Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions
Abstract
1. Introduction
2. Printed Sensor Technology
2.1. Principles of Printed Sensors
2.2. Types of Printed Sensors
2.2.1. Gas Sensors
2.2.2. Electrochemical Sensors
2.2.3. Biosensors
2.2.4. Temperature Sensors
2.2.5. Humidity Sensors
3. Materials Used in Printed Sensors
3.1. Conductive Inks
3.1.1. Metal-Based Inks
3.1.2. Carbon-Based Inks
3.1.3. Conductive Polymer Inks
3.2. Substrates
3.2.1. Rigid Substrates
3.2.2. Flexible Substrates
3.3. Sensor Functionalization
3.4. Material Selection Challenges and Future Directions
4. Printing Techniques
4.1. Inkjet Printing
4.2. Screen Printing
4.3. Aerosol Jet Printing
4.4. Roll-to-Roll Printing
4.5. Gravure Printing
4.6. 3D Printing
4.7. Hybrid Printing Techniques
4.8. Future Prospects of Printing Techniques
4.8.1. Integration with IoT and AI Technologies
4.8.2. Self-Powered Printed Sensors
5. Applications of Printed Sensors for Environmental Monitoring
5.1. Air Quality Monitoring
5.2. Water Quality Monitoring
5.3. Soil Monitoring
6. Challenges and Future Directions
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shammas, M.I. Environmental monitoring and assessment: A case in Salalah, Oman. Environ. Monit. Assess. 2021, 193, 700. [Google Scholar] [CrossRef]
- Butt, M.A.; Voronkov, G.S.; Grakhova, E.P.; Kutluyarov, R.V.; Kazanskiy, N.L.; Khonina, S.N. Environmental Monitoring: A Comprehensive Review on Optical Waveguide and Fiber-Based Sensors. Biosensors 2022, 12, 1038. [Google Scholar] [CrossRef]
- Salam, A. Internet of things for environmental sustainability and climate change. In Internet of Things for Sustainable Community Development: Wireless Communications, Sensing, and Systems; Springer: Berlin/Heidelberg, Germany, 2024; pp. 33–69. [Google Scholar]
- Rathi, B.S.; Kumar, P.S.; Vo, D.-V.N. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef] [PubMed]
- Beyer, J.; Petersen, K.; Song, Y.; Ruus, A.; Grung, M.; Bakke, T.; Tollefsen, K.E. Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Mar. Environ. Res. 2014, 96, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Hernández-Gordillo, A.; Ruiz-Correa, S.; Robledo-Valero, V.; Hernández-Rosales, C.; Arriaga, S. Recent advancements in low-cost portable sensors for urban and indoor air quality monitoring. Air Qual. Atmos. Health 2021, 14, 1931–1951. [Google Scholar] [CrossRef]
- Marfo, A.; Obeng-Gyasi, E. Empowering communities: The role of wearable devices in environmental justice. Authorea, 2024; Preprints. [Google Scholar] [CrossRef]
- Wang, J.; Zhen, J.; Hu, W.; Chen, S.; Lizaga, I.; Zeraatpisheh, M.; Yang, X. Remote sensing of soil degradation: Progress and perspective. Int. Soil Water Conserv. Res. 2023, 11, 429–454. [Google Scholar] [CrossRef]
- Han, H.; Liu, Z.; Li, J.; Zeng, Z. Challenges in remote sensing based climate and crop monitoring: Navigating the complexities using AI. J. Cloud Comput. 2024, 13, 34. [Google Scholar] [CrossRef]
- Chakraborty, T.G.; Jain, R.; Sarkar, A. Incorporation of AI with Conventional Monitoring Systems. In Artificial Intelligence for Air Quality Monitoring and Prediction; CRC Press: Boca Raton, FL, USA, 2024; pp. 226–246. [Google Scholar]
- Strand, E.J.; Gopalakrishnan, A.; Crichton, C.A.; Palizzi, M.J.; Lee, O.; Borsa, T.; Bihar, E.; Goodrich, P.; Arias, A.C.; Shaheen, S.E.; et al. Ultrathin Screen-Printed Plant Wearable Capacitive Sensors for Environmental Monitoring. Adv. Sens. Res. 2025, 4, 2400177. [Google Scholar] [CrossRef]
- Kalligosfyri, P.M.; Miglione, A.; Cinti, S. Screen-Printing and 3D-Printing Technologies in Electrochemical (Bio)sensors: Opportunities, Advantages and Limitations. ECS Sens. Plus 2025, 4, 010601. [Google Scholar] [CrossRef]
- Belal, M.A.; Hajra, S.; Panda, S.; Kaja, K.R.; Abdo, M.M.M.; Abd El-Moneim, A.; Janas, D.; Mishra, Y.K.; Kim, H.J. Advances in gas sensors using screen printing. J. Mater. Chem. A 2025, 13, 5447–5497. [Google Scholar] [CrossRef]
- Leite, V.A.R.; de Oliveira, S.P.; de Souza, L.C.; Silva, L.J.d.P.; Silva, L.F.; Cândido, T.C.D.O.; Silva, D.N.D.; Pereira, A.C. Development of Novel Conductive Inks for Screen-Printed Electrochemical Sensors: Enhancing Rapid and Sensitive Drug Detection. Analytica 2025, 6, 3. [Google Scholar] [CrossRef]
- Rayhana, R.; Xiao, G.G.; Liu, Z. Printed sensor technologies for monitoring applications in smart farming: A review. IEEE Trans. Instrum. Meas. 2021, 70, 9513419. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Zhang, L.; Xu, J.; Xiao, X.; Zhang, X. Inkjet-printed flexible sensors: From function materials, manufacture process, and applications perspective. Mater. Today Commun. 2022, 31, 103263. [Google Scholar] [CrossRef]
- Angmo, D.; Larsen-Olsen, T.T.; Jørgensen, M.; Søndergaard, R.R.; Krebs, F.C. Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration. Adv. Energy Mater. 2013, 3, 172–175. [Google Scholar] [CrossRef]
- Hassan, K.; Nine, M.J.; Tung, T.T.; Stanley, N.; Yap, P.L.; Rastin, H.; Yu, L.; Losic, D. Functional inks and extrusion-based 3D printing of 2D materials: A review of current research and applications. Nanoscale 2020, 12, 19007–19042. [Google Scholar] [CrossRef]
- Jiang, Y.; Islam, M.N.; He, R.; Huang, X.; Cao, P.-F.; Advincula, R.C.; Dahotre, N.; Dong, P.; Wu, H.F.; Choi, W. Recent advances in 3D printed sensors: Materials, design, and manufacturing. Adv. Mater. Technol. 2023, 8, 2200492. [Google Scholar] [CrossRef]
- Ateia, M.; Wei, H.; Andreescu, S. Sensors for Emerging Water Contaminants: Overcoming Roadblocks to Innovation. Environ. Sci. Technol. 2024, 58, 2636–2651. [Google Scholar] [CrossRef]
- Brunetti, I.; James Pataki, N.; Hinojosa, D.R.; Hawkey, A.; Karakaya, O.; Rainer, C.; Khan, M.I.; Franke, L.; Mallick, M.M.; Hernandez-Sosa, G.; et al. A Scalable Fully Printed Organic Thermoelectric Generator for Harsh Environments Enabled by a Stable n-type Polymer. Adv. Mater. Technol. 2024, 10, 2400968. [Google Scholar] [CrossRef]
- Olabintan, A.B.; Abdullahi, A.S.; Yusuf, B.O.; Ganiyu, S.A.; Saleh, T.A.; Basheer, C. Prospects of polymer nanocomposite-based electrochemical sensors as analytical devices for environmental monitoring: A review. Microchem. J. 2024, 204, 111053. [Google Scholar] [CrossRef]
- Ahmed, S.; Bodaghi, M.; Nauman, S.; Muhammad Khan, Z. Additive manufacturing of flexible strain sensors based on smart composites for structural health monitoring with high accuracy and fidelity. Adv. Eng. Mater. 2023, 25, 2300763. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. 3D-printed sensors: Current progress and future challenges. Sens. Actuators A Phys. 2020, 305, 111916. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Biswas, A.; Cai, S.; Huang, J.; Andrews, J. Inkjet Printed Potentiometric Sensors for Nitrate Detection Directly in Soil Enabled by a Hydrophilic Passivation Layer. Adv. Mater. Technol. 2024, 9, 2301140. [Google Scholar] [CrossRef]
- Dhatterwal, J.S.; Kaswan, K.S.; Kumar, N. Self-powered integrated sensor system for printable fabrication. In Self-Powered Sensors; Elsevier: Amsterdam, The Netherlands, 2025; pp. 187–235. [Google Scholar]
- Ismael, S.A.; Majeed, O.A.; Akram, E.; Aqeel, A.; Mohammed, S. Study of the Impact of High Temperature of Cooling Water and Hydrocarbon Waste Discharged from Musayyib Thermal Station to the Euphrates River Using Remote Sensing Stations. Al-Nahrain J. Sci. 2024, 27, 20–27. [Google Scholar] [CrossRef]
- Paneru, B.; Paneru, B.; Shah, K.B.; Poudyal, R.; Poudyal, K.N. Green energy production aid spider robot: An innovative approach for waste separation using robotic technology powered with IoT. J. Sens. 2024, 2024, 6296464. [Google Scholar] [CrossRef]
- Yadav, K.; Nikalje, G.C. Comprehensive analysis of bioplastics: Life cycle assessment, waste management, biodiversity impact, and sustainable mitigation strategies. PeerJ 2024, 12, e18013. [Google Scholar] [CrossRef]
- Pechlivani, E.; Papadimitriou, A.; Pemas, S.; Ntinas, G.; Tzovaras, D. IoT-Based Agro-Toolbox for Soil Analysis and Environmental Monitoring. Micromachines 2023, 14, 1698. [Google Scholar] [CrossRef]
- Chong, J.L.; Chew, K.; Peter, A.; Ting, H.; Show, P. Internet of Things (IoT)-Based Environmental Monitoring and Control System for Home-Based Mushroom Cultivation. Biosensors 2023, 13, 98. [Google Scholar] [CrossRef]
- Neethirajan, S. Artificial Intelligence and Sensor Innovations: Enhancing Livestock Welfare with a Human-Centric Approach. Hum. Centric Intell. Syst. 2023, 4, 77–92. [Google Scholar] [CrossRef]
- Sathies, T.; Senthil, P.; Prakash, C. Application of 3D printed PLA-carbon black conductive polymer composite in solvent sensing. Mater. Res. Express 2019, 6, 115349. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Xiao, Y.; Zhang, Y.; Zhang, G.; Wang, Y. 3D Printing of Carbon Nanotube (CNT)/Thermoplastic Polyurethane (TPU) Functional Composites and Preparation of Highly Sensitive, Wide-range Detectable, and Flexible Capacitive Sensor Dielectric Layers via Fused Deposition Modeling (FDM). Adv. Mater. Technol. 2023, 8, 2201638. [Google Scholar] [CrossRef]
- Fumeaux, N.; Briand, D. 3D Printing of Customizable Transient Bioelectronics and Sensors. Adv. Electron. Mater. 2024, 10, 2400058. [Google Scholar] [CrossRef]
- AI-Okby, M.F.R.; Neubert, S.; Roddelkopf, T.; Thurow, K. Integration and Testing of Novel MOX Gas Sensors for IoT-based Indoor Air Quality Monitoring. In Proceedings of the 2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 18–20 November 2021. [Google Scholar]
- Baron, R.; Saffell, J. Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review. ACS Sens. 2017, 2, 1553–1566. [Google Scholar] [CrossRef] [PubMed]
- Papaconstantinou, R.; Demosthenous, M.; Bezantakos, S.; Hadjigeorgiou, N.; Costi, M.; Stylianou, M.; Symeou, E.; Savvides, C.; Biskos, G. Field evaluation of low-cost electrochemical air quality gas sensors under extreme temperature and relative humidity conditions. Atmos. Meas. Tech. 2023, 16, 3313–3329. [Google Scholar] [CrossRef]
- Barandun, G.; Gonzalez-Macia, L.; Lee, H.S.; Dincer, C.; Güder, F. Challenges and opportunities for printed electrical gas sensors. ACS Sens. 2022, 7, 2804–2822. [Google Scholar] [CrossRef]
- He, Q.; Wang, B.; Liang, J.; Liu, J.; Liang, B.; Li, G.; Long, Y.; Zhang, G.; Liu, H. Research on the construction of portable electrochemical sensors for environmental compounds quality monitoring. Mater. Today Adv. 2023, 17, 100340. [Google Scholar] [CrossRef]
- Barhoum, A.; Hamimed, S.; Slimi, H.; Othmani, A.; Abdel-Haleem, F.M.; Bechelany, M. Modern designs of electrochemical sensor platforms for environmental analyses: Principles, nanofabrication opportunities, and challenges. Trends Environ. Anal. Chem. 2023, 38, e00199. [Google Scholar] [CrossRef]
- Godja, N.-C.; Munteanu, F.-D. Hybrid Nanomaterials: A Brief Overview of Versatile Solutions for Sensor Technology in Healthcare and Environmental Applications. Biosensors 2024, 14, 67. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Dourandish, Z.; Khalilzadeh, M.A.; Jang, H.W.; Venditti, R.A.; Varma, R.S.; Shokouhimehr, M. Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants. Ind. Eng. Chem. Res. 2021, 60, 1112–1136. [Google Scholar] [CrossRef]
- Abhishek, N.; Verma, A.; Singh, A.; Vandana; Kumar, T. Metal-conducting polymer hybrid composites: A promising platform for electrochemical sensing. Inorg. Chem. Commun. 2023, 157, 111334. [Google Scholar] [CrossRef]
- Buerk, D.G. Biosensors: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Remaggi, G.; Zaccarelli, A.; Elviri, L. 3D Printing Technologies in Biosensors Production: Recent Developments. Chemosensors 2022, 10, 65. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Shi, B.; Adyel, T.M.; McCarthy, D. 3D-printed single-chamber microbial fuel cell biosensor reliably measures nitrates in environmental waters. J. Environ. Chem. Eng. 2025, 13, 116277. [Google Scholar] [CrossRef]
- Pan, L.; Zhou, S.; Yang, J.; Fei, T.; Mao, S.; Fu, L.; Lin, C.T. 3D-printed electrodes for electrochemical detection of environmental analytes. Anal. Methods 2025, 17, 2235–2253. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Vargas, G.; Sosa-Hernández, J.E.; Saldarriaga-Hernandez, S.; Villalba-Rodríguez, A.M.; Parra-Saldivar, R.; Iqbal, H.M. Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors 2018, 8, 29. [Google Scholar] [CrossRef]
- Kandlikar, S.G. Review and projections of integrated cooling systems for three-dimensional integrated circuits. J. Electron. Packag. 2014, 136, 024001. [Google Scholar] [CrossRef]
- Le Goupil, F.; Payrot, G.; Khiev, S.; Smaal, W.; Hadziioannou, G. Fully Printed Sensors for In Situ Temperature, Heat Flow, and Thermal Conductivity Measurements in Flexible Devices. ACS Omega 2023, 8, 8481–8487. [Google Scholar] [CrossRef]
- Kanth, S.; Chikara, A.K.; Choudhury, S.; Betty, C. Portable H2S gas detection and alert system prototype using highly sensitive nanocrystalline SnO2 thin films: Sensor for environmental monitoring. In Proceedings of the 2023 IEEE Applied Sensing Conference (APSCON), Bengaluru, India, 23–25 January 2023. [Google Scholar]
- Farooqui, M.; Shamim, A. 3D inkjet printed disposable environmental monitoring wireless sensor node. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honolulu, HI, USA, 4–9 June 2017. [Google Scholar]
- Xiao, Y.; Jiang, S.; Zhang, W.; Li, Y. Flexible fully printed temperature sensor based on PVC/CB composite. In Proceedings of the 2020 6th International Conference on Mechanical Engineering and Automation Science (ICMEAS), Moscow, Russia, 29–31 October 2020. [Google Scholar]
- Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef]
- Blank, T.; Eksperiandova, L.; Belikov, K. Recent trends of ceramic humidity sensors development: A review. Sens. Actuators B Chem. 2016, 228, 416–442. [Google Scholar] [CrossRef]
- Zhao, B.; Sivasankar, V.S.; Subudhi, S.K.; Dasgupta, A.; Das, S. Printed carbon nanotube-based humidity sensors deployable on surfaces of widely varying curvatures. ACS Appl. Nano Mater. 2023, 6, 1459–1474. [Google Scholar] [CrossRef]
- Shaukat, R.A.; Khan, M.U.; Saqib, Q.M.; Chougale, M.Y.; Kim, J.; Bae, J. All range highly linear and sensitive humidity sensor based on 2D material TiSi2 for real-time monitoring. Sens. Actuators B Chem. 2021, 345, 130371. [Google Scholar] [CrossRef]
- Zhang, X.; He, D.; Yang, Q.; Atashbar, M.Z. Rapid, highly sensitive, and highly repeatable printed porous paper humidity sensor. Chem. Eng. J. 2022, 433, 133751. [Google Scholar] [CrossRef]
- Wiklund, J.; Karakoç, A.; Palko, T.; Yiğitler, H.; Ruttik, K.; Jäntti, R.; Paltakari, J. A review on printed electronics: Fabrication methods, inks, substrates, applications and environmental impacts. J. Manuf. Mater. Process. 2021, 5, 89. [Google Scholar] [CrossRef]
- Qin, Y.; Ouyang, X.; Lv, Y.; Liu, W.; Liu, Q.; Wang, S. A review of carbon-based conductive inks and their printing technologies for integrated circuits. Coatings 2023, 13, 1769. [Google Scholar] [CrossRef]
- Zheng, S.; Zlatin, M.; Selvaganapathy, P.R.; Brook, M.A. Multiple modulus silicone elastomers using 3D extrusion printing of low viscosity inks. Addit. Manuf. 2018, 24, 86–92. [Google Scholar] [CrossRef]
- Ahmad, S.; Shakeel, M.; Iqbal, N.; Amin, M.; Rahman, K. Printing of Low Cost Sensors by Additive Manufacturing. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021. [Google Scholar]
- Cai, R.; Liang, C.; Duan, Y.; Zhao, Z.; Zhang, X.; He, P.; Yang, J.; Lai, W.Y.; Wei, J.; Tian, L. Metallic nanoparticle inks for flexible printed electronics. FlexMat 2025, 1–59. [Google Scholar] [CrossRef]
- Tobjörk, D.; Aarnio, H.; Pulkkinen, P.; Bollström, R.; Määttänen, A.; Ihalainen, P.; Mäkelä, T.; Peltonen, J.; Toivakka, M.; Tenhu, H.; et al. IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Film. 2012, 520, 2949–2955. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J. Advances in the development of liquid metal-based printed electronic inks. Front. Mater. 2019, 6, 303. [Google Scholar] [CrossRef]
- Tavakoli, M.; Malakooti, M.H.; Paisana, H.; Ohm, Y.; Green Marques, D.; Lopes, P.A.; Piedade, A.P.; De Almeida, A.T.; Majidi, C. EGaIn-assisted room-temperature sintering of silver nanoparticles for stretchable, inkjet-printed, thin-film electronics. Adv. Mater. 2018, 30, 1801852. [Google Scholar] [CrossRef]
- Gu, W.; Yuan, W.; Zhong, T.; Wu, X.; Zhou, C.; Lin, J.; Cui, Z. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits. RSC Adv. 2018, 8, 30215–30222. [Google Scholar] [CrossRef]
- Gao, Y.; Shi, W.; Wang, W.; Leng, Y.; Zhao, Y. Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind. Eng. Chem. Res. 2014, 53, 16777–16784. [Google Scholar] [CrossRef]
- Valencia-Valero, L.C.; Fajardo-Puerto, E.; Elmouwahidi, A.; Bailón-García, E.; Carrasco-Marín, F.; Pérez-Cadenas, A.F. Facile Synthesis of Carbon-Based Inks to Develop Metal-Free ORR Electrocatalysts for Electro-Fenton Removal of Amoxicillin. Gels 2024, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.S.; Balu, R.; de Campo, L.; Dutta, N.K.; Choudhury, N.R. Sulfonated polythiophene-interfaced graphene for water-redispersible graphene powder with high conductivity and electrocatalytic activity. Energy Adv. 2023, 2, 365–374. [Google Scholar] [CrossRef]
- Silva, M.; Alves, N.M.; Paiva, M.C. Graphene-polymer nanocomposites for biomedical applications. Polym. Adv. Technol. 2018, 29, 687–700. [Google Scholar] [CrossRef]
- Tang, X.; Wu, K.; Qi, X.; Kwon, H.; Wang, R.; Li, Z.; Ye, H.; Hong, J.; Choi, H.H.; Kong, H.; et al. Screen printing of silver and carbon nanotube composite inks for flexible and reliable organic integrated devices. ACS Appl. Nano Mater. 2022, 5, 4801–4811. [Google Scholar] [CrossRef]
- Pang, H.; Xu, L.; Yan, D.-X.; Li, Z.-M. Conductive polymer composites with segregated structures. Prog. Polym. Sci. 2014, 39, 1908–1933. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, H.; Li, S.; Feng, X.; Aghassi-Hagmann, J.; Azizian, S.; Levkin, P.A. Facile approach to conductive polymer microelectrodes for flexible electronics. ACS Appl. Mater. Interfaces 2021, 13, 21661–21668. [Google Scholar] [CrossRef]
- Criado-Gonzalez, M.; Dominguez-Alfaro, A.; Lopez-Larrea, N.; Alegret, N.; Mecerreyes, D. Additive manufacturing of conducting polymers: Recent advances, challenges, and opportunities. ACS Appl. Polym. Mater. 2021, 3, 2865–2883. [Google Scholar] [CrossRef]
- Cao, Y.; Qiu, J.; Smith, P. Effect of solvents and co-solvents on the processibility of polyaniline: I. solubility and conductivity studies. Synth. Met. 1995, 69, 187–190. [Google Scholar] [CrossRef]
- Knite, M.; Teteris, V.; Polyakov, B.; Erts, D. Electric and elastic properties of conductive polymeric nanocomposites on macro-and nanoscales. Mater. Sci. Eng. C 2002, 19, 15–19. [Google Scholar] [CrossRef]
- Melo, D.S.; Reis, I.C.; Queiroz, J.C.; Cena, C.; Nahime, B.O.; Malmonge, J.A.; Silva, M.J. Evaluation of Piezoresistive and Electrical Properties of Conductive Nanocomposite Based on Castor-Oil Polyurethane Filled with MWCNT and Carbon Black. Materials 2023, 16, 3223. [Google Scholar] [CrossRef]
- Kwon, J.; Evans, K.M.; Ma, L.; Arnold, D.; Yildizdag, M.E.; Zohdi, T.; Ritchie, R.O.; Xu, T. Scalable Electrically Conductive Spray Coating Based on Block Copolymer Nanocomposites. ACS Appl. Mater. Interfaces 2020, 12, 8687–8694. [Google Scholar] [CrossRef]
- Liang, X.; Liu, H.; Fujinami, S.; Ito, M.; Nakajima, K. Simultaneous Visualization of Microscopic Conductivity and Deformation in Conductive Elastomers. ACS Nano 2024, 18, 3438–3446. [Google Scholar] [CrossRef] [PubMed]
- Cruz, S.M.F.; Rocha, L.A.; Viana, J.C. Printing technologies on flexible substrates for printed electronics. In Flexible Electronics; IntechOpen: London, UK, 2018. [Google Scholar]
- Malik, A.; Kandasubramanian, B. Flexible polymeric substrates for electronic applications. Polym. Rev. 2018, 58, 630–667. [Google Scholar] [CrossRef]
- Jansson, E.; Lyytikäinen, J.; Tanninen, P.; Eiroma, K.; Leminen, V.; Immonen, K.; Hakola, L. Suitability of paper-based substrates for printed electronics. Materials 2022, 15, 957. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.J.; Lee, C.K.; Oh, J.H. All-inkjet-printed electrical components and circuit fabrication on a plastic substrate. Microelectron. Eng. 2012, 97, 251–254. [Google Scholar] [CrossRef]
- Caglar, U.; Kaija, K.; Mansikkamaki, P. Analysis of mechanical performance of silver inkjet-printed structures. In Proceedings of the 2008 2nd IEEE International Nanoelectronics Conference, Shanghai, China, 24–27 March 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 851–856. [Google Scholar]
- Suzuki, M.; Takahashi, T.; Aoyagi, S. Flexible tactile sensor using polyurethane thin film. Micromachines 2012, 3, 315–324. [Google Scholar] [CrossRef]
- Cruz, S.; Rocha, L.A.; Viana, J.C. Piezo-resistive behaviour at high strain levels of PEDOT: PSS printed on a flexible polymeric substrate by a novel surface treatment. J. Mater. Sci. Mater. Electron. 2017, 28, 2563–2573. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Critical overview on the application of sensors and biosensors for clinical analysis. TrAC Trends Anal. Chem. 2016, 85, 36–60. [Google Scholar] [CrossRef]
- Erkmen, C.; Selcuk, O.; Unal, D.N.; Kurbanoglu, S.; Uslu, B. Layer-by-layer modification strategies for electrochemical detection of biomarkers. Biosens. Bioelectron. X 2022, 12, 100270. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, C.; Bai, W.; Ye, W.; Wang, J.; Wei, J.; Wang, Y.; He, J.; Lu, J. Surface functionalization of ion-in-conjugation polymer sensors for humidity-independent gas detection at room temperature. Sens. Actuators B Chem. 2022, 372, 132654. [Google Scholar] [CrossRef]
- Del Prado-Audelo, M.L.; García Kerdan, I.; Escutia-Guadarrama, L.; Reyna-González, J.M.; Magaña, J.J.; Leyva-Gómez, G. Nanoremediation: Nanomaterials and Nanotechnologies for Environmental Cleanup. Front. Environ. Sci. 2021, 9, 793765. [Google Scholar] [CrossRef]
- Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules 2018, 23, 1760. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, M.; Gerengi, H.; Gupta, P. Functionalization of nanomaterials: Synthesis and characterization. In Functionalized Nanomaterials for Corrosion Mitigation: Synthesis, Characterization, and Applications; ACS Publications: Washington, DC, USA, 2022; pp. 1–26. [Google Scholar]
- Pratibha Kapoor, A.; Kaur Rajput, J. Functionalized Nanomaterials for Environmental Remediation. In Handbook of Green and Sustainable Nanotechnology; Springer: Cham, Switzerland, 2023. [Google Scholar]
- He, M.; Swager, T.M. Covalent functionalization of carbon nanomaterials with iodonium salts. Chem. Mater. 2016, 28, 8542–8549. [Google Scholar] [CrossRef]
- Presolski, S.; Pumera, M. Covalent functionalization of MoS2. Mater. Today 2016, 19, 140–145. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef]
- Hossain, N.; Rimon, M.I.H.; Mimona, M.A.; Mobarak, M.H.; Ghosh, J.; Islam, M.A.; Al Mahmud, M.Z. Prospects and Challenges of Sensor Materials: A Comprehensive Review. E-Prime-Adv. Electr. Eng. Electron. Energy 2024, 7, 100496. [Google Scholar] [CrossRef]
- Ghosh, A.; Nag, S.; Gomes, A.; Gosavi, A.; Ghule, G.; Kundu, A.; Purohit, B.; Srivastava, R. Applications of Smart Material Sensors and Soft Electronics in Healthcare Wearables for Better User Compliance. Micromachines 2022, 14, 121. [Google Scholar] [CrossRef]
- Darwish, M.A.; Abd-Elaziem, W.; Elsheikh, A.; Zayed, A.A. Advancements in nanomaterials for nanosensors: A comprehensive review. Nanoscale Adv. 2024, 6, 4015–4046. [Google Scholar] [CrossRef]
- KS, J.H.; Subramaniam, M.P.; KT, M.K.; Sreeram, P.; Parvathi, S.; PS, S.; Pullanchiyodan, A.; Mulhivill, D.M.; Raghavan, P. Fabrication and challenges of 3D printed sensors for biomedical applications-Comprehensive review. Results Eng. 2024, 21, 101867. [Google Scholar] [CrossRef]
- Singh, M.K.; Lata, A. Integrating Artificial Intelligence and Machine Learning in the Design and Manufacturing of Green and Flexible Electronics. In Convergence Strategies for Green Computing and Sustainable Development; IGI Global: Hershey, PA, USA, 2024; pp. 267–289. [Google Scholar]
- Swenson, D. The Environmental Benefits of Inkjet Printers|The Swenson Group. 2023. Available online: https://www.theswensongroup.com/the-environmental-benefits-of-inkjet-printers/ (accessed on 16 May 2025).
- Campos-Arias, L.; Peřinka, N.; Lau, Y.C.; Castro, N.; Pereira, N.; Correia, V.M.G.; Costa, P.; Vilas-Vilela, J.L.; Lanceros-Mendez, S. Improving Definition of Screen-Printed Functional Materials for Sensing Application. ACS Appl. Electron. Mater. 2024, 6, 2152–2160. [Google Scholar] [CrossRef] [PubMed]
- Vyas, R.; Lakafosis, V.; Lee, H.; Shaker, G.; Yang, L.; Orecchini, G.; Traille, A.; Tentzeris, M.M.; Roselli, L. Inkjet printed, self powered, wireless sensors for environmental, gas, and authentication-based sensing. IEEE Sens. J. 2011, 11, 3139–3152. [Google Scholar] [CrossRef]
- Krebsbach, P.; Rincón-Iglesias, M.; Pietsch, M.; Henel, C.; Lanceros-Mendez, S.; Phua, J.W.; Ambrico, M.; Hernandez-Sosa, G. Inkjet-Printed Bio-Based Melanin Composite Humidity Sensor for Sustainable Electronics. ACS Appl. Mater. Interfaces 2024, 16, 42555–42565. [Google Scholar] [CrossRef]
- Wu, S.; Hu, Z.; Jiang, N.; Zhai, J.; Liu, Y.; Wang, Z.; Kang, C.; Wang, Y. Flexible temperature sensor array based on PEDOT: PSS inkjet printing. IEEE Sens. J. 2024, 24, 22249–22258. [Google Scholar] [CrossRef]
- Beniwal, A.; Ganguly, P.; Aliyana, A.K.; Khandelwal, G.; Dahiya, R. Screen-printed graphene-carbon ink based disposable humidity sensor with wireless communication. Sens. Actuators B Chem. 2023, 374, 132731. [Google Scholar] [CrossRef]
- Ullah, A.; Zubair, M.; Zulfiqar, M.H.; Kamsong, W.; Karuwan, C.; Massoud, Y.; Mehmood, M.Q. Highly sensitive screen-printed soil moisture sensor array as green solutions for sustainable precision agriculture. Sens. Actuators A Phys. 2024, 371, 115297. [Google Scholar] [CrossRef]
- Pranjale, G.S.; Patil, G.C. Based Screen-Printed Electrodes: A Cost-Effective Solution for Soil Potassium Sensing. IEEE Sens. J. 2024, 24, 20360–20367. [Google Scholar] [CrossRef]
- Tousignant, M.N.; Tischler, V.; Wagner, K.; Lin, Z.S.; Brusso, J.; Izquierdo, R.; Lessard, B.H. Aerosol jet printed temperature sensors using an environmentally friendly bilayer dielectric. Flex. Print. Electron. 2024, 9, 015012. [Google Scholar] [CrossRef]
- Taheri, M.; Ketabi, M.; Al Shboul, A.M.; Mahinnezhad, S.; Izquierdo, R.; Deen, M.J. Integrated pH sensors based on RuO2/GO Nanocomposites fabricated using the aerosol jet printing method. ACS Omega 2023, 8, 46794–46803. [Google Scholar] [CrossRef]
- Fapanni, T.; Sardini, E.; Serpelloni, M.; Tonello, S. 3D electrochemical sensor and microstructuration using aerosol jet printing. Sensors 2021, 21, 7820. [Google Scholar] [CrossRef] [PubMed]
- Phung, T.H.; Gafurov, A.N.; Kim, I.; Kim, S.Y.; Kim, K.M.; Lee, T.M. Hybrid device fabrication using roll-to-roll printing for personal environmental monitoring. Polymers 2023, 15, 2687. [Google Scholar] [CrossRef] [PubMed]
- Phung, T.H.; Gafurov, A.N.; Kim, I.; Kim, S.Y.; Kim, K.M.; Lee, T.M. IoT device fabrication using roll-to-roll printing process. Sci. Rep. 2021, 11, 19982. [Google Scholar] [CrossRef] [PubMed]
- Potoczny, G.A. Roll-to-roll Production Challenges for Large-area Printed Electronics. In Flexible Flat Panel Displays; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 325–336. [Google Scholar]
- Sharma, B.; Singh, S.; Pandey, A.; Dutt, D.; Kulshreshtha, A. Environment-friendly and cost-effective solution for flexible packaging printing process by advancement in engraving process. Clean Technol. Environ. Policy 2023, 25, 909–920. [Google Scholar] [CrossRef]
- Montanino, M.; Sico, G. Gravure Printing for Lithium-Ion Batteries Manufacturing: A Review. Batteries 2023, 9, 535. [Google Scholar] [CrossRef]
- Chaloeipote, G.; Prathumwan, R.; Subannajui, K.; Wisitsoraat, A.; Wongchoosuk, C. 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature. Mater. Sci. Semicond. Process. 2021, 123, 105546. [Google Scholar] [CrossRef]
- Kalsoom, U.; Waheed, S.; Paull, B. Fabrication of humidity sensor using 3D printable polymer composite containing boron-doped diamonds and LiCl. ACS Appl. Mater. Interfaces 2020, 12, 4962–4969. [Google Scholar] [CrossRef]
- Praveena, B.A.; Lokesh, N.; Buradi, A.; Santhosh, N.; Praveena, B.L.; Vignesh, R. A comprehensive review of emerging additive manufacturing (3D printing technology): Methods, materials, applications, challenges, trends and future potential. Mater. Today Proc. 2022, 52, 1309–1313. [Google Scholar]
- Verma, A.; Goos, R.; Weerdt, J.D.; Pelgrims, P.; Ferraris, E. Design, fabrication, and testing of a fully 3D-printed pressure sensor using a hybrid printing approach. Sensors 2022, 22, 7531. [Google Scholar] [CrossRef]
- Mangoma, T.N.; Yamamoto, S.; Malliaras, G.G.; Daly, R. Hybrid 3D/inkjet-printed organic neuromorphic transistors. Adv. Mater. Technol. 2022, 7, 2000798. [Google Scholar] [CrossRef]
- Fisher, C.; Skolrood, L.N.; Li, K.; Joshi, P.C.; Aytug, T. Aerosol-jet printed sensors for environmental, safety, and health monitoring: A review. Adv. Mater. Technol. 2023, 8, 2300030. [Google Scholar] [CrossRef]
- Hyun, W.J.; Secor, E.B.; Hersam, M.C.; Frisbie, C.D.; Francis, L.F. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 2015, 27, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Lemarchand, J.; Bridonneau, N.; Battaglini, N.; Carn, F.; Mattana, G.; Piro, B.; Zrig, S.; Noël, V. Challenges, Prospects, and Emerging Applications of Inkjet-Printed Electronics: A Chemist’s Point of View. Angew. Chem. Int. Ed. 2022, 61, e202200166. [Google Scholar] [CrossRef]
- Hrehorova, E.; Rebros, M.; Pekarovicova, A.; Bazuin, B.; Ranganathan, A.; Garner, S.; Merz, G.; Tosch, J.; Boudreau, R. Gravure printing of conductive inks on glass substrates for applications in printed electronics. J. Disp. Technol. 2011, 7, 318–324. [Google Scholar] [CrossRef]
- Willmann, J.; Stocker, D.; Dörsam, E. Characteristics and evaluation criteria of substrate-based manufacturing. Is roll-to-roll the best solution for printed electronics? Org. Electron. 2014, 15, 1631–1640. [Google Scholar] [CrossRef]
- Secor, E.B. Principles of aerosol jet printing. Flex. Print. Electron. 2018, 3, 035002. [Google Scholar] [CrossRef]
- Tan, H.W.; An, J.; Chua, C.K.; Tran, T. Metallic nanoparticle inks for 3D printing of electronics. Adv. Electron. Mater. 2019, 5, 1800831. [Google Scholar] [CrossRef]
- Park, Y.-G.; Yun, I.; Chung, W.G.; Park, W.; Lee, D.H.; Park, J.U. High-resolution 3D printing for electronics. Adv. Sci. 2022, 9, 2104623. [Google Scholar] [CrossRef]
- Scandurra, G.; Arena, A.; Ciofi, C. A brief review on flexible electronics for IoT: Solutions for sustainability and new perspectives for designers. Sensors 2023, 23, 5264. [Google Scholar] [CrossRef]
- Zhou, S.; Zhao, Y.; Xun, Y.; Wei, Z.; Yang, Y.; Yan, W.; Ding, J. Programmable and modularized gas sensor integrated by 3D printing. Chem. Rev. 2024, 124, 3608–3643. [Google Scholar] [CrossRef]
- Lee, C.-H.; Chuang, W.-Y.; Cowan, M.A.; Wu, W.-J.; Lin, C.-T. A low-power integrated humidity CMOS sensor by printing-on-chip technology. Sensors 2014, 14, 9247–9255. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Chuang, W.-Y.; Wu, C.-D.; Su, Y.-C.; Huang, Y.-Y.; Huang, Y.J.; Peng, S.Y.; Yu, S.A.; Lin, C.T.; Lu, S.S. A self-sustained wireless multi-sensor platform integrated with printable organic sensors for indoor environmental monitoring. Sensors 2017, 17, 715. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, M.F.; Karimi, M.A.; Salama, K.N.; Shamim, A. 3D-printed disposable wireless sensors with integrated microelectronics for large area environmental monitoring. Adv. Mater. Technol. 2017, 2, 1700051. [Google Scholar] [CrossRef]
- Sagheer, U.; Al-Kindi, S.; Abohashem, S.; Phillips, C.T.; Rana, J.S.; Bhatnagar, A.; Gulati, M.; Rajagopalan, S.; Kalra, D.K. Environmental pollution and cardiovascular disease: Part 1 of 2: Air Pollution. JACC Adv. 2024, 3, 100805. [Google Scholar] [CrossRef]
- Meo, S.A.; Salih, M.A.; Alkhalifah, J.M.; Alsomali, A.H.; Almushawah, A.A. Environmental pollutants particulate matter (PM2.5, PM10), Carbon Monoxide (CO), Nitrogen dioxide (NO2), Sulfur dioxide (SO2), and Ozone (O3) impact on lung functions. J. King Saud Univ.-Sci. 2024, 36, 103280. [Google Scholar] [CrossRef]
- La, D.D.; Khong, H.T.; Nguyen, X.Q.; Dang, T.D.; Bui, X.T.; Nguyen, M.K.; Ngo, H.H.; Nguyen, D.D. A review on advances in graphene and porphyrin-based electrochemical sensors for pollutant detection. Sustain. Chem. One World 2024, 3, 100017. [Google Scholar] [CrossRef]
- Won, M.; Sim, J.; Oh, G.; Jung, M.; Mantry, S.P.; Kim, D.S. Fabrication of a Fully Printed Ammonia Gas Sensor Based on ZnO/rGO Using Ultraviolet–Ozone Treatment. Sensors 2024, 24, 1691. [Google Scholar] [CrossRef]
- Khan, J.; Rezo, V.; Vincze, T.; Weis, M.; Momin, S.A.; El-Atab, N.; Jaafar, M. Flexible and highly selective NO2 gas sensor based on direct-ink-writing of eco-friendly graphene oxide for smart wearable application. Chemosphere 2024, 367, 143618. [Google Scholar] [CrossRef]
- Toma, C.; Alexandru, A.; Popa, M.; Zamfiroiu, A. IoT solution for smart cities’ pollution monitoring and the security challenges. Sensors 2019, 19, 3401. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Environmentally data-driven smart sustainable cities: Applied innovative solutions for energy efficiency, pollution reduction, and urban metabolism. Energy Inform. 2020, 3, 29. [Google Scholar] [CrossRef]
- Ojha, M.; Das, A.; Patil, S.; Pandey, A.; Kulkarni, C.; Nalawade, A. Real-Time Environmental Monitoring with IoE Systems. In Role of Internet of Everything (IOE), VLSI Architecture, and AI in Real-Time Systems; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 289–302. [Google Scholar]
- Khanam, Z.; Sultana, F.M.; Mushtaq, F. Environmental Pollution Control Measures and Strategies: An Overview of Recent Developments. In Geospatial Analytics for Environmental Pollution Modeling: Analysis, Control and Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 385–414. [Google Scholar]
- Sohrabi, H.; Hemmati, A.; Majidi, M.R.; Eyvazi, S.; Jahanban-Esfahlan, A.; Baradaran, B.; Adlpour-Azar, R.; Mokhtarzadeh, A.; de la Guardia, M. Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: A critical review. TrAC Trends Anal. Chem. 2021, 143, 116344. [Google Scholar] [CrossRef]
- Thakur, A.; Devi, P. A comprehensive review on water quality monitoring devices: Materials advances, current status, and future perspective. Crit. Rev. Anal. Chem. 2024, 54, 193–218. [Google Scholar] [CrossRef]
- Sun, Y.; Li, D.; Shi, Y.; Wang, Z.; Okeke, S.I.; Yang, L.; Zhang, W.; Zhang, Z.; Shi, Y.; Xiao, L. Application of 3d printing technology in sensor development for water quality monitoring. Sensors 2023, 23, 2366. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.; Mohamad Nor, N.; Abdul Razak, K.; Jaafar, M. Evaluation of inkjet-printed cellulose-based paper substrate electrodes for heavy metal detection. Cellulose 2025, 32, 6145–6164. [Google Scholar] [CrossRef]
- Laffitte, Y.; Gray, B.L. Potentiometric pH Sensor Based on Flexible Screen-Printable Polyaniline Composite for Textile-Based Microfluidic Applications. Micromachines 2022, 13, 1376. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.J.; Nakayama, R.; Shimizu, Y.; Kamiya, A.; Shen, S.; Rashid, I.Z.M.; Sulaiman, N.M.N. Toward industrial revolution 4.0: Development, validation, and application of 3D-printed IoT-based water quality monitoring system. J. Clean. Prod. 2021, 324, 129230. [Google Scholar] [CrossRef]
- Bhaduri, D.; Sihi, D.; Bhowmik, A.; Verma, B.C.; Munda, S.; Dari, B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front. Microbiol. 2022, 13, 938481. [Google Scholar] [CrossRef]
- Yin, S.; Tursunniyaz, M.; Huang, J.; Andrews, J. Dual-Printed Soil Sensors for Nitrate and Moisture Monitoring. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Malik, S.; Somappa, L.; Ahmad, M.; Sonkusale, S.; Baghini, M.S. A fringing field based screen-printed flexible capacitive moisture and water level sensor. In Proceedings of the 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK, 16–19 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Dudala, S.; Dubey, S.K.; Goel, S. Microfluidic soil nutrient detection system: Integrating nitrite, pH, and electrical conductivity detection. IEEE Sens. J. 2020, 20, 4504–4511. [Google Scholar] [CrossRef]
- Baumbauer, C.L.; Goodrich, P.J.; Payne, M.E.; Anthony, T.; Beckstoffer, C.; Toor, A.; Silver, W.; Arias, A.C. Printed Potentiometric Nitrate Sensors for Use in Soil. Sensors 2022, 22, 4095. [Google Scholar] [CrossRef]
- Toor, A. Polymer Nanocomposite Materials with High Dielectric Permittivity and Low Dielectric Loss Properties; UC Berkeley: Berkeley, CA, USA, 2017. [Google Scholar]
- Miao, J.; Liu, H.; Li, Y.; Zhang, X. Biodegradable transparent substrate based on edible starch–chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics. ACS Appl. Mater. Interfaces 2018, 10, 23037–23047. [Google Scholar] [CrossRef]
- Sonia, Y.K.; Meena, S. Eco-materials: Opportunity, Applications, and Challenges. In Eco-Materials and Green Energy for a Sustainable Future; CRC Press: Boca Raton, FL, USA, 2024; pp. 75–92. [Google Scholar]
- Htwe, Y.; Mariatti, M. Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges. J. Sci. Adv. Mater. Devices 2022, 7, 100435. [Google Scholar] [CrossRef]
- Amirian, H.; Dalvand, K.; Ghiasvand, A. Seamless integration of Internet of Things, miniaturization, and environmental chemical surveillance. Environ. Monit. Assess. 2024, 196, 582. [Google Scholar] [CrossRef] [PubMed]
- Parri, L.; Parrino, S.; Peruzzi, G.; Pozzebon, A. Low power wide area networks (LPWAN) at sea: Performance analysis of offshore data transmission by means of LoRaWAN connectivity for marine monitoring applications. Sensors 2019, 19, 3239. [Google Scholar] [CrossRef] [PubMed]
- Modupe, O.T.; Otitoola, A.A.; Oladapo, O.J.; Abiona, O.O.; Oyeniran, O.C.; Adewusi, A.O.; Komolafe, A.M.; Obijuru, A. Reviewing the transformational impact of edge computing on real-time data processing and analytics. Comput. Sci. IT Res. J. 2024, 5, 693–702. [Google Scholar] [CrossRef]
- Li, Z.; Song, P.; Li, G.; Han, Y.; Ren, X.; Bai, L.; Su, J. AI energized hydrogel design, optimization and application in biomedicine. Mater. Today Bio 2024, 25, 101014. [Google Scholar] [CrossRef]
- Saleem, M.A.; Xiao, X.; Mamoon, S.; Li, G.; Liu, T. A novel data driven formulation for predicting jetting states and printing zone of high-viscosity nanosilver ink in inkjet-based 3D printing. Precis. Eng. 2024, 92, 63–76. [Google Scholar] [CrossRef]
- Pillai, V.V.; Ramasubramanian, B.; Sequerth, O.; Pilla, S.; Wang, T.; Mohanty, A.K.; Govindaraj, P.; Alhassan, S.M.; Salim, N.; Kingshott, P.; et al. Nanomaterial advanced smart coatings: Emerging trends shaping the future. Appl. Mater. Today 2025, 42, 102574. [Google Scholar] [CrossRef]
- Ashima, R.; Haleem, A.; Bahl, S.; Javaid, M.; Mahla, S.K.; Singh, S. Automation and manufacturing of smart materials in Additive Manufacturing technologies using Internet of Things towards the adoption of Industry 4.0. Mater. Today Proc. 2021, 45, 5081–5088. [Google Scholar] [CrossRef]
- Borghetti, M.; Cantù, E.; Sardini, E.; Serpelloni, M. Future sensors for smart objects by printing technologies in Industry 4.0 scenario. Energies 2020, 13, 5916. [Google Scholar] [CrossRef]
Substrate | PI | PDMS | PC | PET | TPU | PEN |
---|---|---|---|---|---|---|
Solvent resistance | Good | Poor | Poor | Good | Good | Good |
Dimensional stability | Fair | Good | Fair | Good | Good | Good |
Glass transition temperature, Tg (°C) | 155–270 | −125 | 145 | 70–110 | 80 | 120–155 |
Melting temperature, Tm (°C) | 250–452 | – | 115–160 | 115–258 | 180 | 269 |
Density (g/cm3) | 1.36–1.43 | 1.03 | 1.20–1.22 | 1.39 | 1.18 | 1.36 |
Working Temperature (°C) | Up to 400 | −45 to 200 | −40 to 130 | −50 to 150 | 130 | – |
Coefficient of thermal expansion, CTE (ppm/°C) | 8–20 | 310 | 75 | 15–33 | 153 | 20 |
Water absorption (%) | 1.3–3.0 | >0.1 | 0.16–0.35 | 0.4–0.6 | 0.2 | 0.3–0.4 |
Volume Resistivity (Ω.cm) | 1.5 × 1017 | 1.0 × 1019 | 1012–1014 | 105 | 1.2 × 1014 | 3.0 × 1014 |
Modulus (MPa) | 2.5 × 103 | 2–4.1 × 103 | 2.0–2.6 × 103 | 0.1–0.5 × 103 | 1 | 7 |
Functionalization Type | Suitability for Flexible Sensors | Stability | Fabrication Complexity | Sensitivity | Cost |
---|---|---|---|---|---|
Physical Adsorption (basic form) | Limited to short-term applications | Low | Very Low | Low to Moderate | Very Low |
Covalent Functionalization | Excellent for long-term monitoring | Excellent | High | High | High |
Non-covalent Functionalization | Ideal for disposable or dynamic sensors | Moderate | Low to Moderate | Moderate to High | Low to Moderate |
Printing Method | Resolution | Scalability | Common Substrates | Sensor Durability | Printing Inks | Application Suitability | References |
---|---|---|---|---|---|---|---|
Screen Printing | Low to Medium (up to 100 µm) | High (large-scale production) | Any flat plate | High (resistant to wear and environmental stress) | Micro- or Nano-inks | Gas sensors, environmental monitoring, and industrial applications | [129] |
Inkjet Printing | High (down to 10 µm) | Moderate (small-scale to medium) | Any substrate (cardboard, paper, polymers, or films) | Moderate (subject to ink properties and environmental factors) | Nano-inks | Wearable sensors, flexible electronics, portable monitoring devices | [130] |
Gravure Printing | Medium (typically 50–100 µm) | High (mass production) | Paper, film, cardboard, and foil | Moderate to High (robust but depends on substrate) | Nano-inks | Large-area environmental sensor networks, air quality monitoring | [131] |
Roll-to-Roll Printing | Medium to High (up to 50 µm) | Very High (continuous large-area production) | Paper, polymers, textiles, ultrathin glass, and metallic foil | High (flexible, suitable for continuous monitoring) | Pigment and conductive inks | Large-scale environmental monitoring, disposable sensors, air and water quality | [132] |
Aerosol Jet Printing | Very High (down to 10 µm) | Low to Moderate (low-volume production) | Ceramics, metallic plates (curved or flat), glass, and polymers | Moderate (depends on ink consistency and environmental exposure) | Carbon inks (micro and nano) | Miniaturized sensors, flexible electronics, portable and wearable sensors | [133] |
3D Printing | High (depends on printer and material) | Moderate to High (limited by material properties and printer speed) | Plastic, metallic, resins, and polymers | High (can produce integrated, multi-material systems) | Conductive polymers, CNT and graphene-based inks, metallic organic decomposition inks | Customizable environmental monitoring systems, multi-sensor platforms, wearable and autonomous sensors | [134,135] |
Sensor Type | Sensing Material | Analyte | Selectivity | Limit of Detection (LOD) | Sensitivity | Stability/Reproducibility | Reference |
---|---|---|---|---|---|---|---|
Fully printed ZnO/rGO chemiresistor | ZnO nanoparticles + reduced graphene oxide | NH3 | Good vs. acetone and CO | Not specified | Response ~20.7 at 80 ppm | Fast response (153 s), recovery (79 s) | [144] |
Inkjet-printed chemiresistor | Alkali–lignin + graphene oxide on polyimide | NO2 | High selectivity for NO2 over other gases | ~12.7 ppb | ~1.70%/ppm | Reversible with heating; consistent response | [145] |
Sensor Type | Sensing Material | Analyte | Selectivity | Limit of Detection (LOD) | Sensitivity | Stability/Reproducibility | Reference |
---|---|---|---|---|---|---|---|
Inkjet-printed voltammetric sensor | Ag nanoparticle ink on cellulose | Pb2+, Cd2+ | Moderate (metal ion specific) | Pb ≈ 72.35 ppb; Cd ≈ 111.89 ppb | High | Reproducible; close to commercial SPEs | [153] |
Screen-printed potentiometric sensor | Polyaniline (PANI) on textile | H+ (pH) | Good across pH range | Not applicable | −42.6 mV/pH (nonlinear) | Fully reversible; robust to bending | [154] |
Sensor Type | Sensing Material | Analyte | Selectivity | Limit of Detection (LOD) | Sensitivity | Stability/Reproducibility | Reference |
---|---|---|---|---|---|---|---|
Fully printed ISE + reference electrode | NO3−-selective membrane + printed Ag/AgCl RE | NO3− | Interference from Ca2+; stable otherwise | Not specified | ~−48.0 mV/decade (solution/soil) | Reproducible in water and peat soil conditions | [160] |
Fully printed potentiometric ISE | Au electrode + NH4+-selective polymer membrane | NH4+ | High; minimal ion interference | Not specified | ~53.6 mV/decade (solution); 43–57 mV/decade (soil) | Stable across soil types and moisture levels | [161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Amri, A.M. Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions. Chemosensors 2025, 13, 285. https://doi.org/10.3390/chemosensors13080285
Al-Amri AM. Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions. Chemosensors. 2025; 13(8):285. https://doi.org/10.3390/chemosensors13080285
Chicago/Turabian StyleAl-Amri, Amal M. 2025. "Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions" Chemosensors 13, no. 8: 285. https://doi.org/10.3390/chemosensors13080285
APA StyleAl-Amri, A. M. (2025). Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions. Chemosensors, 13(8), 285. https://doi.org/10.3390/chemosensors13080285