Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,118)

Search Parameters:
Keywords = graphene transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 23912 KiB  
Article
First-Principles Study on the Modulation of Schottky Barrier in Graphene/Janus MoSSe Heterojunctions by Interface Contact and Electric Field Effects
by Zhe Zhang, Jiahui Li, Xiaopei Xu and Guodong Shi
Nanomaterials 2025, 15(15), 1174; https://doi.org/10.3390/nano15151174 - 30 Jul 2025
Viewed by 161
Abstract
Constructing heterojunctions can combine the superior performance of different two-dimensional (2D) materials and eliminate the drawbacks of a single material, and modulating heterojunctions can enhance the capability and extend the application field. Here, we investigate the physical properties of the heterojunctions formed by [...] Read more.
Constructing heterojunctions can combine the superior performance of different two-dimensional (2D) materials and eliminate the drawbacks of a single material, and modulating heterojunctions can enhance the capability and extend the application field. Here, we investigate the physical properties of the heterojunctions formed by the contact of different atom planes of Janus MoSSe (JMoSSe) and graphene (Gr), and regulate the Schottky barrier of the Gr/JMoSSe heterojunction by the number of layers and the electric field. Due to the difference in atomic electronegativity and surface work function (WF), the Gr/JSMoSe heterojunction formed by the contact of S atoms with Gr exhibits an n-type Schottky barrier, whereas the Gr/JSeMoS heterojunction formed by the contact of the Se atoms with Gr reveals a p-type Schottky barrier. Increasing the number of layers of JMoSSe allows the Gr/JMoSSe heterojunction to achieve the transition from Schottky contact to Ohmic contact. Moreover, under the control of an external electric field, the Gr/JMoSSe heterojunction can realize the transition among n-type Schottky barrier, p-type Schottky barrier, and Ohmic contact. The physical mechanism of the layer number and electric field modulation effect is analyzed in detail by the change in the interface electron charge transfer. Our results will contribute to the design and application of nanoelectronics and optoelectronic devices based on Gr/JMoSSe heterojunctions in the future. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

24 pages, 5021 KiB  
Article
Enhanced Mechanical and Electromagnetic Shielding Properties of Mg Matrix Layered Composites Reinforced with Hybrid Graphene Nanosheet (GNS)–Carbon Nanotube (CNT) Networks
by Hailong Shi, Jiancheng Zhao, Zhenming Sun, Xiaojun Wang, Xiaoshi Hu, Xuejian Li, Chao Xu, Weimin Gan and Chao Ding
Materials 2025, 18(15), 3455; https://doi.org/10.3390/ma18153455 - 23 Jul 2025
Viewed by 283
Abstract
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of [...] Read more.
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of magnesium (Mg) matrix composites. Specifically, the GNS-CNT hybrid, which forms a three-dimensional interconnected network structure, was analyzed and compared to composites reinforced with only GNSs or CNTs. The objective was to determine the benefits of hybrid reinforcements on the mechanical strength and EMI shielding capability of the composites. The results indicated that the GNS-CNT/Mg composite, at a nanocarbon content of 0.5 wt.% and a GNS-CNT ratio of 1:2, achieved optimal performance, with a 55% increase in tensile strength and an EMI shielding effectiveness of 70 dB. The observed enhancements can be attributed to several key mechanisms: effective load transfer, which promotes tensile twinning, along with improved impedance matching and multiple internal reflections within the GNS-CNT network, which enhance absorption loss. These significant improvements position the composite as a promising candidate for advanced applications requiring high strength, toughness, and efficient electromagnetic shielding, providing valuable insights into the design of high-performance lightweight materials. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

11 pages, 1808 KiB  
Article
CdZnS Nanowire Decorated with Graphene for Efficient Photocatalytic Hydrogen Evolution
by Zemeng Wang, Yunsheng Shen, Qingsheng Liu, Tao Deng, Kangqiang Lu and Zhaoguo Hong
Molecules 2025, 30(14), 3042; https://doi.org/10.3390/molecules30143042 - 20 Jul 2025
Viewed by 258
Abstract
Harnessing abundant and renewable solar energy for photocatalytic hydrogen production is a highly promising approach to sustainable energy generation. To realize the practical implementation of such systems, the development of photocatalysts that simultaneously exhibit high activity, cost-effectiveness, and long-term stability is critically important. [...] Read more.
Harnessing abundant and renewable solar energy for photocatalytic hydrogen production is a highly promising approach to sustainable energy generation. To realize the practical implementation of such systems, the development of photocatalysts that simultaneously exhibit high activity, cost-effectiveness, and long-term stability is critically important. In this study, a Cd0.8Zn0.2S nanowire photocatalytic system decorated with graphene (GR) was prepared by a simple hydrothermal method. The introduction of graphene increased the reaction active area of Cd0.8Zn0.2S, promoted the separation of photogenerated charge carriers in the semiconductor, and improved the photocatalytic performance of the Cd0.8Zn0.2S semiconductor. The results showed that Cd0.8Zn0.2S loaded with 5% graphene exhibited the best photocatalytic activity, with a hydrogen production rate of 1063.4 µmol·g−1·h−1. Characterization data revealed that the graphene cocatalyst significantly enhances electron transfer kinetics in Cd0.8Zn0.2S, thereby improving the separation efficiency of photogenerated charge carriers. This study demonstrates a rational strategy for designing high-performance, low-cost composite photocatalysts using earth-abundant cocatalysts, advancing sustainable hydrogen production. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

13 pages, 2195 KiB  
Article
Electrical Characterization of a Novel Piezoelectric-Enhanced Supercapacitor with a PET/ITO/PVDF-Tr-FE/PEDOT:PSS:Graphene/LiTaO3/Al Structure
by Mariya Aleksandrova and Ivaylo Pandiev
Crystals 2025, 15(7), 660; https://doi.org/10.3390/cryst15070660 - 20 Jul 2025
Viewed by 303
Abstract
This paper presents the electrical characterization of a flexible supercapacitor with a unique architecture incorporating a piezoelectric PVDF-TrFE film sandwiched between PEDOT:PSS:Graphene and LiTaO3 as a charge-generating and charge-transferring layer. Impedance spectroscopy measurements reveal frequency-dependent capacitance behavior, reflecting the contributions of both [...] Read more.
This paper presents the electrical characterization of a flexible supercapacitor with a unique architecture incorporating a piezoelectric PVDF-TrFE film sandwiched between PEDOT:PSS:Graphene and LiTaO3 as a charge-generating and charge-transferring layer. Impedance spectroscopy measurements reveal frequency-dependent capacitance behavior, reflecting the contributions of both piezoelectric and supercapacitor capacitances. Charge–discharge cycling tests demonstrate the device’s energy storage capabilities and indicate a potential enhancement through the piezoelectric effect. Supercapacitor cycling tests demonstrate the device’s energy storage capabilities, with an estimated specific capacitance of 10.14 F/g, a power density of 16.3 W/g, an energy density of 5.63 Wh/kg, and a Coulombic efficiency of 96.1% from an active area of 1 cm2. The proposed structure can serve as an independent harvester and storage for low-power, wearable sensors. Full article
Show Figures

Figure 1

11 pages, 2278 KiB  
Article
Femtosecond Laser Irradiation Induced Heterojunctions Between Graphene Oxide and Silver Nanowires
by Jiayun Feng, Zhiyuan Wang, Zhuohuan Wu, Shujun Wang, Yuxin Sun, Qi Meng, Jiayue Wen, Shang Wang and Yanhong Tian
Materials 2025, 18(14), 3393; https://doi.org/10.3390/ma18143393 - 19 Jul 2025
Viewed by 271
Abstract
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing [...] Read more.
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing a periodically excited electric field along the Ag NWs. This electric field then interfered with the femtosecond laser field, creating strong localized heating effects, which melted the Ag NW and GO, leading to mechanical bonding between the two. The formation of these heterostructures was attributed to the transfer of plasmon energy from the Ag NW to the adjacent GO surface. Since the connection efficiency of the nanowires is closely related to the specific location and the polarization direction of the laser, FDTD simulations were conducted to model the electric field distribution on the surface of Ag NW and GO structures under different laser polarization directions, varying the lengths and diameters of the nanowires. Finally, the resistance changes of the printed Ag NW paths on the GO thin film after femtosecond laser irradiation were investigated. It was found that laser bonding could reduce the resistance of the Ag NW-GO heterostructures by two orders of magnitude, further confirming the formation of the junctions. Full article
Show Figures

Figure 1

17 pages, 4334 KiB  
Article
Wafer-Level Fabrication of Radiofrequency Devices Featuring 2D Materials Integration
by Vitor Silva, Ivo Colmiais, Hugo Dinis, Jérôme Borme, Pedro Alpuim and Paulo M. Mendes
Nanomaterials 2025, 15(14), 1119; https://doi.org/10.3390/nano15141119 - 18 Jul 2025
Viewed by 260
Abstract
Two-dimensional (2D) materials have been proposed for use in a multitude of applications, with graphene being one of the most well-known 2D materials. Despite their potential to contribute to innovative solutions, the fabrication of such devices still faces significant challenges. One of the [...] Read more.
Two-dimensional (2D) materials have been proposed for use in a multitude of applications, with graphene being one of the most well-known 2D materials. Despite their potential to contribute to innovative solutions, the fabrication of such devices still faces significant challenges. One of the key challenges is the fabrication at a wafer-level scale, a fundamental step for allowing reliable and reproducible fabrication of a large volume of devices with predictable properties. Overcoming this barrier will allow further integration with sensors and actuators, as well as enabling the fabrication of complex circuits based on 2D materials. This work presents the fabrication steps for a process that allows the on-wafer fabrication of active and passive radiofrequency (RF) devices enabled by graphene. Two fabrication processes are presented. In the first one, graphene is transferred to a back gate surface using critical point drying to prevent cracks in the graphene. In the second process, graphene is transferred to a flat surface planarized by ion milling, with the gate being buried beneath the graphene. The fabrication employs a damascene-like process, ensuring a flat surface that preserves the graphene lattice. RF transistors, passive RF components, and antennas designed for backscatter applications are fabricated and measured, illustrating the versatility and potential of the proposed method for 2D material-based RF devices. The integration of graphene on devices is also demonstrated in an antenna. This aimed to demonstrate that graphene can also be used as a passive device. Through this device, it is possible to measure different backscatter responses according to the applied graphene gating voltage, demonstrating the possibility of wireless sensor development. With the proposed fabrication processes, a flat graphene with good quality is achieved, leading to the fabrication of RF active devices (graphene transistors) with intrinsic fT and fmax of 14 GHz and 80 GHz, respectively. Excellent yield and reproducibility are achieved through these methods. Furthermore, since the graphene membranes are grown by Chemical Vapor Deposition (CVD), it is expected that this process can also be applied to other 2D materials. Full article
(This article belongs to the Special Issue Advanced 2D Materials for Emerging Application)
Show Figures

Figure 1

14 pages, 2441 KiB  
Article
Reduced Graphene Oxide/β-Cyclodextrin Nanocomposite for the Electrochemical Detection of Nitrofurantoin
by Al Amin, Gajapaneni Venkata Prasad, Venkatachalam Vinothkumar, Seung Joo Jang, Da Eun Oh and Tae Hyun Kim
Chemosensors 2025, 13(7), 247; https://doi.org/10.3390/chemosensors13070247 - 10 Jul 2025
Viewed by 435
Abstract
In this work, a glassy carbon electrode (GCE) modified with reduced graphene oxide and β-cyclodextrin (rGO/β-CD) nanocomposite was developed for the electrochemical detection of nitrofurantoin (NFT). The structural and morphological characteristics of the synthesized nanocomposite were determined using scanning electron microscopy (SEM), Raman [...] Read more.
In this work, a glassy carbon electrode (GCE) modified with reduced graphene oxide and β-cyclodextrin (rGO/β-CD) nanocomposite was developed for the electrochemical detection of nitrofurantoin (NFT). The structural and morphological characteristics of the synthesized nanocomposite were determined using scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Moreover, the electrochemical behavior of the modified electrodes was thoroughly examined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), with the rGO/β-CD-modified glassy carbon electrode (GCE) demonstrating superior electron transfer capability. Key experimental parameters, including scan rate, material loading, and solution pH, were systematically optimized. After optimizing the experimental conditions, the modified sensor showed excellent electrocatalytic performance and selectivity toward NFT, achieving a broad linear detection range from 0.5 to 120 μM, a low limit of detection (LOD) of 0.048 μM, and a high sensitivity of 12.1 µA µM–1 cm–2 using differential pulse voltammetry (DPV). Furthermore, the fabricated electrode exhibited good anti-interference ability, stability, precision, and real-time applicability for NFT detection in a wastewater sample. These results highlight the potential of the rGO/β-CD nanocomposite as a high-performance platform for electrochemical sensing applications. Full article
Show Figures

Figure 1

41 pages, 6695 KiB  
Review
Design Innovation and Thermal Management Applications of Low-Dimensional Carbon-Based Smart Textiles
by Yating Pan, Shuyuan Lin, Yang Xue, Bingxian Ou, Zhen Li, Junhua Zhao and Ning Wei
Textiles 2025, 5(3), 27; https://doi.org/10.3390/textiles5030027 - 9 Jul 2025
Viewed by 392
Abstract
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for [...] Read more.
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for flexible thermal regulation. This review summarizes recent advances in integrating these materials into textile architectures, mapping the evolution of this emerging field. Key topics include phonon-dominated heat transfer mechanisms, strategies for modulating interfacial thermal resistance, and dimensional effects across scales; beyond these intrinsic factors, hierarchical textile configurations further tailor macroscopic performance. We highlight how one-dimensional fiber bundles, two-dimensional woven fabrics, and three-dimensional porous networks construct multi-directional thermal pathways while enhancing porosity and stress tolerance. As for practical applications, the performance of carbon-based textiles in wearable systems, flexible electronic packaging, and thermal coatings is also critically assessed. Current obstacles—namely limited manufacturing scalability, interfacial mismatches, and thermal performance degradation under repeated deformation—are analyzed. To overcome these challenges, future studies should prioritize the co-design of structural and thermo-mechanical properties, the integration of multiple functionalities, and optimization guided by data-driven approaches. This review thus lays a solid foundation for advancing carbon-based smart textiles toward next-generation flexible thermal management technologies. Full article
Show Figures

Figure 1

11 pages, 2969 KiB  
Article
First-Principles Study of CO, C2H2, and C2H4 Adsorption on Penta-Graphene for Transformer Oil Gas Sensing Applications
by Min-Qi Zhu and Xue-Feng Wang
C 2025, 11(3), 49; https://doi.org/10.3390/c11030049 - 9 Jul 2025
Viewed by 341
Abstract
Penta-graphene, a novel two-dimensional carbon allotrope entirely composed of pentagonal carbon rings, has attracted increasing attention due to its unique geometric structure, mechanical robustness, and intrinsic semiconducting nature. In this study, we systematically investigate the adsorption behavior of three typical dissolved gases in [...] Read more.
Penta-graphene, a novel two-dimensional carbon allotrope entirely composed of pentagonal carbon rings, has attracted increasing attention due to its unique geometric structure, mechanical robustness, and intrinsic semiconducting nature. In this study, we systematically investigate the adsorption behavior of three typical dissolved gases in transformer oil (CO, C2H2, and C2H4) on penta-graphene using first-principles calculations based on density functional theory. The optimized adsorption configuration, adsorption energy, charge transfer, adsorption distance, band structure, density of states, charge density difference, and desorption time are analyzed to evaluate the sensing capability of penta-graphene. Results reveal that penta-graphene exhibits moderate chemical interactions with CO and C2H2, accompanied by noticeable charge transfer and band structure changes, whereas C2H4 shows weaker physisorption characteristics. The projected density of states analysis further confirms the orbital hybridization between gas molecules and the substrate. Additionally, the desorption time calculations suggest that penta-graphene possesses good sensing and recovery potential, especially under elevated temperatures. These findings indicate that penta-graphene is a promising candidate for use in gas sensing applications related to the monitoring of dissolved gases in transformer oils. Full article
Show Figures

Figure 1

12 pages, 3405 KiB  
Article
An Experimental Investigation on the Flow Boiling Heat Transfer Performance of Nanofluid in 3D Printing Minichannel Heat Sinks: A Comparative Study
by Jianyang Zhou and Zhixin Yin
Nanomaterials 2025, 15(14), 1054; https://doi.org/10.3390/nano15141054 - 8 Jul 2025
Viewed by 337
Abstract
A minichannel heat sink combining flow boiling heat transfer with nanofluid is an ideal solution for the long-term cooling of high-power equipment. In the present paper, three mass fractions for 0.01 wt%, 0.05 wt%, and 0.1 wt% graphene/R141b and Al2O3 [...] Read more.
A minichannel heat sink combining flow boiling heat transfer with nanofluid is an ideal solution for the long-term cooling of high-power equipment. In the present paper, three mass fractions for 0.01 wt%, 0.05 wt%, and 0.1 wt% graphene/R141b and Al2O3/R141b nanofluids are prepared by ultrasonic vibration. The flow boiling heat transfer performance for graphene/R141b and Al2O3/R141b nanofluids was contrastively investigated in a 3D printing 10-minichannel heat sink with a single channel dimension of 198 mm × 1.5 mm × 1.5 mm. The results indicate that the heat transfer performance of graphene/R141b and Al2O3/R141b nanofluids are enhanced after adding nanoparticles in pure R141b, and the maximum average heat transfer coefficients of graphene/R141b and Al2O3/R141b nanofluids, respectively, increase by 35.4% and 31.7% compared with that of pure R141b. The heat transfer performance of graphene/R141b and Al2O3/R141b nanofluids increases nonlinearly with the increase in mass concentration; the heat transfer coefficient reaches its maximum at the mass concentration of 0.02 wt%, and then, it decreases slightly, which is mainly caused by nanoparticle deposition, leading to silted channel surface cavities during the flow boiling experiment. Moreover, it has been discovered that the heat transfer coefficient of graphene/R141b is larger than that of Al2O3/R141b under the same conditions. The average heat transfer coefficient of graphene/R141b increased by 19.7% compared with that of Al2O3/R141b. The main reason for this is that graphene nanosheets have a larger contact area with the liquid working medium compared with nanoparticle Al2O3, and the graphene/R141b thermal conductivity is also significantly higher than that of Al2O3/R141b nanofluids. The research results can provide a basis for the practical application of nanofluids in heat sinks. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

27 pages, 690 KiB  
Review
Phthalocyanine-Modified Electrodes Used in the Electroanalysis of Monoamine Neurotransmitters
by Anton Alexandru Ciucu, Mihaela Buleandră, Dana Elena Popa and Dragoș Cristian Ștefănescu
Chemosensors 2025, 13(7), 243; https://doi.org/10.3390/chemosensors13070243 - 7 Jul 2025
Viewed by 522
Abstract
Metallo-phthalocyanines (MPcs) are versatile materials with applications in electroanalysis because of their superior catalytic properties. This review presents the electrochemical methods based on MPc-modified electrodes and reports some of their remarkable properties and applications in the electroanalysis of monoamine neurotransmitters and biomolecules that [...] Read more.
Metallo-phthalocyanines (MPcs) are versatile materials with applications in electroanalysis because of their superior catalytic properties. This review presents the electrochemical methods based on MPc-modified electrodes and reports some of their remarkable properties and applications in the electroanalysis of monoamine neurotransmitters and biomolecules that play a crucial role in vital functions of the human body. The development of electrocatalytic chemically modified electrodes is based on their ability to provide a selective and rapid response toward a specific analyte in complex media without the need for sample pretreatment. The explanation of several phenomena occurring at the MPc-modified electrode surface (e.g., MPc-mediated electrocatalysis), the advantages of promoting different electron transfer reactions, and the detection mechanism are also presented. The types of MPcs and different materials, such as carbon nanotubes and graphene, used as substrates for modified working electrodes are discussed. Modifying the properties of MPcs through various interactions, or combining MPcs with carbonaceous materials, creates a synergistic effect. Such hybrid materials present both extraordinary catalytic and increased conductivity properties. We conducted a compilation study based on recent works to demonstrate the efficacy of the developed sensors and methods in sensing monoamine neurotransmitters. We emphasize the analyte type, optimized experimental parameters, working range, limits of detection and quantification, and application to real samples. MPc–carbon hybrids have led to the development of sensors with superior sensitivity and improved selectivity, enabling the detection of analytes at lower concentrations. We highlight the main advantages and drawbacks of the discussed methods. This review summarizes recent progress in the development and application of metallo-phthalocyanine-modified electrodes in the electroanalysis of monoamine neurotransmitters. Some possible future trends are highlighted. Full article
(This article belongs to the Special Issue New Electrodes Materials for Electroanalytical Applications)
Show Figures

Figure 1

16 pages, 2468 KiB  
Article
Multi-Bit Resistive Random-Access Memory Based on Two-Dimensional MoO3 Layers
by Kai Liu, Wengui Jiang, Liang Zhou, Yinkang Zhou, Minghui Hu, Yuchen Geng, Yiyuan Zhang, Yi Qiao, Rongming Wang and Yinghui Sun
Nanomaterials 2025, 15(13), 1033; https://doi.org/10.3390/nano15131033 - 3 Jul 2025
Viewed by 354
Abstract
Two-dimensional (2D) material-based resistive random-access memory (RRAM) has emerged as a promising solution for neuromorphic computing and computing-in-memory architectures. Compared to conventional metal-oxide-based RRAM, the novel 2D material-based RRAM devices demonstrate lower power consumption, higher integration density, and reduced performance variability, benefiting from [...] Read more.
Two-dimensional (2D) material-based resistive random-access memory (RRAM) has emerged as a promising solution for neuromorphic computing and computing-in-memory architectures. Compared to conventional metal-oxide-based RRAM, the novel 2D material-based RRAM devices demonstrate lower power consumption, higher integration density, and reduced performance variability, benefiting from their atomic-scale thickness and ultra-flat surfaces. Remarkably, 2D layered metal oxides retain these advantages while preserving the merits of traditional metal oxides, including their low cost and high environmental stability. Through a multi-step dry transfer process, we fabricated a Pd-MoO3-Ag RRAM device featuring 2D α-MoO3 as the resistive switching layer, with Pd and Ag serving as inert and active electrodes, respectively. Resistive switching tests revealed an excellent operational stability, low write voltage (~0.5 V), high switching ratio (>106), and multi-bit storage capability (≥3 bits). Nevertheless, the device exhibited a limited retention time (~2000 s). To overcome this limitation, we developed a Gr-MoO3-Ag heterostructure by substituting the Pd electrode with graphene (Gr). This modification achieved a fivefold improvement in the retention time (>104 s). These findings demonstrate that by controlling the type and thickness of 2D materials and resistive switching layers, RRAM devices with both high On/Off ratios and long-term data retention may be developed. Full article
Show Figures

Figure 1

18 pages, 1572 KiB  
Case Report
Graphene–PLA Printed Sensor Combined with XR and the IoT for Enhanced Temperature Monitoring: A Case Study
by Rohith J. Krishnamurthy and Abbas S. Milani
J. Sens. Actuator Netw. 2025, 14(4), 68; https://doi.org/10.3390/jsan14040068 - 30 Jun 2025
Viewed by 383
Abstract
This case study aims to combine the advantage of the additive manufacturing of sensors with a mixed reality (MR) app, developed in a lab-scale workshop, to safely monitor and control the temperature of parts. Namely, the measurements were carried out in real time [...] Read more.
This case study aims to combine the advantage of the additive manufacturing of sensors with a mixed reality (MR) app, developed in a lab-scale workshop, to safely monitor and control the temperature of parts. Namely, the measurements were carried out in real time via a 3D-printed graphene–PLA nanocomposite sensor and communicated wirelessly using a low-power microcontroller with the IoT capability, and then transferred to the user display in the MR. In order to investigate the performance of the proposed computer-mediated reality, a user experience experiment (n = 8) was conducted. Statistical analysis results showed that the system leads to faster (>2.2 times) and more accurate (>82%) temperature control and monitoring by the users, as compared to the conventional technique using a thermal camera. Using a Holistic Presence Questionnaire (HPQ) scale, the users’ experience/training was significantly improved, while they reported less fatigue by 50%. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

21 pages, 3617 KiB  
Article
Numerical and Experimental Study of Enhanced Heat Dissipation Performance of Graphene-Coated Heating Cables
by Zhenzhen Chen, Chenchen Xu, Feilong Zhang and Tao Sun
Coatings 2025, 15(7), 777; https://doi.org/10.3390/coatings15070777 - 30 Jun 2025
Viewed by 306
Abstract
Low-temperature radiant heating systems utilizing heating cables face challenges including low heat dissipation efficiency and high energy consumption, hindering widespread application. Graphene coatings, characterized by high thermal conductivity and far-infrared radiation properties, offer a novel approach to enhance cable heat dissipation efficiency. This [...] Read more.
Low-temperature radiant heating systems utilizing heating cables face challenges including low heat dissipation efficiency and high energy consumption, hindering widespread application. Graphene coatings, characterized by high thermal conductivity and far-infrared radiation properties, offer a novel approach to enhance cable heat dissipation efficiency. This study systematically investigates the effects of coating position, thickness, and ambient temperature on cable heat dissipation using numerical simulations and experiments. A three-dimensional heat transfer model of the heating cable was established using Fluent software (2022R1). The radiation heat transfer equation was solved using the Discrete Ordinates (DO) model, and the coating position and thickness parameters were optimized. The reliability of the simulation results was validated using a temperature-rise experimental platform. The results indicate that graphene coatings significantly improve the heat dissipation performance of cables. Under optimal parameters (coating thickness: 100 μm, coating position: aluminum fin surface, initial temperature: 5 °C), the heat flux increased by approximately 26%, aluminum fin surface temperature decreased to 41.5 °C, and experimental temperature-rise efficiency improved by nearly 50%. The discrepancy between simulated and experimental results was within 8.5%. However, when coating thickness exceeded 100 μm, interfacial thermal resistance increased, reducing heat dissipation efficiency. Additionally, higher ambient temperatures suppressed heat dissipation. These findings provide a theoretical basis for optimizing the energy efficiency of low-temperature radiant heating systems. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

7 pages, 656 KiB  
Communication
Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates
by Grazia Giuseppina Politano
Crystals 2025, 15(7), 603; https://doi.org/10.3390/cryst15070603 - 27 Jun 2025
Viewed by 270
Abstract
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis [...] Read more.
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis revealed a slight but measurable broadening (~0.7 cm−1) of the Si TO phonon mode at 514 cm−1, indicating local interfacial strain. Cyclic voltammetry measurements showed a substantial increase in photocurrent in comparison to pristine silicon substrates. These effects are attributed to a GO-induced p-type inversion layer and enhanced interfacial charge transfer. The results suggest that GO can serve as a functional interfacial layer for improving silicon-based optoelectronic and photoelectrochemical devices. Full article
(This article belongs to the Special Issue Optical Characterization of Functional Materials)
Show Figures

Figure 1

Back to TopTop