Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Radiation Pattern
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Ali, H.; Ideris, N.S.M.; Zaidi, A.A.; Azalan, M.Z.; Amran, T.T.; Ahmad, M.; Rahim, N.A.; Shukor, S.A. Ground penetrating radar for buried utilities detection and mapping: A review. J. Phys. Conf. Ser. 2021, 2107, 012056. [Google Scholar]
- Pryshchenko, O.A.; Plakhtii, V.; Dumin, O.M.; Pochanin, G.P.; Ruban, V.P.; Capineri, L.; Crawford, F. Implementation of an artificial intelligence approach to GPR systems for landmine detection. Remote Sens. 2022, 14, 4421. [Google Scholar] [CrossRef]
- Manataki, M.; Vafidis, A.; Sarris, A. GPR data interpretation approaches in archaeological prospection. Appl. Sci. 2021, 11, 7531. [Google Scholar] [CrossRef]
- Spears, M.; Hedjazi, S.; Taheri, H. Ground penetrating radar applications and implementations in civil construction. J. Struct. Integr. Maint. 2023, 8, 36–49. [Google Scholar] [CrossRef]
- Ding, C.; Li, J.; Hu, R. Moon-based ground-penetrating radar observation of the latest volcanic activity at the Chang’E-4 landing site. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4600410. [Google Scholar]
- Hamran, S.E.; Paige, D.A.; Amundsen, H.E.; Berger, T.; Brovoll, S.; Carter, L.; Damsgård, L.; Dypvik, H.; Eide, J.; Eide, S.; et al. Radar imager for Mars’ subsurface experiment—RIMFAX. Space Sci. Rev. 2020, 216, 128. [Google Scholar] [CrossRef]
- Casademont, T.M.; Dypvik, H.; Eide, S.; Berger, T.; Hamran, S.E. Martian ground penetrating radar: Towards automated diffraction detection for dielectric permittivity. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4511210. [Google Scholar]
- Ciarletti, V.; Corbel, C.; Plettemeier, D.; Cais, P.; Clifford, S.M.; Hamran, S.E. WISDOM GPR designed for shallow and high-resolution sounding of the Martian subsurface. Proc. IEEE 2011, 99, 824–836. [Google Scholar] [CrossRef]
- Guan, W.; Su, Y.; Li, J.; Dai, S.; Ding, C.; Liu, Y. Applications of ground-penetrating radar in asteroid and comet exploration. Remote Sens. 2024, 16, 2188. [Google Scholar] [CrossRef]
- Hertl, I.; Strycek, M. UWB antennas for ground penetrating radar application. In Proceedings of the 2007 19th International Conference on Applied Electromagnetics and Communications, Dubrovnik, Croatia, 24–26 September 2007; pp. 1–4. [Google Scholar]
- Ali, J.; Abdullah, N.; Ismail, M.Y.; Mohd, E.; Shah, S.M. Ultra-wideband antenna design for GPR applications: A review. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 392–400. [Google Scholar] [CrossRef]
- Chakrabarti, N.; Kalra, S.; Saxena, S.; Tripathy, M.R. Ultra-wideband antenna for a ground penetrating radar. In Proceedings of the 2016 Thirteenth International Conference on Wireless and Optical Communications Networks (WOCN), Hyderabad, India, 21–23 July 2016; pp. 1–6. [Google Scholar]
- Sutham, T.; Thaiwirot, W.; Akkaraekthalin, P. Design of Ultra-Wideband Inverted U-Shaped Slot Antenna with Reflector for GPR Applications. In Proceedings of the 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Prachuap Khiri Khan, Thailand, 24–27 May 2022; pp. 1–4. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Travassos, X.; Avila, S.; Adriano, R.d.S.; Ida, N. A review of ground penetrating radar antenna design and optimization. J. Microw. Optoelectron. Electromagn. Appl. 2018, 17, 385–402. [Google Scholar] [CrossRef]
- Abdelgwad, A.H. Microstrip patch antenna enhancement techniques. Int. J. Electron. Commun. Eng. 2018, 12, 703–710. [Google Scholar]
- Cao, P.; Huang, Y.; Zhang, J. A UWB monopole antenna for GPR application. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 2837–2840. [Google Scholar]
- Ismail, O.; Youssef, L.; Otman, O.; Aghanim, A. Design of a Circular Patch Antenna with a reflector for GPR applications. ITM Web Conf. 2022, 48, 01004. [Google Scholar]
- Khalid, N.; Ibrahim, S.; Karim, M. Directional and wideband antenna for ground penetrating radar (GPR) applications. In Proceedings of the 2016 3rd International Conference on Electronic Design (ICED), Phuket, Thailand, 11–12 August 2016; pp. 203–206. [Google Scholar]
- Karim, M.A.; Malek, M.F.; Jamlos, M.; Seng, L.; Saudin, N. Design of ground penetrating radar antenna for buried object detection. In Proceedings of the 2013 Ieee International Rf and Microwave Conference (RFM), Penang, Malaysia, 9–11 December 2013; pp. 253–257. [Google Scholar]
- Trivedi, D.; Gotra, S.; Phartiyal, G.S.; Singh, D. An Ultra-Wideband Dual-layer Microstrip Planar Antenna for Radar Imaging System. In Proceedings of the 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), Guangzhou, China, 14–17 December 2022; pp. 1–4. [Google Scholar]
- Raza, A.; Lin, W.; Chen, Y.; Yanting, Z.; Chattha, H.T.; Sharif, A.B. Wideband tapered slot antenna for applications in ground penetrating radar. Microw. Opt. Technol. Lett. 2020, 62, 2562–2568. [Google Scholar]
- Raza, A.; Lin, W.; Ishfaq, M.; Inam, M.; Masud, F.; Dahri, M. A Wideband Reflector-Backed Antenna for Applications in GPR. Int. J. Antennas Propag. 2021, 2021, 3531019. [Google Scholar]
- Nayak, R.; Maiti, S.; Patra, S.K. Design and simulation of compact UWB Bow-tie antenna with reduced end-fire reflections for GPR applications. In Proceedings of the 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 23–25 March 2016; pp. 1786–1790. [Google Scholar]
- Wu, Y.; Shen, F.; Yuan, Y.; Xu, D. An improved modified universal ultra-wideband antenna designed for step frequency continuous wave ground penetrating radar system. Sensors 2019, 19, 1045. [Google Scholar] [CrossRef] [PubMed]
Parameter | Symbol | Value |
---|---|---|
Total length of the substrate | 300.00 mm | |
Total width of the substrate | 200.00 mm | |
Length of the radiating patch | 170.00 mm | |
Width of the radiating patch | 123.00 mm | |
Length of the slot in the patch | 109.00 mm | |
Width of the slot in the patch | 70.00 mm | |
Length of the feed line | 107.00 mm | |
Width of the feed line | 3.14 mm | |
Radius of the top corners of the patch | 60.00 mm | |
Radius of the bottom corners of the patch | 34.00 mm | |
Slot offset from the patch edge | 3.00 mm | |
Length of the ground plane | 106.50 mm | |
Width of the ground plane | 172.70 mm | |
Length of the slot strip in the ground plane | 110.00 mm | |
Width of the slot strip in the ground plane | 20.00 mm |
Sl. No. | Author | Antenna Configuration | Bandwidth (GHz) | Centre Frequency (GHz) | Reflector Used | Overall Antenna Dimensions (mm3) | Maximum Gain |
---|---|---|---|---|---|---|---|
1 | Nayak et al. (2016) [25] | Bow-tie | 0.4 to 4.5 | 1.5 | No | 510 × 220 × 5 | 7 dB @ 2.5 GHz |
2 | Khalid et al. (2016) [20] | Bow-tie patch | 0.5 to 3 | 2.5 | Yes | 100 × 140 × 37 | 8.314 dB @ 1.75 GHz |
3 | Wu et al. (2019) [26] | Bow-tie | 0.64 to 2.2 | - | Yes | 177.75 × 91.5 × 74.25 | 5.1 dB |
4 | Raza et al. (2021) [24] | Tapered feed | 0.6 to 4.6 | - | Yes | 180 × 220 × 50 | 7 dB |
5 | Trivedi et al. (2022) [22] | Circular patch | 1.03 to 9 | - | Yes | 106.4 × 154.4 × 50 | 8.65 dB |
6 | Sutham et al. (2022) [14] | Inverted U-shaped patch | 0.33 to 3.59 | - | Yes | 260 × 300 × 230 | 8.86 dB @ 1.5 GHz |
7 | Present work | Inverted U-shaped patch | 1.13 to 4 | 1.5 | No | 200 × 300 × 1.6 | 5.24 dB @ 1.5 GHz 7.27 dB @ 4 GHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalita, A.J.; Barkataki, N.; Sarma, U. Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications. Eng. Proc. 2025, 87, 25. https://doi.org/10.3390/engproc2025087025
Kalita AJ, Barkataki N, Sarma U. Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications. Engineering Proceedings. 2025; 87(1):25. https://doi.org/10.3390/engproc2025087025
Chicago/Turabian StyleKalita, Ankur Jyoti, Nairit Barkataki, and Utpal Sarma. 2025. "Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications" Engineering Proceedings 87, no. 1: 25. https://doi.org/10.3390/engproc2025087025
APA StyleKalita, A. J., Barkataki, N., & Sarma, U. (2025). Design and Optimisation of Inverted U-Shaped Patch Antenna for Ultra-Wideband Ground-Penetrating Radar Applications. Engineering Proceedings, 87(1), 25. https://doi.org/10.3390/engproc2025087025