phased Array Ultrasonic Testing (PAUT)
3.7. Infrared Thermography (IRT)
3.8. Acoustic Impact Testing (AIT)
3.9. Eddy Current Testing (ECT)
3.10. Acoustic Emission (AE)
3.11. Radiographic Testing (RT)
4. Discussion
4.1. Comparative Evaluation of NDT Methods
4.2. Comparative Performance for AI/ML Algorithms in NDT of EB-FRP Structures
4.3. Research Gaps and Standardization Challenges
- Lack of unified testing standards: currently, there are no universally recognized protocols governing the use of NDT for EB-FRP systems. This absence has led to inconsistencies in defect detection, data interpretation, and overall evaluation across different studies and field practices. Recent frameworks, such as [24], have emphasized that standardized inspection approaches for concrete systems reinforced or strengthened with FRP remain under active development, requiring further harmonization efforts.
- Limited integration of AI and ML: although AI and ML techniques have demonstrated promising capabilities in automating defect detection and classification, their application in FRP inspection remains at an early experimental phase. Challenges include limited availability of large, labeled datasets; difficulty in generalizing models across different FRP configurations; and the need for domain-specific AI validation protocols to ensure reliability under diverse field conditions.
- Insufficient validation of hybrid inspection frameworks: hybrid NDT frameworks, which combine complementary techniques such as GPR with PAUT or IRT with AE, offer theoretical advantages in defect detection and characterization. However, comprehensive experimental validations and comparative performance evaluations for these hybrid schemes are still lacking. As highlighted by a recent report [24], practical implementation of hybrid inspection workflows necessitates further development of computational models, field validation campaigns, and standardized interpretation protocols.
- Economic feasibility and scalability issues: the high cost associated with advanced NDT methods, particularly PAUT and RT, poses barriers to routine implementation in infrastructure asset management. Future research should prioritize the development of cost-optimized hybrid approaches that balance diagnostic performance with operational affordability, enabling broader adoption across different project scales and resource settings.
- Challenges in real-time remote sensing deployment: the integration of unmanned aerial vehicles (UAVs) equipped with advanced NDT sensors (e.g., IRT cameras, wireless AE systems) holds significant promise for large-area, rapid assessments of FRP-retrofitted structures. Nevertheless, technological barriers related to real-time data acquisition, transmission, processing, and autonomous defect localization must be overcome. Further field trials and protocol development are necessary to enable fully automated, high-confidence remote inspections.
4.4. Future Directions
- Integrating AI-driven automation: expanding deep learning frameworks to enable more accurate and autonomous defect detection.
- Hybrid NDT solutions: developing and validating integrated approaches that combine multiple NDT techniques (e.g., PAUT-GPR or IR-AE hybrid systems).
- Advancing remote and UAV-based inspections: enhancing drone-assisted inspections for large-scale infrastructure assessments.
- Cost-effective NDT solutions: improving affordability through innovative sensor designs and efficient testing protocols.
- Standardization of novel techniques: establishing regulatory frameworks for emerging technologies such as LUT, FOS, and DIC in FRP structure monitoring.
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pendhari, S.S.; Kant, T.; Desai, Y.M. Application of polymer composites in civil construction: A general review. Compos. Struct. 2008, 84, 114–124. [Google Scholar] [CrossRef]
- Bahn, B.Y.; Harichandran, R.S. Flexural behavior of reinforced concrete beams strengthened with CFRP sheets and epoxy mortar. J. Compos. Constr. 2008, 12, 387–395. [Google Scholar] [CrossRef]
- Naser, M.Z.; Hawileh, R.A.; Abdalla, J.A. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Eng. Struct. 2019, 198, 109542. [Google Scholar] [CrossRef]
- Alsuhaibani, E. Optimization of Carbon Fiber-Reinforced Polymer (CFRP) Configuration for Enhanced Flexural Performance in Strengthened Concrete Beams. Buildings 2024, 14, 3953. [Google Scholar] [CrossRef]
- Alsuhaibani, E.; Yazdani, N.; Beneberu, E. Experimental and Numerical Study of CFRP Laminate Strengthened Concrete Beams Under Hygrothermal Environment. Adv. Civ. Eng. 2024, 2024, 5472036. [Google Scholar] [CrossRef]
- Siavashi, S.; Eamon, C.D.; Makkawy, A.A.; Wu, H.C. Long-Term Durability of FRP Bond in the Midwest United States for Externally Strengthened Bridge Components. J. Compos. Constr. 2019, 23, 05019001. [Google Scholar] [CrossRef]
- Pallempati, H.; Beneberu, E.; Yazdani, N. Evaluation of external FRP-concrete bond in repaired concrete bridge girders and columns. Innov. Infrastruct. Solut. 2016, 1, 12. [Google Scholar] [CrossRef]
- Pallempati, H.; Beneberu, E.; Yazdani, N.; Patel, S. Condition Assessment of Fiber-Reinforced Polymer Strengthening of Concrete Bridge Components. J. Perform. Constr. Facil. 2016, 30, 04016052. [Google Scholar] [CrossRef]
- Dolati, S.S.K.; Malla, P.; Ortiz, J.D.; Mehrabi, A.; Nanni, A. Identifying NDT methods for damage detection in concrete elements reinforced or strengthened with FRP. Eng. Struct. 2023, 287, 116155. [Google Scholar] [CrossRef]
- Han, S.; Li, Q.; Cui, Z.; Xiao, P.; Miao, Y.; Chen, L.; Li, Y. Non-destructive testing and structural health monitoring technologies for carbon fiber reinforced polymers: A review. Nondestruct. Test. Eval. 2024, 39, 725–761. [Google Scholar] [CrossRef]
- Ortiz, J.D.; Dolati, S.S.K.; Malla, P.; Mehrabi, A.; Nanni, A. Nondestructive Testing (NDT) for Damage Detection in Concrete Elements with Externally Bonded Fiber-Reinforced Polymer. Buildings 2024, 14, 246. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Z.; Jin, H. Nondestructive testing and evaluation techniques of defects in fiber-reinforced polymer composites: A review. Front. Mater. 2022, 9, 986645. [Google Scholar] [CrossRef]
- Kot, P.; Muradov, M.; Gkantou, M.; Kamaris, G.S.; Hashim, K.; Yeboah, D. Recent advancements in non-destructive testing techniques for structural health monitoring. Appl. Sci. 2021, 11, 2750. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.; Lee, T.L.; Fancey, K.S.; Mi, J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng. 2020, 12, 1687814020913761. [Google Scholar] [CrossRef]
- Duchene, P.; Chaki, S.; Ayadi, A.; Krawczak, P. A review of non-destructive techniques used for mechanical damage assessment in polymer composites. J. Mater. Sci. 2018, 53, 7915–7938. [Google Scholar] [CrossRef]
- Kaiser, H.; Karbhari, V.M. Non-destructive testing techniques for FRP rehabilitated concrete - I: A critical review. Int. J. Mater. Prod. Technol. 2004, 21, 349–384. [Google Scholar] [CrossRef]
- Pan, P.; Zhang, R.; Zhang, Y.; Li, H. Detecting Internal Defects in FRP-Reinforced Concrete Structures through the Integration of Infrared Thermography and Deep Learning. Materials 2024, 17, 3350. [Google Scholar] [CrossRef]
- The Future 3D. Bridge Inspections with AI-Powered Drones: A Modern Solution for Engineering Firms. The Future 3D. 2024. Available online: https://www.thefuture3d.com/blog-0/2024/8/8/bridge-inspections-with-ai-powered-drones-a-modern-solution-for-engineering-firms (accessed on 8 February 2025).
- JOUAV. Drone for Bridge Inspection: Everything You Need to Know. 2023. Available online: https://www.jouav.com/blog/drone-for-bridge-inspection.html (accessed on 8 February 2025).
- American Concrete Institute (ACI) 440 Committee. ACI 440.2R-17: Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures; The American Concrete Institute (ACI): Farmington Hills, MI, USA, 2017; p. 112. ISBN 9781945487590. [Google Scholar]
- Kang, T.H.K.; Howell, J.; Kim, S.; Lee, D.J. A State-of-the-Art Review on Debonding Failures of FRP Laminates Externally Adhered to Concrete. Int. J. Concr. Struct. Mater. 2012, 6, 123–134. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Li, C.; Qiao, X.; Guan, H.; Zhou, Z.; Song, D. Research Progress in Corrosion Behavior and Anti-Corrosion Methods of Steel Rebar in Concrete. Metals 2024, 14, 862. [Google Scholar] [CrossRef]
- Lee, T.; Kim, D.; Cho, S.; Kim, M.O. Advancements in Surface Coatings and Inspection Technologies for Extending the Service Life of Concrete Structures in Marine Environments: A Critical Review. Buildings 2025, 15, 304. [Google Scholar] [CrossRef]
- Mehrabi, A.; Saman, S.; Dolati, K.; Malla, P.; Nanni, A.; Polanco, J.O. A Framework for Field Inspection of In-service FRP Reinforced/A Framework for Field Inspection of In-service FRP Reinforced/ Strengthened Concrete Bridge Elements Strengthened Concrete Bridge Elements. 2024. Available online: https://digitalcommons.fiu.edu/cee_fac (accessed on 1 May 2025).
- Karbhari, V.M.; Kaiser, H.; Navada, R.; Ghosh, K.; Lee, L. Methods for Detecting Defects in Composite Rehabilitated Concrete Structures: Final Report, 2005, (No. FHWA-OR-RD-05-09). Available online: https://rosap.ntl.bts.gov/view/dot/22814 (accessed on 1 May 2025).
- De C, J.; de Paiva, A.C.; Junior, G.B.; de Almeida, J.D.S.; Silva, A.C.; da Silva Cunha, A.M.T.; da Silva Cunha, S.C.A.P. A One-Step Methodology for Identifying Concrete Pathologies Using Neural Networks—Using YOLO v8 and Dataset Review. Appl. Sci. 2024, 14, 4332. [Google Scholar] [CrossRef]
- Tang, L. Maintenance and inspection of fiber-reinforced polymer (Frp) bridges: A review of methods. Materials 2021, 14, 7826. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, N.; Garcia, E.C.; Riad, M. Field assessment of concrete structures rehabilitated with FRP. In Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures; Elsevier: Amsterdam, The Netherlands, 2018; pp. 171–194. [Google Scholar] [CrossRef]
- Qiu, Q.; Lau, D. Defect visualization in FRP-bonded concrete by using high speed camera and motion magnification technique. In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; Wu, H.F., Gyekenyesi, A.L., Shull, P.J., Yu, T.-Y., Eds.; SPIE: Washington, DC, USA, 2017; p. 101692D. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Ou, J. Damage, nondestructive evaluation and rehabilitation of FRP composite-RC structure: A review. Constr. Build. Mater. 2021, 271, 121551. [Google Scholar] [CrossRef]
- Paramanandham, N.; Koppad, D.; Anbalagan, S. Vision Based Crack Detection in Concrete Structures Using Cutting-Edge Deep Learning Techniques. Trait. Du. Signal 2022, 39, 485–492. [Google Scholar] [CrossRef]
- Yumnam, M.; Gupta, H.; Ghosh, D.; Jaganathan, J. Inspection of concrete structures externally reinforced with FRP composites using active infrared thermography: A review. Constr. Build. Mater. 2021, 310, 125265. [Google Scholar] [CrossRef]
- Abdelkader, E.M.; Zayed, T.; Faris, N. Synthesized Evaluation of Reinforced Concrete Bridge Defects, Their Non-Destructive Inspection and Analysis Methods: A Systematic Review and Bibliometric Analysis of the Past Three Decades. Buildings 2023, 13, 800. [Google Scholar] [CrossRef]
- Ghosh, K.K.; Karbhari, V.M. Use of infrared thermography for quantitative non-destructive evaluation in FRP strengthened bridge systems. Mater. Struct. 2011, 44, 169–185. [Google Scholar] [CrossRef]
- Dong, Y.; Ansari, F. Non-destructive testing and evaluation (NDT/NDE) of civil structures rehabilitated using fiber reinforced polymer (FRP) composites. Serv. Life Estim. Ext. Civil. Eng. Struct. 2011, 2011, 193–222. [Google Scholar] [CrossRef]
- Mehrabi, A.B.; Dolati, S.S.K.; Malla, P.; Polanco, J.O.; Nanni, A. NDT for damage detection in FRP reinforced/strengthened concrete elements, in: Bridge Maintenance, Safety, Management, Digitalization and Sustainability. In Proceedings of the 12th International Conference on Bridge Maintenance, Safety and Management, IABMAS, Copenhagen, Denmark, 24–28 June 2024; CRC Press/Balkema: Boca Raton, FL, USA, 2024; pp. 3740–3747. [Google Scholar] [CrossRef]
- Billon-Filiot, A.; Taillade, F.; Quiertant, M.; Hénault, J.-M.; Renaud, J.-C.; Maurin, R.; Benzarti, K. Development of an Innovative Non-Destructive and Field-Oriented Method to Quantify the Bond Quality of Composite Strengthening Systems on Concrete Structures. Materials 2020, 13, 5421. [Google Scholar] [CrossRef]
- Queiroz, J.C.S.; Santos, Y.T.B.; da Silva, I.C.; Farias, C.T.T. Damage Detection in Composite Materials Using Tap Test Technique and Neural Networks. J. Nondestr Eval. 2021, 40, 27. [Google Scholar] [CrossRef]
- Kim, S.J. Numerical Simulations of Tap Test on Composite Structures. Int. J. Acoust. Vib. 2018, 23. [Google Scholar] [CrossRef]
- Aris, K.D.M.; Shariff, M.F.; Latif, B.R.A.; Haris, M.Y.M.; Baidzawi, I.J. A comparison of damage profiling of automated tap testers on aircraft CFRP panel. In Proceedings of the 3rd Advanced Materials Conference 2016, Langkawi, Malaysia, 28–29 November 2016; p. 130009. [Google Scholar] [CrossRef]
- Poole, A.; Hartley, N. Force and Sound Data Fusion for Enhanced Tap Testing Scanning of Composites. IEEE Access 2023, 11, 53485–53496. [Google Scholar] [CrossRef]
- Malla, P.; Dolati, S.S.K.; Mehrabi, A.; Polanco, J.O.; Nanni, A.; Dinh, K. Applicability of available NDT methods for damage detection in concrete elements reinforced or strengthened with FRP. Bridge Struct. 2023, 19, 149–164. [Google Scholar] [CrossRef]
- Sansalone, M. Impact-Echo: The Complete Story. ACI Struct. J. 1997, 94, 9737. [Google Scholar] [CrossRef]
- Ekenel, M.; Myers, J.J. Nondestructive Evaluation of RC Structures Strengthened with FRP Laminates Containing Near-Surface Defects in the form of Delaminations. Sci. Eng. Compos. Mater. 2007, 14, 299–316. [Google Scholar] [CrossRef]
- Pechlivani, E.M.; Papadimitriou, S.; Pemas, A.; Kanlis, M.; Stefanidou, A.; Drosou, D. Tzovaras, 3D Printed Impact Echo Device for Concrete Crack Detection. Macromol. Symp. 2024, 413, 2300174. [Google Scholar] [CrossRef]
- Yu, T. NDE of concrete-FRP systems. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVII; Shull, P.J., Yu, T., Gyekenyesi, A.L., Wu, H.F., Eds.; SPIE: Washington, DC, USA, 2023; p. 48. [Google Scholar] [CrossRef]
- Noël, M.; Lacroix, F.; Moradi, F.; Layssi, H. Validation of wireless impact echo prototype for condition assessment of concrete structures. E-J. Nondestruct. Test. 2022, 27, 27243. [Google Scholar] [CrossRef]
- Jaishankar, P.; Kanchidurai, S.; Cyril Thomas, K. Saravana Raja Mohan, Experimental investigation on Non-Destructive behaviour of repaired FRP concrete beams. Mater. Today Proc. 2022, 64, 990–994. [Google Scholar] [CrossRef]
- Coleman, Z.W.; Schindler, A.K.; Jetzel, C.M. Impact-Echo Defect Detection in Reinforced Concrete Bridge Decks without Overlays. J. Perform. Constr. Facil. 2021, 35, 04021058. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N. Factors affecting the detectability of concrete delamination in GPR images. Constr. Build. Mater. 2021, 274, 121837. [Google Scholar] [CrossRef]
- Yazdani, N.; Beneberu, E.; Riad, M. Nondestructive Evaluation of FRP-Concrete Interface Bond due to Surface Defects. Adv. Civil. Eng. 2019, 2019, 2563079. [Google Scholar] [CrossRef]
- Cheilakou, E.; Matikas, T.E. Development of an advanced, high-frequency GPR technique for the assessment of concrete structures: From modeling predictions to experimental results. In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; Meyendorf, N.G., Matikas, T.E., Peters, K.J., Eds.; SPIE: Washington, DC, USA, 2016; p. 98061B. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; Di Capua, D.; González-Drigo, R.; Pujades, L. Laboratory characterization of a GPR antenna for high-resolution testing: Radiation pattern and vertical resolution. NDT E Int. 2009, 42, 336–344. [Google Scholar] [CrossRef]
- Almalki, M.A.; Almutairi, K.F. Inspection of reinforced concrete structures using ground penetrating radar: Experimental approach. J. King Saud. Univ. Sci. 2024, 36, 103140. [Google Scholar] [CrossRef]
- Quinn, J.A.; Patsia, O.; Giannopoulos, A.; Brádaigh, C.M.Ó.; McCarthy, E.D. Novel application of ground penetrating radar for damage detection in thick FRP composites. Compos. B Eng. 2024, 284, 111716. [Google Scholar] [CrossRef]
- Trela, C.; Kind, T.; Schubert, M.; Gunther, M. Detection of weak scatterers in reinforced concrete structures. In Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgium, 30 June–4 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 874–880. [Google Scholar] [CrossRef]
- Zheng, W.; Hao, T.; Li, X.; Luo, W. Experimental validation of the horizontal resolution improvement by ultra-wideband metasurfaces for GPR systems. NDT E Int. 2024, 147, 103179. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Q. GPR multi-frequency data fusion algorithm based on regional energy characteristics. In Workshop on Electronics Communication Engineering (WECE 2023); Xu, W., Ed.; SPIE: Washington, DC, USA, 2024; p. 12. [Google Scholar] [CrossRef]
- Ajith, K.K.; Bhattacharya, A. Improving the GPR Detectability Using a Novel Loop Bowtie Antenna. J. Telecommun. Inf. Technol. 2017, 3, 9–16. [Google Scholar] [CrossRef]
- Kong, F. Choice of antenna type and frequency range for testing concrete structures. In Proceedings of the 8th International Conference on Ground Penetrating Radar, Gold Coast, Australia, 23–26 May 2000; Noon, D.A., Stickley, G.F., Longstaff, D., Eds.; SPIE: Gold Coast, Australia, 2000; pp. 427–433. [Google Scholar] [CrossRef]
- Oskooi, B.; Julayusefi, M.; Goudarzi, A. GPR noise reduction based on wavelet thresholdings. Arab. J. Geosci. 2015, 8, 2937–2951. [Google Scholar] [CrossRef]
- Rasol, M.; Pais, J.C.; Pérez-Gracia, V.; Solla, M.; Fernandes, F.M.; Fontul, S.; Ayala-Cabrera, D.; Schmidt, F.; Assadollahi, H. GPR monitoring for road transport infrastructure: A systematic review and machine learning insights. Constr. Build. Mater. 2022, 324, 126686. [Google Scholar] [CrossRef]
- Sui, X.; Leng, Z.; Wang, S. Machine learning-based detection of transportation infrastructure internal defects using ground-penetrating radar: A state-of-the-art review. Intell. Transp. Infrastruct. 2023, 2. [Google Scholar] [CrossRef]
- Amaral, L.C.M.; Roshan, A.; Bayat, A. Review of Machine Learning Algorithms for Automatic Detection of Underground Objects in GPR Images. J. Pipeline Syst. Eng. Pract. 2022, 13, liad004. [Google Scholar] [CrossRef]
- Küçükdemirci, M.; Sarris, A. GPR Data Processing and Interpretation Based on Artificial Intelligence Approaches: Future Perspectives for Archaeological Prospection. Remote Sens. 2022, 14, 3377. [Google Scholar] [CrossRef]
- Geng, Z.; Yan, H.; Zhang, J.; Zhu, D. Deep-Learning for Radar: A Survey. IEEE Access 2021, 9, 141800–141818. [Google Scholar] [CrossRef]
- Manataki, M.; Vafidis, A.; Sarris, A. GPR Data Interpretation Approaches in Archaeological Prospection. Appl. Sci. 2021, 11, 7531. [Google Scholar] [CrossRef]
- Sun, M.; Pan, J.; Le Bastard, C.; Wang, Y.; Li, J. Advanced Signal Processing Methods for Ground-Penetrating Radar: Applications to Civil Engineering. IEEE Signal Process Mag. 2019, 36, 74–84. [Google Scholar] [CrossRef]
- Tassiopoulou, S.; Koukiou, G.; Anastassopoulos, V. Algorithms in Tomography and Related Inverse Problems—A Review. Algorithms 2024, 17, 71. [Google Scholar] [CrossRef]
- Peng, M.; Wang, D.; Liu, L.; Shi, Z.; Shen, J.; Ma, F. Recent Advances in the GPR Detection of Grouting Defects behind Shield Tunnel Segments. Remote Sens. 2021, 13, 4596. [Google Scholar] [CrossRef]
- Ribolla, E.L.M.; Hajidehi, M.R.; Scimemi, G.F.; Spada, A.; Giambanco, G. Assessment of bonding defects in FRP reinforced structures via ultrasonic technique. Chall. J. Struct. Mech. 2016, 2, 139–146. [Google Scholar] [CrossRef]
- La Malfa Ribolla, E.; Hajidehi, M.R.; Rizzo, P.; Scimemi, G.F.; Spada, A.; Giambanco, G. Ultrasonic inspection for the detection of debonding in CFRP-reinforced concrete. Struct. Infrastruct. Eng. 2017, 14, 807–816. [Google Scholar] [CrossRef]
- Wang, B.; He, P.; Kang, Y.; Jia, J.; Liu, X.; Li, N. Ultrasonic Testing of Carbon Fiber-Reinforced Polymer Composites. J. Sens. 2022, 2022. [Google Scholar] [CrossRef]
- Riad, M.; Yazdani, N.; Gonzalez, E.; Sapkota, K. Quantitative non-destructive evaluation of FRP laminate-concrete bond strength using ultrasound tomography. J. Test. Eval. 2021, 49, 1119–1140. [Google Scholar] [CrossRef]
- Fang, Y.; Lin, L.; Feng, H.; Lu, Z.; Emms, G.W. Review of the use of air-coupled ultrasonic technologies for nondestructive testing of wood and wood products. Comput. Electron. Agric. 2017, 137, 79–87. [Google Scholar] [CrossRef]
- Hellier, C.J. (Ed.) Handbook of Nondestructive Evaluation, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 2020; Available online: https://www.accessengineeringlibrary.com/content/book/9781260441437 (accessed on 4 May 2025).
- Malla, P.; Dolati, S.S.K.; Ortiz, J.D.; Mehrabi, A.B.; Nanni, A.; Dinh, K. Feasibility of Conventional Non-Destructive Testing Methods in Detecting Embedded FRP Reinforcements. Appl. Sci. 2023, 13, 4399. [Google Scholar] [CrossRef]
- Taheri, H.; Hassen, A.A. Nondestructive Ultrasonic Inspection of Composite Materials: A Comparative Advantage of Phased Array Ultrasonic. Appl. Sci. 2019, 9, 1628. [Google Scholar] [CrossRef]
- Liu, W.; Wen, Z.; Wang, J.; Wang, S.; Wang, H.; Zhang, W.; Huang, S.; Hong, J. Experimental Study on Lateral Resolution of Phased Array Ultrasonic Testing of Irregular Structure Weld Defects. Shock. Vib. 2022, 2022, 1427417. [Google Scholar] [CrossRef]
- Kumbhar, S.B.; Singh, T.S. Prediction of Depth of Defect from Phased Array Ultrasonic Testing Data Using Neural Network. In Recent Advances in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2024; pp. 109–119. [Google Scholar] [CrossRef]
- Dolati, S.S.K.; Malla, P.; Mehrabi, A.; Ortiz, J.; Nanni, A. Non-destructive testing applications for in-service FRP reinforced/strengthened concrete bridge elements. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVI; Shull, P.J., Yu, T., Gyekenyesi, A.L., Wu, H.F., Eds.; SPIE: Washington, DC, USA, 2022; p. 9. [Google Scholar] [CrossRef]
- Qiu, Q. Imaging techniques for defect detection of fiber reinforced polymer-bonded civil infrastructures. Struct. Control Health Monit. 2020, 27, e2555. [Google Scholar] [CrossRef]
- Brown, J.R.; Hamilton, H.R. Quantitative infrared thermography inspection for FRP applied to concrete using single pixel analysis. Constr. Build. Mater. 2013, 38, 1292–1302. [Google Scholar] [CrossRef]
- Mtenga, P.V.; Parzych, J.G.; Limerick, R. Quality Assurance of FRP Retrofit Using Infrared Thermography. In Structures 2001: A Structural Engineering Odyssey; American Society of Civil Engineers: Reston, VA, USA, 2001; pp. 1–8. [Google Scholar] [CrossRef]
- Halabe, U.B.; GangaRao, H.V.S.; AlQennah, H. Condition Assessment of FRP Composite Bridge Components Using Infrared Thermography. In Rehabilitating and Repairing the Buildings and Bridges of Americas; American Society of Civil Engineers: Reston, VA, USA, 2002; pp. 93–101. [Google Scholar] [CrossRef]
- Heuer, H.; Schulze, M.; Heere, R. Non-destructive flaw detection in in-situ carbon fibre reinforced composites using eddy-current. In Proceedings of the 7th International Conference on FRP Composites in Civil Engineering, Vancouver, BC, Canada, 20–22 August 2014. [Google Scholar]
- Morozov, M.; Jackson, W.; Pierce, S.G. Capacitive imaging of impact damage in composite material. Compos. B Eng. 2017, 113, 65–71. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; Xie, S.; Yang, S.; Chen, Z. Reconstruction of cracks in a carbon fiber-reinforced polymer laminate plate from signals of eddy current testing. J. Compos. Mater. 2020, 54, 3527–3536. [Google Scholar] [CrossRef]
- Saeedifar, M.; Zarouchas, D. Damage characterization of laminated composites using acoustic emission: A review. Compos. B Eng. 2020, 195, 108039. [Google Scholar] [CrossRef]
- Charitidis, P.; Panagiotis, C.J. Theoretical Review for Non-Destructive Techniques of Composite Materials. Int. Res. J. Adv. Eng. Sci. 2024, 9, 127–136. [Google Scholar]
- Choi, W.-C.; Yun, H.-D. Acoustic emission activity of CFRP-strengthened reinforced concrete beams after freeze–thaw cycling. Cold Reg. Sci. Technol. 2015, 110, 47–58. [Google Scholar] [CrossRef]
- Nair, A.; Cai, C.S.; Pan, F.; Kong, X. Acoustic emission monitoring of damage progression in CFRP retrofitted RC beams. Struct. Monit. Maint. 2014, 1, 111–130. [Google Scholar] [CrossRef]
- Nair, A.; Cai, C.S.; Kong, X. Using Acoustic Emission to Monitor Failure Modes in CFRP-Strengthened Concrete Structures. J. Aerosp. Eng. 2020, 33. [Google Scholar] [CrossRef]
- Ghiassi, B.; Verstrynge, E.; Lourenço, P.B.; Oliveira, D.V. Characterization of debonding in FRP-strengthened masonry using the acoustic emission technique. Eng. Struct. 2014, 66, 24–34. [Google Scholar] [CrossRef]
- Holsamudrkar, N.; Banerjee, S. AE-Based Health Monitoring of Full-scale RC Beams Strengthened with FRCM Composites. Procedia Struct. Integr. 2024, 64, 815–821. [Google Scholar] [CrossRef]
- Ma, G.; Li, H. Acoustic emission monitoring and damage assessment of FRP-strengthened reinforced concrete columns under cyclic loading. Constr. Build. Mater. 2017, 144, 86–98. [Google Scholar] [CrossRef]
- Wan, B. Using fiber-reinforced polymer (FRP) composites in bridge construction and monitoring their performance: An overview. In Advanced Composites in Bridge Construction and Repair; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Chow, C.L.; Lau, D. Artificial intelligence-enhanced non-destructive defect detection for civil infrastructure. Autom. Constr. 2025, 171, 105996. [Google Scholar] [CrossRef]
- Meyendorf, N.; Ida, N.; Singh, R.; Vrana, J. (Eds.) Handbook of Nondestructive Evaluation 4.0; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Maire, E.; Withers, P.J. Quantitative X-ray tomography. Int. Mater. Rev. 2014, 59, 1–43. [Google Scholar] [CrossRef]
- Riccardi, F.; Giry, C.; Gatuingt, F. Debonding Analysis of Fibre Reinforced Polymer Anchors in Concrete via In-Situ X-Ray Microtomography Tests Coupled to Volume and Digital Image Correlation. Exp. Mech. 2023, 63, 1067–1083. [Google Scholar] [CrossRef]
- Sayyar-Roudsari, S.; Shalbaftabar, A.; Damirchilo, F.; Taslimian, R.; Abu-Lebdeh, T.; Hamoush, S.; Yi, S. Defect Classification of Reinforced Concrete Structures with Nondestructive Tests Using Statistical and Machine Learning Methods. Am. J. Eng. Appl. Sci. 2024, 17, 102–115. [Google Scholar] [CrossRef]
- Kumar, A.; Arora, H.C.; Kapoor, N.R. Kumar, Artificial neural network optimized with PSO to estimate the interfacial properties between FRP and concrete surface. Adv. Comput. 2024, 135, 497–527. [Google Scholar] [CrossRef]
- Tunukovic, V.; McKnight, S.; Mohseni, E.; Pierce, S.G.; Pyle, R.; Duernberger, E.; Loukas, C.; Vithanage, R.K.W.; Lines, D.; Dobie, G.; et al. A study of machine learning object detection performance for phased array ultrasonic testing of carbon fibre reinforced plastics. NDT E Int. 2024, 144, 103094. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Machine-Learning-Based Methods for Acoustic Emission Testing: A Review. Appl. Sci. 2022, 12, 10476. [Google Scholar] [CrossRef]
- Kovačević, M.; Hadzima-Nyarko, M.; Petronijević, P.; Vasiljević, T.; Radomirović, M. Comparative Analysis of Machine Learning Models for Predicting Interfacial Bond Strength of Fiber-Reinforced Polymer-Concrete. Computation 2025, 13, 17. [Google Scholar] [CrossRef]
- Kim, B.; Lee, D.-E.; Hu, G.; Natarajan, Y.; Preethaa, S.; Rathinakumar, A.P. Ensemble Machine Learning-Based Approach for Predicting of FRP–Concrete Interfacial Bonding. Mathematics 2022, 10, 231. [Google Scholar] [CrossRef]
- Elseicy, A.; Solla, M.; Lorenzo, H. Automated delamination detection in concrete bridge decks using 1D-CNN and GPR data. Case Stud. Constr. Mater. 2025, 22, e04174. [Google Scholar] [CrossRef]
- Alhusban, M.; Alhusban, M.; Alkhawaldeh, A.A. The Efficiency of Using Machine Learning Techniques in Fiber-Reinforced-Polymer Applications in Structural Engineering. Sustainability 2023, 16, 11. [Google Scholar] [CrossRef]
Frequency Range (MHz) | Typical Penetration Depth | Resolution | Recommended Use |
---|---|---|---|
800–1000 | Up to 1.5 m | Low | Deep subsurface inspections, thick concrete |
1000–1600 | Up to 0.40 m | Moderate | Balanced inspections in medium-depth areas |
1600–2600 | Up to 0.25 m | High | Near-surface defects, bond quality evaluation |
NDT Method | Detects Debonding | Detects Voids | Detects Delamination | Depth of Penetration | Cost | Automation Potential | Key Limitations |
---|---|---|---|---|---|---|---|
VT | No | No | No | Surface only | Low | Low | Operator dependent, subjective results |
TT | Yes (Limited) | No | Yes | Surface only | Low | Low | Qualitative, operator dependent |
IE | Yes | Yes | Yes | Moderate (~200 mm) | Medium | Moderate | Requires expertise, affected by material heterogeneity |
GPR | Limited (CFRP) | Yes | Yes | High (~500 mm) | Medium-High | High | Ineffective for conductive CFRP |
UT | Yes | Yes | Yes | Moderate (~300 mm) | Medium | Moderate | Requires coupling medium, sensitive to surface roughness |
PAUT | Yes | Yes | Yes | Moderate (~350 mm) | High | High | High cost, requires skilled operators |
IRT | Yes | No | Yes | Shallow (~50 mm) | Medium | High | Sensitive to environmental conditions |
AIT | Yes | No | Yes | Surface to moderate (~150 mm) | Medium | Moderate | Operator dependent, susceptible to environmental noise |
ECT | No | No | Yes (for CFRP) | Shallow (~5 mm) | High | Moderate | Limited to conductive materials |
AE | Yes | No | Yes | Deep (varies) | High | High | Requires load application, noise interference |
RT | Yes, lab-scale | Yes | Yes | High (~500 mm) | Very High | Moderate | High radiation exposure, limited field use, costly |
NDT Method | Typical AI/ML Models | Accuracy/F1 Score | Use Case Suitability |
---|---|---|---|
VT | CNN, Transfer Learning | 95–98% | Crack and surface flaw classification |
TT | SVM, RF, ANN | 70–85% | Qualitative bond check, delamination cues |
IE | SVM, 1D CNN, Hybrid ANN | 80–90% | Voids, debonding, frequency domain analysis |
GPR | 1D CNN, RNN | 85–95% | Real-time damage evolution and type classification |
UT | 1D CNN, ANN, SVM | 80–90% | Interface debonding detection |
PAUT | 2D CNN, SVM, RF, Transfer Learning | 85–99% | Subsurface delamination and rebar localization |
IRT | CNN, U-Net, Mask R-CNN | 90–97% | Internal delamination and interface flaw identification |
AIT | ANN, CNN, SVM | 90–95% | Imaging of CFRP defects, bond evaluation |
ECT | SVM, RF, CNN | 90–96% | Surface/subsurface debonding detection |
AE | 1D CNN, RNN, SVM | 85–95% | Conductive CFRP integrity analysis |
RT | CNN, Transfer Learning | 90–95% | Deep internal voids and FRP delamination visualization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsuhaibani, E. Nondestructive Testing of Externally Bonded FRP Concrete Structures: A Comprehensive Review. Polymers 2025, 17, 1284. https://doi.org/10.3390/polym17091284
Alsuhaibani E. Nondestructive Testing of Externally Bonded FRP Concrete Structures: A Comprehensive Review. Polymers. 2025; 17(9):1284. https://doi.org/10.3390/polym17091284
Chicago/Turabian StyleAlsuhaibani, Eyad. 2025. "Nondestructive Testing of Externally Bonded FRP Concrete Structures: A Comprehensive Review" Polymers 17, no. 9: 1284. https://doi.org/10.3390/polym17091284
APA StyleAlsuhaibani, E. (2025). Nondestructive Testing of Externally Bonded FRP Concrete Structures: A Comprehensive Review. Polymers, 17(9), 1284. https://doi.org/10.3390/polym17091284