Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,395)

Search Parameters:
Keywords = graphene/polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2009 KB  
Review
Innovative Smart Materials in Restorative Dentistry
by Roxana Ionela Vasluianu, Livia Bobu, Iulian-Costin Lupu, Magda Antohe, Bogdan Petru Bulancea, Antonia Moldovanu, Ovidiu Stamatin, Catalina Cioloca Holban and Ana Maria Dima
J. Funct. Biomater. 2025, 16(9), 318; https://doi.org/10.3390/jfb16090318 (registering DOI) - 30 Aug 2025
Abstract
The growing challenge of biofilm-associated infections in dentistry necessitates advanced solutions. This review highlights the potential of smart bioactive and antibacterial materials—bioactive glass ceramics (BGCs), silver nanoparticle (AgNP)-doped polymers, and pH-responsive chitosan coatings—in transforming restorative dentistry. BGCs reduce biofilms by >90% while promoting [...] Read more.
The growing challenge of biofilm-associated infections in dentistry necessitates advanced solutions. This review highlights the potential of smart bioactive and antibacterial materials—bioactive glass ceramics (BGCs), silver nanoparticle (AgNP)-doped polymers, and pH-responsive chitosan coatings—in transforming restorative dentistry. BGCs reduce biofilms by >90% while promoting bone integration. AgNP-polymers effectively combat S. mutans and C. albicans but require controlled dosing (<0.3 wt% in PMMA) to avoid cytotoxicity. Chitosan coatings enable pH-triggered drug release, disrupting acidic biofilms. Emerging innovations like quaternary ammonium compounds, graphene oxide hybrids, and 4D-printed hydrogels offer on-demand antimicrobial and regenerative functions. However, clinical translation depends on addressing cytotoxicity, standardizing antibiofilm testing (≥3-log CFU/mL reduction), and ensuring long-term efficacy. These smart materials pave the way for self-defending restorations, merging infection control with tissue regeneration. Future advancements may integrate AI-driven design for multifunctional, immunomodulatory dental solutions. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

36 pages, 8597 KB  
Review
High-Thermal-Conductivity Graphene/Epoxy Resin Composites: A Review of Reinforcement Mechanisms, Structural Regulation and Application Challenges
by Hongwei Yang, Zongyi Deng, Minxian Shi and Zhixiong Huang
Polymers 2025, 17(17), 2342; https://doi.org/10.3390/polym17172342 - 28 Aug 2025
Abstract
As electronic devices advance toward higher power density, heat dissipation has emerged as a critical bottleneck limiting their reliability. Graphene oxide (GO)/epoxy resin (EP) composites, combining high-thermal-conductivity potential with polymer-matrix advantages, have become a key focus for overcoming the limitations of traditional metal [...] Read more.
As electronic devices advance toward higher power density, heat dissipation has emerged as a critical bottleneck limiting their reliability. Graphene oxide (GO)/epoxy resin (EP) composites, combining high-thermal-conductivity potential with polymer-matrix advantages, have become a key focus for overcoming the limitations of traditional metal heat-dissipation materials. This review systematically examines these composites, analyzing their thermal conductivity enhancement mechanisms, structural regulation strategies, and application challenges. We first elaborate on how GO’s intrinsic properties influence its enhancement capability, then explore the roles of physical dispersion strategies and interfacial modification techniques in optimizing filler dispersion and reducing interfacial thermal resistance, revealing the effects of preparation processes on thermal conduction network construction. Their remarkable potential is demonstrated in applications such as electronic packaging and electromagnetic shielding. However, challenges including cross-scale structural design and multi-physics collaborative regulation remain. This review aims to provide theoretical foundations and technical guidance for transitioning these composites from lab research to industrial application and advancing thermal management in high-performance electronics. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

31 pages, 6393 KB  
Review
Electrochemical Sensors for Chloramphenicol: Advances in Food Safety and Environmental Monitoring
by Matiar M. R. Howlader, Wei-Ting Ting and Md Younus Ali
Pharmaceuticals 2025, 18(9), 1257; https://doi.org/10.3390/ph18091257 - 24 Aug 2025
Viewed by 316
Abstract
Excessive use of antibiotics can lead to antibiotic resistance, posing a significant threat to human health and the environment. Chloramphenicol (CAP), once widely used, has been banned in many regions for over 20 years due to its toxicity. Detecting CAP residues in food [...] Read more.
Excessive use of antibiotics can lead to antibiotic resistance, posing a significant threat to human health and the environment. Chloramphenicol (CAP), once widely used, has been banned in many regions for over 20 years due to its toxicity. Detecting CAP residues in food products is crucial for regulating safe use and preventing unnecessary antibiotic exposure. Electrochemical sensors are low-cost, sensitive, and easily detect CAP. This paper reviews recent research on electrochemical sensors for CAP detection, with a focus on the materials and fabrication techniques employed. The sensors are evaluated based on key performance parameters, including limit of detection, sensitivity, linear range, selectivity, and the ability to perform simultaneous detection. Specifically, we highlight the use of metal and carbon-based electrode modifications, including gold nanoparticles (AuNPs), nickel–cobalt (Ni-Co) hollow nano boxes, platinum–palladium (Pt-Pd), graphene (Gr), and covalent organic frameworks (COFs), as well as molecularly imprinted polymers (MIPs) such as polyaniline (PANI) and poly(o-phenylenediamine) (P(o-PD)). The mechanisms by which these modifications enhance CAP detection are discussed, including improved conductivity, increased surface-to-volume ratio, and enhanced binding site availability. The reviewed sensors demonstrated promising results, with some exhibiting high selectivity and sensitivity, and the effective detection of CAP in complex sample matrices. This review aims to support the development of next-generation sensors for antibiotic monitoring and contribute to global efforts to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Application of Biosensors in Pharmaceutical Research)
Show Figures

Graphical abstract

30 pages, 9001 KB  
Article
Laser-Induced Graphene on Biocompatible PDMS/PEG Composites for Limb Motion Sensing
by Anđela Gavran, Marija V. Pergal, Teodora Vićentić, Milena Rašljić Rafajilović, Igor A. Pašti, Marko V. Bošković and Marko Spasenović
Sensors 2025, 25(17), 5238; https://doi.org/10.3390/s25175238 - 22 Aug 2025
Viewed by 593
Abstract
The advancement of laser-induced graphene (LIG) has significantly enhanced the development of wearable and flexible electronic devices. Due to its exceptional physical, chemical, and electronic properties, LIG has emerged as a highly effective active material for wearable sensors. However, despite the wide range [...] Read more.
The advancement of laser-induced graphene (LIG) has significantly enhanced the development of wearable and flexible electronic devices. Due to its exceptional physical, chemical, and electronic properties, LIG has emerged as a highly effective active material for wearable sensors. However, despite the wide range of materials suitable as precursors for LIG, the scarcity of stretchable and biocompatible polymers amenable to laser graphenization has remained a persistent challenge. In this study, laser-induced graphene (LIG) was fabricated directly on biocompatible and flexible cross-linked PDMS/PEG (with Mn (PEG) = 400 g/mol) composites for the first time, enabling their application in wearable sensors. The addition of PEG compensates for the low carbon content in PDMS, enabling efficient laser graphenization. Laser parameters were systematically optimized to achieve high-quality graphene, and a comprehensive characterization with varying PEG content (10–40 wt.%) was conducted using multiple analytical techniques. Tensile tests revealed that incorporating PEG significantly enhanced elongation at break, reaching 237% for PDMS/40 wt.% PEG while reducing Young’s modulus to 0.25 MPa, highlighting the excellent flexibility of the substrate material. Surface analysis using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy demonstrated the formation of high-quality few-layer graphene with the fewest defects in PDMS/40 wt.% PEG composites. Nevertheless, the adhesion of electrical contacts to LIG that was directly induced on PDMS/PEG proved to be challenging. To overcome this challenge, we produced devices by means of laser induction on polyimide and transfer to PDMS/PEG. We demonstrate the practical utility of such devices by applying them to monitor limb motion in real time. The sensor showed a stable and repeatable piezoresistive response under multiple bending cycles. These results provide valuable insights into the fabrication of biocompatible LIG-based flexible sensors, paving the way for their broader implementation in medical and sports technologies. Full article
(This article belongs to the Special Issue Materials and Devices for Flexible Electronics in Sensor Applications)
Show Figures

Figure 1

43 pages, 5417 KB  
Review
Integrating Graphene Oxide and Mesenchymal Stem Cells in 3D-Printed Systems for Drug Delivery and Tissue Regeneration
by Igor Soares Gianini Grecca, Vitor Fernando Bordin Miola, Júlia Carolina Ferreira, Thiago Rissato Vinholo, Laira Mireli Dias da Silva, Paulo Gabriel Friedrich Totti, Silvia Helena Soares Gianini, Maricelma da Silva Soares de Souza, Juliana da Silva Soares de Souza, Adriano Cressoni Araújo, Elen Landgraf Guiguer, Caio Sérgio Galina Spilla, Marcelo Dib Bechara, Domingos Donizeti Roque, Eliana de Souza Bastos Mazuqueli Pereira and Karina Torres Pomini
Pharmaceutics 2025, 17(8), 1088; https://doi.org/10.3390/pharmaceutics17081088 - 21 Aug 2025
Viewed by 273
Abstract
Mesenchymal stem cells (MSCs) represent a promising strategy in the field of regenerative medicine due to their multipotent differentiation capacity and immunomodulatory properties. The interaction of these cells with the extracellular matrix (ECM) and biomaterials, notably graphene oxide (GO), has proven decisive in [...] Read more.
Mesenchymal stem cells (MSCs) represent a promising strategy in the field of regenerative medicine due to their multipotent differentiation capacity and immunomodulatory properties. The interaction of these cells with the extracellular matrix (ECM) and biomaterials, notably graphene oxide (GO), has proven decisive in modulating cell behavior, with the potential to optimize tissue regeneration processes. This review was conducted using the MEDLINE, Scopus, and Cochrane databases, covering studies published between 2018 and 2025, from which seven studies met the inclusion criteria, with an emphasis on in vitro and in vivo investigations regarding the association between GO and MSCs. The main findings demonstrate that GO, particularly when conjugated with polymers such as poly(L-lactic acid) (PLLA), enhances cell adhesion, stimulates proliferation, and promotes the osteogenic differentiation of MSCs, in addition to positively modulating intracellular signaling pathways. However, significant gaps remain in understanding the mechanisms and safety of GO’s therapeutic use in association with MSCs. Therefore, this review reinforces the need for further studies to deepen the characterization of the bioactive properties of GO-MSCs, aiming to enable safer and more effective clinical applications. Full article
Show Figures

Graphical abstract

15 pages, 4167 KB  
Article
Effects of Graphene Quantum Dots on Thermal Properties of Epoxy Using Molecular Dynamics
by Swapnil S. Bamane and Ozgur Keles
Appl. Nano 2025, 6(3), 15; https://doi.org/10.3390/applnano6030015 - 20 Aug 2025
Viewed by 287
Abstract
Polymer matrix composites (PMCs) are crucial for their applications in aerospace, electronics, defense, and structural materials. PMCs reinforced with nanofillers offer substantial potential for enhanced thermal and mechanical performance. Although there have been significant developments in nanofiller-based high-performance composites involving graphene, carbon nanotubes, [...] Read more.
Polymer matrix composites (PMCs) are crucial for their applications in aerospace, electronics, defense, and structural materials. PMCs reinforced with nanofillers offer substantial potential for enhanced thermal and mechanical performance. Although there have been significant developments in nanofiller-based high-performance composites involving graphene, carbon nanotubes, and metal oxides, the smallest of all the fillers, the graphene quantum dot (GQD), has not been explored thoroughly. The objective of this study is to investigate the effects of GQDs on the thermal properties of epoxy nanocomposites using all-atom molecular dynamics (MD) simulations. Specifically, the influence of GQDs on the glass transition temperature (Tg) and coefficient of linear thermal expansion (CTE) of the bisphenol F epoxy is evaluated. Further, the effects of surface functionalization and edge functionalization of GQDs are analyzed. Results demonstrate that the inclusion of functionalized GQDs leads to a 16% improvement in Tg, attributed to enhanced interfacial interactions and restricted molecular mobility in the epoxy network. MD simulations reveal that functional groups on GQDs form strong physical and chemical interactions with the polymer matrix, effectively altering its dynamics at the Tg. These results provide key molecular-level insights into the design of the next generation of thermally stable epoxy nanocomposites for high-performance applications in aerospace and defense. Full article
Show Figures

Figure 1

16 pages, 4111 KB  
Article
Fabrication of High-Quality MoS2/Graphene Lateral Heterostructure Memristors
by Claudia Mihai, Iosif-Daniel Simandan, Florinel Sava, Teddy Tite, Amelia Bocirnea, Mirela Vaduva, Mohamed Yassine Zaki, Mihaela Baibarac and Alin Velea
Nanomaterials 2025, 15(16), 1239; https://doi.org/10.3390/nano15161239 - 13 Aug 2025
Viewed by 451
Abstract
Integrating two-dimensional transition-metal dichalcogenides with graphene is attractive for low-power memory and neuromorphic hardware, yet sequential wet transfer leaves polymer residues and high contact resistance. We demonstrate a complementary metal–oxide–semiconductor (CMOS)-compatible, transfer-free route in which an atomically thin amorphous MoS2 precursor is [...] Read more.
Integrating two-dimensional transition-metal dichalcogenides with graphene is attractive for low-power memory and neuromorphic hardware, yet sequential wet transfer leaves polymer residues and high contact resistance. We demonstrate a complementary metal–oxide–semiconductor (CMOS)-compatible, transfer-free route in which an atomically thin amorphous MoS2 precursor is RF-sputtered directly onto chemical vapor-deposited few-layer graphene and crystallized by confined-space sulfurization at 800 °C. Grazing-incidence X-ray reflectivity, Raman spectroscopy, and X-ray photoelectron spectroscopy confirm the formation of residue-free, three-to-four-layer 2H-MoS2 (roughness: 0.8–0.9 nm) over 1.5 cm × 2 cm coupons. Lateral MoS2/graphene devices exhibit reproducible non-volatile resistive switching with a set transition (SET) near +6 V and an analogue ON/OFF ≈2.1, attributable to vacancy-induced Schottky-barrier modulation. The single-furnace magnetron sputtering + sulfurization sequence avoids toxic H2S, polymer transfer steps, and high-resistance contacts, offering a cost-effective pathway toward wafer-scale 2D memristors compatible with back-end CMOS temperatures. Full article
Show Figures

Figure 1

32 pages, 5766 KB  
Review
Carbon Nanohorns and Their Nanohybrid/Nanocomposites as Sensing Layers for Humidity Sensors—A Review
by Bogdan-Catalin Serban, Octavian Buiu, Marius Bumbac, Niculae Dumbrăvescu, Mihai Brezeanu, Ursăchescu Matei-Gabriel, Vlad Diaconescu, Maria Ruxandra Sălăgean and Cornel Cobianu
Polymers 2025, 17(16), 2198; https://doi.org/10.3390/polym17162198 - 12 Aug 2025
Viewed by 452
Abstract
Carbon nanohorns (CNHs), along with their nanocomposites and nanohybrids, have shown significant potential for humidity (RH) monitoring at room temperature (RT) due to their exceptional physicochemical and electronic properties, such as high surface area, tunable porosity, and stability in nanocomposites. Resistive sensors incorporating [...] Read more.
Carbon nanohorns (CNHs), along with their nanocomposites and nanohybrids, have shown significant potential for humidity (RH) monitoring at room temperature (RT) due to their exceptional physicochemical and electronic properties, such as high surface area, tunable porosity, and stability in nanocomposites. Resistive sensors incorporating CNHs have demonstrated superior sensitivity compared to traditional carbon nanomaterials, such as carbon nanotubes and graphene derivatives, particularly in specific RH ranges. This review highlights recent advancements in CNH-based resistive RH sensors, discussing effective synthesis methods (e.g., arc discharge and laser ablation) and functionalization strategies, such as the incorporation of hydrophilic polymers or inorganic fillers like graphene oxide (GO) and metal oxides, which enhance sensitivity and stability. The inclusion of fillers, guided by Pearson’s Hard–Soft Acid–Base (HSAB) theory, enables tuning of CNH-based sensing layers for optimal interaction with water molecules. CNH-based nanocomposites exhibit competitive response and recovery times, making them strong candidates for commercial sensor applications. However, challenges remain, such as optimizing materials for operation across the full 0–100% RH range. This review concludes with proposed research directions to further enhance the adoption and utility of CNHs in sensing applications. Full article
Show Figures

Figure 1

21 pages, 3170 KB  
Review
Properties of Polybenzoxazine-Based Conducting Materials in Energy-Related Applications
by Shakila Parveen Asrafali, Thirukumaran Periyasamy, Gazi A. K. M. Rafiqul Bari and Jaewoong Lee
Polymers 2025, 17(16), 2194; https://doi.org/10.3390/polym17162194 - 11 Aug 2025
Viewed by 437
Abstract
Polybenzoxazine (PBz)-based conducting materials have gained significant attention due to their unique combination of thermal stability, mechanical strength, and electrical conductivity. These polymers integrate the inherent advantages of polybenzoxazines—such as low water absorption, high glass transition temperature, and excellent chemical resistance—with the electrical [...] Read more.
Polybenzoxazine (PBz)-based conducting materials have gained significant attention due to their unique combination of thermal stability, mechanical strength, and electrical conductivity. These polymers integrate the inherent advantages of polybenzoxazines—such as low water absorption, high glass transition temperature, and excellent chemical resistance—with the electrical properties of conducting polymers like polyaniline, polypyrrole, and polythiophene. The incorporation of conductive elements in polybenzoxazine networks can be achieved through blending, in situ polymerization, or hybridization with nanostructures such as graphene, carbon nanotubes, or metallic nanoparticles. These modifications enhance their charge transport properties, making them suitable for applications in flexible electronics, energy storage devices, sensors, and electromagnetic shielding materials. Furthermore, studies highlight that polybenzoxazine matrices can improve the processability and environmental stability of conventional conducting polymers while maintaining high conductivity. The structure–property relationships of polybenzoxazine-based composites demonstrate that tailoring monomer composition and polymerization conditions can significantly influence their conductivity, thermal stability, and mechanical properties. This review summarizes recent advancements in PBz composites, focusing on their synthesis, structural modifications, conductivity mechanisms, and potential applications in advanced energy storage systems. Full article
Show Figures

Figure 1

17 pages, 2849 KB  
Article
Synthesis, Characterization, and Properties of Polyvinyl Alcohol/Jackfruit Peel Carboxymethylcellulose/Graphene Oxide/Kaolin Composite Hydrogels
by Shumin Liu, Jing Ma, Fuqi Yang, Hailin Ye, Yu Liang, Yijia Deng, Jianrong Li and Rundong Wang
Gels 2025, 11(8), 626; https://doi.org/10.3390/gels11080626 - 9 Aug 2025
Viewed by 361
Abstract
This study presents an environmentally benign composite hydrogel system by combining polyvinyl alcohol (PVA) with carboxymethyl cellulose derived from jackfruit peel waste (JCMC), subsequently reinforced with graphene oxide (GO) and Kaolin nanoparticles for enhanced Congo red (CR) adsorption. The structural properties of the [...] Read more.
This study presents an environmentally benign composite hydrogel system by combining polyvinyl alcohol (PVA) with carboxymethyl cellulose derived from jackfruit peel waste (JCMC), subsequently reinforced with graphene oxide (GO) and Kaolin nanoparticles for enhanced Congo red (CR) adsorption. The structural properties of the synthesized hydrogels were comprehensively characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). FTIR analysis confirmed hydrogel formation through hydrogen bonding interactions, while XRD and SEM revealed the uniform dispersion of GO and Kaolin within the polymer matrix, resulting in an improved adsorption performance. Furthermore, the adsorption efficiency of the composite hydrogels was systematically evaluated under varying conditions, including solution pH, contact time, temperature, and initial CR concentration. Optimal CR removal (92.3%) was achieved at pH 8.0, with equilibrium attained within 90 min. The adsorption kinetics were best fitted by the pseudo-second-order model (R2 = 0.9998), confirming a chemisorption-dominated process. The equilibrium adsorption data were accurately described by the Langmuir isotherm model, indicating monolayer coverage with an exceptional maximum capacity of 200.80 mg/g. These findings highlight the superior adsorption performance of the PVA/JCMC/GO/Kaolin hydrogels, attributed to their tailored physicochemical properties and synergistic interactions among components. This study offers both sustainable jackfruit peel waste valorization and an effective solution for anionic dye removal in wastewater treatment. Full article
(This article belongs to the Special Issue Food Gels: Structure and Properties (2nd Edition))
Show Figures

Figure 1

11 pages, 3253 KB  
Article
Effect of Reduced Graphene Oxide on Curing, Mechanical, and Thermal Properties of Polymethylene Tetrasulfide
by Milad Sheydaei
J. Compos. Sci. 2025, 9(8), 431; https://doi.org/10.3390/jcs9080431 - 8 Aug 2025
Viewed by 374
Abstract
Polymers have long been utilized in various industries due to their unique properties. Among the family of polymers, polysulfides are popular due to their strong adhesion and high resistance to fuels and solvents, and have been utilized in specific applications. In this study, [...] Read more.
Polymers have long been utilized in various industries due to their unique properties. Among the family of polymers, polysulfides are popular due to their strong adhesion and high resistance to fuels and solvents, and have been utilized in specific applications. In this study, polysulfide nanocomposites were prepared using methylene dichloride (MD), sodium tetrasulfide (Na2S4), and reduced graphene oxide (rGO) and then cured using a rheometer. Polymethylene tetrasulfide (PMTS) and nanocomposites were evaluated by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Also, the cured samples were evaluated using FTIR, XRD, SEM, thermogravimetric analysis (TGA), and tensile test. The results showed that PMTS has a completely amorphous structure. XRD and SEM results showed that with the addition of rGO, free sulfur accumulates in the matrix, which participates in the reaction during the curing process. The cured polymethylene tetrasulfide (CPMTS) and the cured nanocomposites have a completely amorphous structure. Also, the presence of rGO improved the final properties of the product. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

41 pages, 2973 KB  
Review
Self-Healing, Electroconductive Hydrogels for Wound Healing Applications
by Duarte Almeida, Diogo Dias, Frederico Castelo Ferreira and Teresa Esteves
Gels 2025, 11(8), 619; https://doi.org/10.3390/gels11080619 - 8 Aug 2025
Viewed by 794
Abstract
Electroconductive, self-healing hydrogels have surfaced as a versatile tool for advanced wound care applications, since they combine classic hydrogels’ moist and biomimetic environment with the dynamic electrical responsiveness that can function as an accelerator of tissue repair processes. Recent advances report the automatic [...] Read more.
Electroconductive, self-healing hydrogels have surfaced as a versatile tool for advanced wound care applications, since they combine classic hydrogels’ moist and biomimetic environment with the dynamic electrical responsiveness that can function as an accelerator of tissue repair processes. Recent advances report the automatic restoration of materials after mechanical disruption through various mechanisms, such as ionic or covalent bonds and supramolecular interactions. This property is crucial for biomaterials, as they are often applied in skin regions with high motility and, therefore, a high risk of breakage. By integrating within these networks compounds that are electrically active—polymers such as PEDOT:PSS or polypyrrole, or 2D nanomaterials such as graphene—it is possible to confer responsiveness to these hydrogels, which can lead to increases in fibroblast proliferation, antimicrobial properties, and angiogenesis. Furthermore, these biomaterials must have skin-mimicking mechanical properties and can also be loaded with drugs to improve their healing properties even further. This review synthesizes the chemistry behind the self-healing and electroconductive properties of these materials and expands on the available literature on this field and their biological outcomes, while also providing a look into the future of these promising materials, aiming at their integration in standard wound care strategies. Full article
(This article belongs to the Special Issue Application of Hydrogels in Medicine)
Show Figures

Graphical abstract

37 pages, 3005 KB  
Review
Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions
by Amal M. Al-Amri
Chemosensors 2025, 13(8), 285; https://doi.org/10.3390/chemosensors13080285 - 4 Aug 2025
Viewed by 825
Abstract
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors [...] Read more.
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors enable the real-time monitoring of air, water, soil, and climate, providing significant data for data-driven decision-making technologies and policy development to improve the quality of the environment. The development of new materials, such as graphene, conductive polymers, and biodegradable substrates, has significantly enhanced the environmental applications of printed sensors by improving sensitivity, enabling flexible designs, and supporting eco-friendly and disposable solutions. The development of inkjet, screen, and roll-to-roll printing technologies has also contributed to the achievement of mass production without sacrificing quality or performance. This review presents the current progress in printed sensors for environmental applications, with a focus on technological advances, challenges, applications, and future directions. Moreover, the paper also discusses the challenges that still exist due to several issues, e.g., sensitivity, stability, power supply, and environmental sustainability. Printed sensors have the potential to revolutionize ecological monitoring, as evidenced by recent innovations such as Internet of Things (IoT) integration, self-powered designs, and AI-enhanced data analytics. By addressing these issues, printed sensors can develop a better understanding of environmental systems and help promote the UN sustainable development goals. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

11 pages, 1859 KB  
Article
Epitaxial Graphene/n-Si Photodiode with Ultralow Dark Current and High Responsivity
by Lanxin Yin, Xiaoyue Wang and Shun Feng
Nanomaterials 2025, 15(15), 1190; https://doi.org/10.3390/nano15151190 - 3 Aug 2025
Viewed by 363
Abstract
Graphene’s exceptional carrier mobility and broadband absorption make it promising for ultrafast photodetection. However, its low optical absorption limits responsivity, while the absence of a bandgap results in high dark current, constraining the signal-to-noise ratio and efficiency. Although silicon (Si) photodetectors normally offer [...] Read more.
Graphene’s exceptional carrier mobility and broadband absorption make it promising for ultrafast photodetection. However, its low optical absorption limits responsivity, while the absence of a bandgap results in high dark current, constraining the signal-to-noise ratio and efficiency. Although silicon (Si) photodetectors normally offer fabrication compatibility, their performance is severely hindered by interface trap states and optical shading. To overcome these limitations, we demonstrate an epitaxial graphene/n-Si heterojunction photodiode. This device utilizes graphene epitaxially grown on germanium integrated with a transferred Si thin film, eliminating polymer residues and interface defects common in transferred graphene. As a result, the fabricated photodetector achieves an ultralow dark current of 1.2 × 10−9 A, a high responsivity of 1430 A/W, and self-powered operation at room temperature. This work provides a strategy for high-sensitivity and low-power photodetection and demonstrates the practical integration potential of graphene/Si heterostructures for advanced optoelectronics. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

30 pages, 3838 KB  
Review
Advances in the Tribological Performance of Graphene Oxide and Its Composites
by Mayur B. Wakchaure and Pradeep L. Menezes
Materials 2025, 18(15), 3587; https://doi.org/10.3390/ma18153587 - 30 Jul 2025
Viewed by 480
Abstract
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The [...] Read more.
Graphene oxide (GO), a derivative of graphene, has attracted significant attention in tribological applications due to its unique structural, mechanical, and chemical properties. This review highlights the influence of GO and its composites on friction and wear performance across various engineering systems. The paper explores GO’s key properties, such as its high surface area, layered morphology, and abundant functional groups. These features contribute to reduced shear resistance, tribofilm formation, and improved load-bearing capacity. A detailed analysis of GO-based composites, including polymer, metal, and ceramic matrices, reveals those small additions of GO (typically 0.1–2 wt%) result in substantial reductions in coefficient of friction and wear rate, with improvements ranging between 30–70%, depending on the application. The tribological mechanisms, including self-lubrication, dispersion, thermal stability, and interface interactions, are discussed to provide insights into performance enhancement. Furthermore, the effects of electrochemical environment, functional group modifications, and external loading conditions on GO’s tribological behavior are examined. Despite these advantages, challenges such as scalability, agglomeration, and material compatibility persist. Overall, the paper demonstrates that GO is a promising additive for advanced tribological systems, while also identifying key limitations and future research directions. Full article
(This article belongs to the Special Issue Tribology in Advanced Materials)
Show Figures

Figure 1

Back to TopTop