Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = green ammonia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 560 KB  
Proceeding Paper
Campfire: Innovative Cost Modeling and Market Forecasting for Ammonia as a Maritime Fuel
by Mohamed Amin, Edward Antwi, Mirko Post, Romy Sommer, Qahtan Thabit and Johannes Gulden
Eng. Proc. 2026, 121(1), 20; https://doi.org/10.3390/engproc2025121020 - 16 Jan 2026
Abstract
In recent years, Ammonia has emerged as a promising carbon-free fuel alternative, offering considerable potential to reduce CO2 emissions and contribute to the decarbonization of the transportation industry. This study focuses on the economic feasibility and market price of ammonia now and [...] Read more.
In recent years, Ammonia has emerged as a promising carbon-free fuel alternative, offering considerable potential to reduce CO2 emissions and contribute to the decarbonization of the transportation industry. This study focuses on the economic feasibility and market price of ammonia now and in the future, highlighting the necessary infrastructure for emission-free transport operation. The project compares various production pathways for alternative fuels including hydrogen, ammonia, methanol, LNG, and diesel, considering both “green” and “gray” production methods. A key output of this research is the development of a flexible cost calculation tool, which allows users to simulate various scenarios by adjusting variables to ensure the continuity of the project. This tool enables dynamic analysis of future fuel prices and operational costs, accounting for the fluctuating electricity prices for green ammonia production and the long-term rise in CO2 prices. Moreover, the study provides detailed cost modeling, infrastructure requirements, and refueling options for ammonia in comparison to other fuels. The findings indicate that ammonia is a promising long-term option for the maritime sector. While the adaptation to ammonia-based engines remains in the research phase, the long-term benefits of lower emissions and operating costs justify the investment in the necessary research and infrastructure, such as storage and refueling facilities. Full article
Show Figures

Figure 1

16 pages, 2039 KB  
Article
Integrated Transcriptomic and Proteomic Analysis of the Stress Response Mechanisms of Micractinium from the Tibetan Plateau Under Leather Wastewater Exposure
by Haoyu Wang, Bo Fang, Geng Xu, Kejie Li, Fangjing Xiao, Qiangying Zhang, Duo Bu and Xiaomei Cui
Biology 2026, 15(2), 123; https://doi.org/10.3390/biology15020123 - 9 Jan 2026
Viewed by 173
Abstract
In this study, a strain of green microalga adapted to the extreme environmental conditions of the Tibetan Plateau was isolated from the Lalu Wetland. The isolate was identified and tentatively designated as Micractinium sp. LL-1. Following the inoculation of strain LL-1 into tannery [...] Read more.
In this study, a strain of green microalga adapted to the extreme environmental conditions of the Tibetan Plateau was isolated from the Lalu Wetland. The isolate was identified and tentatively designated as Micractinium sp. LL-1. Following the inoculation of strain LL-1 into tannery wastewater, the ammonia nitrogen concentration was rapidly reduced, achieving a removal efficiency of 98.7%. The maximum accumulated biomass reached 1641.68 mg/L and 1461.28 mg/L. Integrated transcriptomic and label-free quantitative proteomic approaches were employed to systematically investigate the molecular response mechanisms of LL-1 under tannery wastewater stress. Transcriptomic analysis revealed that differentially expressed genes were enriched in pathways related to cell proliferation, morphogenesis, intracellular transport, protein synthesis, photosynthesis, and redox processes. Proteomic analysis indicated that LL-1 enhances cellular and enzymatic activities, strengthens regulatory capacity, modulates key metabolic pathways, and upregulates stress-responsive proteins. Under tannery wastewater stress, LL-1 exhibits dynamic adaptation involving signal perception and metabolic reconfiguration through the coordinated regulation of multiple pathways. Specifically, ribosomal translation and nucleic acid binding regulate biosynthetic capacity; the redistribution of energy metabolism boosts photosynthetic carbon fixation and ATP generation; and membrane transport coupled with antioxidant mechanisms mitigates stress-induced damage. Collectively, this study provides theoretical insights into microalgal adaptation to complex wastewater environments and offers potential targets for strain improvement and wastewater valorization. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

18 pages, 2332 KB  
Review
Recent Advances in Photoelectrochemical Nitrate Reduction to Ammonia
by Kaixin Zhu and Hefeng Zhang
Int. J. Mol. Sci. 2026, 27(1), 470; https://doi.org/10.3390/ijms27010470 - 1 Jan 2026
Viewed by 450
Abstract
Ammonia, as an essential chemical, plays an indispensable role in both industry and agriculture. However, the traditional Haber–Bosch technique for ammonia synthesis suffers from high energy consumption and significant CO2 emissions. Therefore, developing an energy-efficient and eco-friendly method for ammonia production is [...] Read more.
Ammonia, as an essential chemical, plays an indispensable role in both industry and agriculture. However, the traditional Haber–Bosch technique for ammonia synthesis suffers from high energy consumption and significant CO2 emissions. Therefore, developing an energy-efficient and eco-friendly method for ammonia production is imperative. Photoelectrochemical (PEC) nitrate reduction to ammonia has emerged as a promising green alternative, which utilizes renewable solar energy to convert nitrate into valuable ammonia, thereby contributing to nitrogen recycling and wastewater remediation. This review systematically summarizes recent advances in PEC nitrate reduction to ammonia, focusing on the rational design of efficient photocathodes with the development of semiconductor materials, cocatalysts, p–n junction and heterostructure strategies. Furthermore, the integration of photocathodes with photoanodes enables the assembly of bias-free PEC systems capable of simultaneously producing ammonia and value-added chemicals, demonstrating the potential for scalable solar-driven ammonia synthesis. The mechanistic studies and future research directions are also discussed. The review aims to offer valuable insights and promote the further development of PEC nitrate reduction to ammonia. Full article
(This article belongs to the Special Issue Advanced Functional Materials for Catalysis and Storage)
Show Figures

Figure 1

27 pages, 5433 KB  
Article
Comprehensive Structural, Electronic, and Biological Characterization of fac-[Re(CO)3(5,6-epoxy-5,6-dihydro-1,10-phenanthroline)Br]: X-Ray, Aromaticity, Electrochemistry, and HeLa Cell Viability
by Alexander Carreño, Vania Artigas, Evys Ancede-Gallardo, Rosaly Morales-Guevara, Roxana Arce, Luis Leyva-Parra, Angel A. Martí, Camila Videla, María Carolina Otero and Manuel Gacitúa
Inorganics 2026, 14(1), 3; https://doi.org/10.3390/inorganics14010003 - 22 Dec 2025
Viewed by 516
Abstract
The rhenium(I) tricarbonyl complex fac-[Re(CO)3(5,6-epoxy-5,6-dihydro-1,10-phenanthroline)Br] (ReL) has previously demonstrated promising luminescent properties, enabling its direct application as a probe for walled cells such as Candida albicans and Salmonella enterica. In this new study, we present a significantly expanded and [...] Read more.
The rhenium(I) tricarbonyl complex fac-[Re(CO)3(5,6-epoxy-5,6-dihydro-1,10-phenanthroline)Br] (ReL) has previously demonstrated promising luminescent properties, enabling its direct application as a probe for walled cells such as Candida albicans and Salmonella enterica. In this new study, we present a significantly expanded and comprehensive characterization of ReL, incorporating a wide range of experimental and computational techniques not previously reported. These include variable-temperature 1H and 13C NMR spectroscopy, CH-COSY, single-crystal X-ray diffraction, Hirshfeld surface analysis, DFT calculations, Fukui functions, non-covalent interaction (NCI) indices, and electrochemical profiling. Structural analysis confirmed a pseudo-octahedral geometry with the bromide ligand positioned cis to the epoxy group. NMR data revealed the coexistence of cis and trans isomers in solution, with the trans form being slightly more stable. DFT calculations and aromaticity descriptors indicated minimal electronic differences between isomers, supporting their unified treatment in subsequent analyses. Electrochemical studies revealed two oxidation and two reduction events, consistent with ECE and EEC mechanisms, including a Re(I) → Re(0) transition at −1.50 V vs. SCE. Theoretical redox potentials showed strong agreement with experimental data. Biological assays revealed a dose-dependent cytotoxic effect on HeLa cells, contrasting with previously reported low toxicity in microbial systems. These findings, combined with ReL’s luminescent and antimicrobial properties, underscore its multifunctional nature and highlight its potential as a bioactive and imaging agent for advanced therapeutic and microbiological applications. Full article
(This article belongs to the Special Issue Biological Activity of Metal Complexes)
Show Figures

Figure 1

24 pages, 14158 KB  
Article
Combustion, Emission, and Knock Characteristics in a Hydrogen-Doped Premixed Ammonia Spark-Ignition Heavy-Duty Engine
by Qian Xiong, Kai Han, Xinru Shi, Dezhi Liang, Juntao Li and Xuan Hou
Sustainability 2026, 18(1), 42; https://doi.org/10.3390/su18010042 - 19 Dec 2025
Viewed by 217
Abstract
As sustainable green fuels for heavy-duty engines, using hydrogen doping with ammonia helps to mitigate greenhouse gas emissions. Based on the background of hydrogen production from ammonia reforming, the combustion and emission characteristics of hydrogen-doped ammonia engines are studied. By employing 3D-CFD numerical [...] Read more.
As sustainable green fuels for heavy-duty engines, using hydrogen doping with ammonia helps to mitigate greenhouse gas emissions. Based on the background of hydrogen production from ammonia reforming, the combustion and emission characteristics of hydrogen-doped ammonia engines are studied. By employing 3D-CFD numerical simulation, this study systematically explores the combined effects of the ignition timing, hydrogen energy ratio (HER), and equivalence ratio (Φ) on the premixed combustion and emission performances of ammonia–hydrogen blends. The findings indicate that at the operating conditions of HER = 4% and Φ = 1.0, the indicated mean effective pressure (IMEP) reaches its maximum at −40 °CA aTDC, with the indicated thermal efficiency (ITE) reaching 48.2%. However, to mitigate knock hazards, the ignition timing should be adjusted to −37.5 °CA aTDC. With HER increasing from 4% to 25%, the flame propagation velocity is markedly improved, and the combustion duration is notably reduced. As the equivalence ratio rises from 0.8 to 1.0, the combustion intensity is strengthened while the proportion of indicated work declines. Notably, the lean burn condition (Φ = 0.8) exhibits no knock risk and achieves the highest ITE (49.2%). In terms of emission characteristics, advanced ignition timing, higher HER, and lower equivalence ratio all promote NOX formation. In contrast, N2O emissions decrease as the combustion temperature rises and the combustion duration shortens. Unburned NH3 is mainly distributed in the low-temperature areas inside the cylinder, and its emission amount decreases with the improvement of combustion completeness. Full article
(This article belongs to the Special Issue Green Shipping and Operational Strategies of Clean Energy)
Show Figures

Figure 1

20 pages, 2412 KB  
Article
Synergistic Temperature–Pressure Optimization in PEM Water Electrolysis: A 3D CFD Analysis for Efficient Green Ammonia Production
by Dexue Yang, Xiaomeng Zhang, Jianpeng Li, Fengwei Rong, Jiang Zhu, Guidong Li, Xu Ji and Ge He
Energies 2026, 19(1), 2; https://doi.org/10.3390/en19010002 - 19 Dec 2025
Viewed by 352
Abstract
To address the fluctuation and instability of renewable power generation and the steady-state demands of chemical processes, a single-channel, non-isothermal computational fluid dynamics 3D model was developed. This model explicitly incorporates the coupling effects of electrochemical reactions, two-phase flow, and heat transfer. Subsequently, [...] Read more.
To address the fluctuation and instability of renewable power generation and the steady-state demands of chemical processes, a single-channel, non-isothermal computational fluid dynamics 3D model was developed. This model explicitly incorporates the coupling effects of electrochemical reactions, two-phase flow, and heat transfer. Subsequently, the influence of key operating parameters on proton exchange membrane water electrolyzer (PEMWE) system performance was investigated. The model accurately predicts the current–voltage polarization curve and has been validated against experimental data. Furthermore, the CFD model was employed to investigate the coupled effects of several key parameters—including operating temperature, cathode pressure, membrane thickness, porosity of the porous transport layer, and water inlet rate—on the overall electrolysis performance. Based on the numerical simulation results, the evolution of the ohmic polarization curve under temperature gradient, the block effect of bubble transport under high pressure, and the influence mechanism of the microstructure of the multi-space transport layer on gas–liquid, two-phase flow distribution are mainly discussed. Operational strategy analysis indicates that the high-efficiency mode (4.3–4.5 kWh/Nm3) is suitable for renewable energy consumption scenarios, while the economy mode (4.7 kWh/Nm3) reduces compression energy consumption by 23% through pressure–temperature synergistic optimization, achieving energy consumption alignment with green ammonia synthesis processes. This provides theoretical support for the optimization design and dynamic regulation of proton exchange membrane water electrolyzers. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen Production Technologies)
Show Figures

Figure 1

18 pages, 2203 KB  
Article
Assessing the Feasibility of Geothermal-to-X for Sustainable Maritime Refueling in Alaska
by Emily Cook and Magnus de Witt
Clean Technol. 2025, 7(4), 115; https://doi.org/10.3390/cleantechnol7040115 - 18 Dec 2025
Viewed by 420
Abstract
The Arctic is warming three to four times faster than the global average. This is transforming global maritime routes, thereby increasing shipping and resource extraction in Alaska. This surge requires sustainable energy solutions as policy trends towards stricter emissions standards. This article assesses [...] Read more.
The Arctic is warming three to four times faster than the global average. This is transforming global maritime routes, thereby increasing shipping and resource extraction in Alaska. This surge requires sustainable energy solutions as policy trends towards stricter emissions standards. This article assesses the potential of Geothermal-to-X (GtX) technologies in establishing clean refueling infrastructure across Alaska, using its untapped geothermal resources. GtX uses electrolysis to split water into hydrogen and oxygen, a process powered by geothermal energy. Hydrogen and its X products, such as green methane or green ammonia, can be stored as fuels and are largely recognized as the key to a carbon-free future to address the growing energy demand. This study assesses the technical, economic, strategic, and geological feasibility of GtX refueling hubs in Alaska. Five locations were denoted as potential candidates and beckon future research. This study concludes that Unalaska is the most viable initial GtX hub given the highest Multi Criteria Decision Analysis (MCDA) score from its combination of a high-quality geothermal resource, an existing and accessible deepwater port, and a sizable local energy demand. The goal of this study is to provide an accessible and comprehensive resource for stakeholders and policymakers, outlining an energy future with sustainable maritime development, powered by affordable and secure energy. Full article
Show Figures

Figure A1

28 pages, 3077 KB  
Review
Sustainable Maritime Decarbonization: A Review of Hydrogen and Ammonia as Future Clean Marine Energies
by Chungkuk Jin, JungHwan Choi, Changhee Lee and MooHyun Kim
Sustainability 2025, 17(24), 11364; https://doi.org/10.3390/su172411364 - 18 Dec 2025
Viewed by 723
Abstract
Maritime transport accounts for approximately 80–90% of global trade and nearly 3% of global greenhouse gas (GHG) emissions. In response, the International Maritime Organization (IMO) adopted an ambitious strategy for net-zero emissions by 2050, critically mandating a Well-to-Wake (WtW) life-cycle assessment for fuels. [...] Read more.
Maritime transport accounts for approximately 80–90% of global trade and nearly 3% of global greenhouse gas (GHG) emissions. In response, the International Maritime Organization (IMO) adopted an ambitious strategy for net-zero emissions by 2050, critically mandating a Well-to-Wake (WtW) life-cycle assessment for fuels. This framework invalidates fuels produced with high carbon intensity, regardless of their emissions at the point of use, thereby compelling the industry to focus on truly clean and sustainable alternatives. This push positions green hydrogen and ammonia as leading solutions, though they present a distinct trade-off. Hydrogen is an ideal fuel with zero-carbon emission in fuel cells but faces significant storage challenges due to its extremely low volumetric energy density and cryogenic requirements. In contrast, ammonia offers superior energy density and easier handling but contends with issues of toxicity and potentially harmful emissions like nitrous oxide. This paper provides a comprehensive review of this complex landscape, analyzing the production, utilization, and associated techno-economic and geopolitical challenges of using hydrogen and ammonia as future marine fuels, with environmental aspects briefly considered. Full article
Show Figures

Figure 1

19 pages, 2424 KB  
Article
A Multi-Time Scale Optimal Dispatch Strategy for Green Ammonia Production Using Wind–Solar Hydrogen Under Renewable Energy Fluctuations
by Yong Zheng, Shaofei Zhu, Dexue Yang, Jianpeng Li, Fengwei Rong, Xu Ji and Ge He
Energies 2025, 18(24), 6518; https://doi.org/10.3390/en18246518 - 12 Dec 2025
Viewed by 509
Abstract
This paper develops an optimal dispatch model for an integrated wind–solar hydrogen-to-ammonia system to address the mismatch between renewable-energy fluctuations and chemical production loads. The model incorporates renewable variability, electrolyzer dynamics, hydrogen-storage regulation, and ammonia-synthesis load constraints, and is solved using a multi-time-scale [...] Read more.
This paper develops an optimal dispatch model for an integrated wind–solar hydrogen-to-ammonia system to address the mismatch between renewable-energy fluctuations and chemical production loads. The model incorporates renewable variability, electrolyzer dynamics, hydrogen-storage regulation, and ammonia-synthesis load constraints, and is solved using a multi-time-scale MILP framework. An efficiency-priority power allocation strategy is further introduced to account for performance differences among electrolyzers. Using real wind–solar output data, a 72-h case study compares three operational schemes: the Balanced Scheme, the Steady-State Scheme, and the Following Scheme. The proposed Balanced Scheme reduces renewable curtailment to 2.4%, lowers ammonia load fluctuations relative to the Following Scheme, and decreases electricity consumption per ton of ammonia by 19.4% compared with the Steady-State Scheme. These results demonstrate that the integrated dispatch model and electrolyzer-cluster control strategy enhance system flexibility, energy efficiency, and overall economic performance in renewable-powered ammonia production. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen Production Technologies)
Show Figures

Figure 1

29 pages, 5360 KB  
Review
Marine Lifecycle Carbon Footprint Toward Carbon Neutrality: Recent Progress and Prospects
by Yuhang Chang, Dai Liu, Feixiang Chang, Chang Zhai, Long Liu, Hongliang Luo, Meiqi Yu, Juncong Ge and Keiya Nishida
Processes 2025, 13(12), 3997; https://doi.org/10.3390/pr13123997 - 10 Dec 2025
Viewed by 510
Abstract
The problem of global climate change is becoming increasingly serious, drawing worldwide attention to the need for carbon emissions reduction. As a primary mode of transport, maritime shipping accounts for 2% of global carbon emissions. Therefore, researchers have turned their attention to marine [...] Read more.
The problem of global climate change is becoming increasingly serious, drawing worldwide attention to the need for carbon emissions reduction. As a primary mode of transport, maritime shipping accounts for 2% of global carbon emissions. Therefore, researchers have turned their attention to marine carbon emissions. Specifically, lifecycle assessment (LCA) has attracted wide attention due to its comprehensiveness and objectivity. This article reviews alternate fuels like biodiesel, liquefied natural gas (LNG), methanol, ammonia, and hydrogen. These fuels generate fewer Tank-to-Wake (TTW) carbon emissions than conventional diesel but higher emissions in the Well-to-Tank (WTT) stage owing to production-related emissions, resulting in varying overall carbon footprints. Most carbon emissions in marine transportation come from fuel consumption. Selecting the shortest route can cut fuel use and emissions. Port greening and electrification are vital for emission cuts. Current marine LCA research exhibits key gaps, including fragmented case studies, a lack of methodological standardization, and insufficient dynamic predictive capacity, severely constraining its guiding value for industry decarbonization pathways. This study systematically reviews and categorizes marine LCA research from the past decade in both Chinese and English from the Web of Science and CNKI databases through a Ship-Route-Port framework. Specifically, 34 papers underwent quantitative or qualitative analysis, comprehensively comparing the full lifecycles of six mainstream marine alternative fuels: biodiesel, LNG, methanol, ammonia, hydrogen, and electricity. This study also underscores the need for unified standards to boost low-carbon fuel use and explores the unique challenges and uncertainties involved in applying LCA to the marine sector. LCA applied to the maritime sector shows promise as a valuable tool for guiding low-carbon transition strategies. Full article
(This article belongs to the Topic Marine Energy)
Show Figures

Figure 1

18 pages, 3197 KB  
Article
Enhancing Anaerobic Digestion of Kitchen Waste via Functional Microbial Granular Sludge Addition
by Zugen Liu, Yuying Hu, Xin Wang and Ningxin Fu
Sustainability 2025, 17(24), 10956; https://doi.org/10.3390/su172410956 - 8 Dec 2025
Viewed by 308
Abstract
Given the sustainable increase in kitchen waste production, the treatment of organic waste is quite important for both alleviating environmental risks and recovering biomass energy. Anaerobic digestion (AD) could achieve the goals of both organic stabilization and the green energy production of biogas. [...] Read more.
Given the sustainable increase in kitchen waste production, the treatment of organic waste is quite important for both alleviating environmental risks and recovering biomass energy. Anaerobic digestion (AD) could achieve the goals of both organic stabilization and the green energy production of biogas. However, AD conducted at a high organic loading rate can easily suffer from low treatment efficiency due to the accumulation of volatile fatty acids and an imbalance in the microbial community. This study investigated the functional microbial enhancement strategy for enhancing AD performance. The results suggested that adding 10 g of granular sludge every 5 days could enhance AD efficiency. In that case, the daily average methane production rate was increased by 43.21% compared to that in the control group, and the pH and ammonia nitrogen concentration were maintained at the optimal level. Humic acid production was strengthened; it served as an electron shuttle, which facilitated direct interspecies electron transfer. Both Cloacimonadota and Methanobacterium were enriched in the system inoculated with the granular sludge. Metabolomics indicated that the acetyl–CoA conversion was strengthened, and that energy metabolism (complex I and archaeal ATPase) was also enhanced. The granular sludge inoculation also activated the archaeal genetic information processing system. This technology could promote the generation of green energy, which is more conducive to sustainable resource development. This study provides the theoretical basis for a microbial enhancement strategy that can enhance kitchen waste AD. Full article
Show Figures

Figure 1

24 pages, 3986 KB  
Article
From Cellulose to Functional Electrode SCNF:rGO Hybrid Films for Electrochemical Applications
by Josefa Silva, José Raúl Sosa-Acosta, Galo Ramírez, Katherina Fernández and Rodrigo del Rio
Polymers 2025, 17(23), 3225; https://doi.org/10.3390/polym17233225 - 4 Dec 2025
Viewed by 479
Abstract
Sulfated nanocellulose (SCNF) and reduced graphene oxide (rGO) films were fabricated through environmentally friendly methods to develop an effective platform for electrochemical applications. The hybrid materials were extensively characterized by FTIR, XRD, Raman spectroscopy, TGA, SEM, cyclic voltammetry (CV), and electrochemical impedance spectroscopy [...] Read more.
Sulfated nanocellulose (SCNF) and reduced graphene oxide (rGO) films were fabricated through environmentally friendly methods to develop an effective platform for electrochemical applications. The hybrid materials were extensively characterized by FTIR, XRD, Raman spectroscopy, TGA, SEM, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Results showed that incorporating rGO into the SCNF matrix significantly improved the electrical conductivity and structural robustness of the films. FTIR confirmed interactions between sulfate groups on cellulose and residual oxygen-containing groups on rGO, while XRD and Raman analyses indicated reduced crystallinity and increased structural disorder, supporting the successful integration of both phases. XPS further demonstrated that SCNF and rGO form chemical bonds rather than simply mixing, with both components remaining active at the surface—evidence of strong interfacial interactions that contribute to enhanced stability and efficient charge transfer. The 1:5 (rGO:SCNF) composition showed the best electrochemical performance, exhibiting minimal charge-transfer resistance and improved hydrazine oxidation, as reflected by a shift of the anodic peak potential toward lower values. Additionally, functionalization with cobalt porphyrin significantly boosted catalytic activity. Overall, the SCNF:rGO films offer a sustainable and scalable platform for electrochemical sensing and energy-conversion applications, demonstrating excellent adaptability and functional performance. Full article
(This article belongs to the Topic Application of Graphene-Based Materials, 2nd Edition)
Show Figures

Figure 1

21 pages, 9512 KB  
Article
Cold Shock-Induced Nanocomposite Polymer Packaging Maintains Postharvest Quality of Vegetable Soybeans
by Xiaogang Wang, Liangyi Zhao, Xiaohuan Liang, Yonghua Zheng and Peng Jin
Foods 2025, 14(23), 4129; https://doi.org/10.3390/foods14234129 - 2 Dec 2025
Viewed by 402
Abstract
Vegetable soybean is a major crop in China with significant economic value. However, it is prone to yellowing and browning during postharvest storage, which reduces quality, marketability, and competitiveness. ‘Tongdou No. 6’ was used to evaluate postharvest quality preservation through combined cold shock [...] Read more.
Vegetable soybean is a major crop in China with significant economic value. However, it is prone to yellowing and browning during postharvest storage, which reduces quality, marketability, and competitiveness. ‘Tongdou No. 6’ was used to evaluate postharvest quality preservation through combined cold shock treatment and nanocomposite polymer packaging. The results demonstrate that the combined treatment effectively slows the green-to-yellow color change by significantly reducing chroma a* value, weight loss, and chlorophyll degradation. Additionally, it markedly reduces the accumulation of malondialdehyde (MDA) and reactive oxygen species (H2O2 and O2·), while decreasing the activities of polyphenol oxidase (PPO) and peroxidase (POD). The treatment also significantly enhanced the levels of antioxidant compounds, including ascorbic acid (AsA), total phenolics, and total flavonoids, and boosted the activities of key antioxidant enzymes—ascorbate peroxidase (APX), superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), and catalase (CAT). Moreover, the combined application of cold shock and nanocomposite polymer packaging significantly enhanced the scavenging capacity against DPPH and hydroxyl (OH) radicals. Overall, combining these two techniques effectively delayed senescence-related discoloration by activating the antioxidant system, regulating ROS metabolism, and reducing oxidative damage. This approach is highly effective in maintaining postharvest quality and offers a promising solution to the storage-induced deterioration of vegetable soybeans. Full article
(This article belongs to the Special Issue Postharvest Technologies and Applications in Food and Its Products)
Show Figures

Figure 1

26 pages, 5155 KB  
Article
Integrated CFD and ANN Approach for Predicting Blade Deformation and Aerodynamic Response
by Hudhaifa Hamzah, Ali Alkhabbaz, Aisha Koprulu, Laith M. Jasim, Ibrahim K. Alzubaidi, Abdulelah Hameed Yaseen, Ho-Seong Yang and Young-Ho Lee
Wind 2025, 5(4), 33; https://doi.org/10.3390/wind5040033 - 1 Dec 2025
Viewed by 429
Abstract
The growing demand for renewable energy has amplified the need for efficient and reliable wind turbine technologies, where understanding aerodynamic performance and aeroelastic behavior plays a critical role. In this study, a high-fidelity computational fluid dynamics (CFD) model was developed to analyze the [...] Read more.
The growing demand for renewable energy has amplified the need for efficient and reliable wind turbine technologies, where understanding aerodynamic performance and aeroelastic behavior plays a critical role. In this study, a high-fidelity computational fluid dynamics (CFD) model was developed to analyze the aerodynamic loads and structural responses of a 2 kW horizontal-axis wind turbine, while an artificial neural network (ANN) was trained using CFD-generated data to predict power output and aeroelastic characteristics. The work combines ANN predictions and CFD simulations to determine the feasibility of machine learning as a surrogate model, which is much less expensive in terms of computational costs and time, with no negative effects on the accuracy. Findings indicate ANN predictions are closely comparable to CFD results with under 5–7% deviation at optimal blade pitch angles, which was shown to be very reliable in capturing nonlinear aerodynamic trends at different wind speeds and blade pitch angles. In addition, the obtained result emphasizes the example of the trade-off between aerodynamic efficiency and structural safety, where the largest power coefficient (0.42) was achieved at 0° pitch and the tip deflections were reduced by almost 60% as the pitch was raised to 5°. Such results substantiate the usefulness of ANN-based methods in the rapid aerodynamic and aeroelastic simulation of wind turbines and provide a prospective direction for effectively designed wind power generation and optimization. Full article
Show Figures

Figure 1

29 pages, 3429 KB  
Review
Advances in Layered Double Hydroxide (LDH)-Based Materials for Electrocatalytic Nitrogen Reduction to Ammonia: A Comprehensive Review
by Sayali S. Kulkarni, Ganesh L. Khande, Jayavant L. Gunjakar and Valmiki B. Koli
Nitrogen 2025, 6(4), 106; https://doi.org/10.3390/nitrogen6040106 - 21 Nov 2025
Viewed by 939
Abstract
Nitrogen (N2), constituting the majority of Earth’s atmosphere, remains indispensable for biological systems and underpins modern agriculture and industry. Traditionally, the Haber–Bosch process has been essential for synthesizing ammonia (NH3) from N2 under high temperature and pressure, but [...] Read more.
Nitrogen (N2), constituting the majority of Earth’s atmosphere, remains indispensable for biological systems and underpins modern agriculture and industry. Traditionally, the Haber–Bosch process has been essential for synthesizing ammonia (NH3) from N2 under high temperature and pressure, but it contributes significantly to global CO2 emissions. Recently, carbon-free electrocatalytic nitrogen reduction (e-NRR) has emerged as a promising, eco-friendly, and cost-effective approach for green NH3 production under mild conditions using renewable energy, offering a sustainable alternative to the fossil fuel dependent Haber–Bosch process. This work explores NRR by contrasting the limitations of Haber–Bosch with the advantages of electrocatalysis. Despite progress, electrochemical N2 reduction to NH3 production remains challenging due to low activity, poor selectivity, stability, efficiency, and detection issues. Developing efficient e-NRR electrocatalysts is crucial to enhance activity, suppress hydrogen evolution reaction (HER), boost NH3 yield, and improve Faradaic efficiency. This review highlights the role of layered double hydroxide (LDH) catalysts in e-NRR, summarizing the fundamental process, reaction pathways, and synthesis strategies. Ammonia detection methods, key metrics, and potential contamination issues are compared to inform standard NRR measurement protocols. Lastly, we summarize key findings to synthesize and improve LDH electrocatalysts for NH3 production and a sustainable, carbon-free N2 economy. Full article
Show Figures

Figure 1

Back to TopTop