Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = grain storage security

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4804 KiB  
Article
Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China
by Xiaodong Fan, Dianyu Chen, Haitao Che, Yakun Wang, Yadan Du and Xiaotao Hu
Agronomy 2025, 15(8), 1852; https://doi.org/10.3390/agronomy15081852 - 31 Jul 2025
Viewed by 192
Abstract
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects [...] Read more.
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects of irrigation amounts on agricultural yield and the mechanisms under deep storage irrigation. A three-year field experiment (2020–2023) was conducted in the Guanzhong Plain, according to five soil wetting layer depths (RF: 0 cm; W1: control, 120 cm; W2: 140 cm; W3: 160 cm; W4: 180 cm) with soil saturation water content as the irrigation upper limit. Results exhibited that, compared to W1, the W2, W3, and W4 treatments led to the increased plant height, leaf area index, and dry matter accumulation. Meanwhile, the W2, W3, and W4 treatments improved kernel weight increment achieving maximum grain-filling rate (Wmax), maximum grain-filling rate (Gmax), and average grain-filling rate (Gave), thereby enhancing the effective spikes (ES) and grain number per spike (GS), and thus increased wheat grain yield (GY). In relative to W1, the W2, W3, and W4 treatments increased the ES, GS, and GY by 11.89–19.81%, 8.61–14.36%, and 8.17–13.62% across the three years. Notably, no significant difference was observed in GS and GY between W3 and W4 treatments, but W4 treatment displayed significant decreases in ES by 3.04%, 3.06%, and 2.98% in the respective years. The application of a structural equation modeling (SEM) revealed that deep storage irrigation improved ES and GS by positively regulating Wmax, Gmax, and Gave, thus significantly increasing GY. Overall, this study identified the optimal threshold (W3 treatment) to maximize wheat yields by optimizing both the vegetative growth and grain-filling dynamics. This study provides essential support for the feasibility assessment of deep storage irrigation before flood seasons, which is vital for the balance and coordination of food security and water security. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

22 pages, 1156 KiB  
Article
An Attribute-Based Proxy Re-Encryption Scheme Supporting Revocable Access Control
by Gangzheng Zhao, Weijie Tan and Changgen Peng
Electronics 2025, 14(15), 2988; https://doi.org/10.3390/electronics14152988 - 26 Jul 2025
Viewed by 253
Abstract
In the deep integration process between digital infrastructure and new economic forms, structural imbalance between the evolution rate of cloud storage technology and the growth rate of data-sharing demands has caused systemic security vulnerabilities such as blurred data sovereignty boundaries and nonlinear surges [...] Read more.
In the deep integration process between digital infrastructure and new economic forms, structural imbalance between the evolution rate of cloud storage technology and the growth rate of data-sharing demands has caused systemic security vulnerabilities such as blurred data sovereignty boundaries and nonlinear surges in privacy leakage risks. Existing academic research indicates current proxy re-encryption schemes remain insufficient for cloud access control scenarios characterized by diversified user requirements and personalized permission management, thus failing to fulfill the security needs of emerging computing paradigms. To resolve these issues, a revocable attribute-based proxy re-encryption scheme supporting policy-hiding is proposed. Data owners encrypt data and upload it to the blockchain while concealing attribute values within attribute-based encryption access policies, effectively preventing sensitive information leaks and achieving fine-grained secure data sharing. Simultaneously, proxy re-encryption technology enables verifiable outsourcing of complex computations. Furthermore, the SM3 (SM3 Cryptographic Hash Algorithm) hash function is embedded in user private key generation, and key updates are executed using fresh random factors to revoke malicious users. Ultimately, the scheme proves indistinguishability under chosen-plaintext attacks for specific access structures in the standard model. Experimental simulations confirm that compared with existing schemes, this solution delivers higher execution efficiency in both encryption/decryption and revocation phases. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

33 pages, 2178 KiB  
Review
Current Status of Grain Drying Technology and Equipment Development: A Review
by Pengpeng Yu, Wenhui Zhu, Chaoping Shen, Yu Qiao, Wenya Zhang, Yansheng Zhu, Jun Gong and Jianrong Cai
Foods 2025, 14(14), 2426; https://doi.org/10.3390/foods14142426 - 9 Jul 2025
Cited by 1 | Viewed by 550
Abstract
Grain drying technology is a core process for ensuring food quality, extending storage life, and improving processing adaptability. With the continuous growth of global food demand and the increasing requirements for food quality and energy efficiency, traditional drying technologies face multiple challenges. This [...] Read more.
Grain drying technology is a core process for ensuring food quality, extending storage life, and improving processing adaptability. With the continuous growth of global food demand and the increasing requirements for food quality and energy efficiency, traditional drying technologies face multiple challenges. This paper reviews six major grain drying technologies, comprising hot air drying, microwave drying, infrared drying, freeze drying, vacuum drying, and solar drying. It provides an in-depth discussion of the working principles, advantages, and limitations of each technology, and analyzes their performance in practical applications. In response to challenges such as high energy consumption, uneven drying, and quality loss during the drying process, the paper also explores the research progress of several hybrid drying systems, such as microwave–hot air drying combined systems and solar–infrared drying systems. Although these emerging technologies show significant potential in improving drying efficiency, energy saving, and maintaining food quality, their high costs, scalability, and process stability still limit large-scale applications. Therefore, future research should focus on reducing energy consumption, improving drying precision, and optimizing drying system integration, particularly by introducing intelligent control systems. This would maximize the preservation of food quality while improving the system’s economic efficiency and sustainability, promoting innovation in food production and processing technologies, and further advancing global food security and sustainable agricultural development. Full article
(This article belongs to the Special Issue Traditional and Emerging Food Drying Technologies)
Show Figures

Figure 1

33 pages, 8285 KiB  
Article
TrustShare: Secure and Trusted Blockchain Framework for Threat Intelligence Sharing
by Hisham Ali, William J. Buchanan, Jawad Ahmad, Marwan Abubakar, Muhammad Shahbaz Khan and Isam Wadhaj
Future Internet 2025, 17(7), 289; https://doi.org/10.3390/fi17070289 - 27 Jun 2025
Viewed by 447
Abstract
We introduce TrustShare, a novel blockchain-based framework designed to enable secure, privacy-preserving, and trust-aware cyber threat intelligence (CTI) sharing across organizational boundaries. Leveraging Hyperledger Fabric, the architecture supports fine-grained access control and immutability through smart contract-enforced trust policies. The system combines Ciphertext-Policy [...] Read more.
We introduce TrustShare, a novel blockchain-based framework designed to enable secure, privacy-preserving, and trust-aware cyber threat intelligence (CTI) sharing across organizational boundaries. Leveraging Hyperledger Fabric, the architecture supports fine-grained access control and immutability through smart contract-enforced trust policies. The system combines Ciphertext-Policy Attribute-Based Encryption (CP-ABE) with temporal, spatial, and controlled revelation constraints to grant data owners precise control over shared intelligence. To ensure scalable decentralized storage, encrypted CTI is distributed via the IPFS, with blockchain-anchored references ensuring verifiability and traceability. Using STIX for structuring and TAXII for exchange, the framework complies with the GDPR requirements, embedding revocation and the right to be forgotten through certificate authorities. The experimental validation demonstrates that TrustShare achieves low-latency retrieval, efficient encryption performance, and robust scalability in containerized deployments. By unifying decentralized technologies with cryptographic enforcement and regulatory compliance, TrustShare sets a foundation for the next generation of sovereign and trustworthy threat intelligence collaboration. Full article
(This article belongs to the Special Issue Distributed Machine Learning and Federated Edge Computing for IoT)
Show Figures

Figure 1

20 pages, 472 KiB  
Review
Immersive, Secure, and Collaborative Air Quality Monitoring
by José Marinho and Nuno Cid Martins
Computers 2025, 14(6), 231; https://doi.org/10.3390/computers14060231 - 12 Jun 2025
Viewed by 620
Abstract
Air pollution poses a serious threat to both public health and the environment, contributing to millions of premature deaths worldwide each year. The integration of augmented reality (AR), blockchain, and the Internet of Things (IoT) technologies can provide a transformative approach to collaborative [...] Read more.
Air pollution poses a serious threat to both public health and the environment, contributing to millions of premature deaths worldwide each year. The integration of augmented reality (AR), blockchain, and the Internet of Things (IoT) technologies can provide a transformative approach to collaborative air quality monitoring (AQM), enabling real-time, transparent, and intuitive access to environmental data for community awareness, behavioural change, informed decision-making, and proactive responses to pollution challenges. This article presents a unified vision of the key elements and technologies to consider when designing such AQM systems, allowing dynamic and user-friendly immersive air quality data visualization interfaces, secure and trusted data storage, fine-grained data collection through crowdsourcing, and active community learning and participation. It serves as a conceptual basis for any design and implementation of such systems. Full article
Show Figures

Figure 1

23 pages, 7994 KiB  
Article
Analysis of Carbon Sequestration Capacity and Economic Losses Under Multiple Scenarios in Major Grain-Producing Regions of China: A Case Study of the Urban Agglomeration the Huaihe River Basin
by Junhao Cheng, Wenfeng Hu, Mengtian Zheng, Xiaolong Jin, Junqiang Yao, Shuangmei Tong and Fei Guo
Agriculture 2025, 15(12), 1268; https://doi.org/10.3390/agriculture15121268 - 11 Jun 2025
Viewed by 587
Abstract
The Huaihe River Basin stands as a vital grain-producing base in China. Predicting the dynamic evolution of its carbon storage (CS) is of great theoretical value and practical significance for maintaining regional ecological security, guaranteeing food production capacity, and coping with climate change. [...] Read more.
The Huaihe River Basin stands as a vital grain-producing base in China. Predicting the dynamic evolution of its carbon storage (CS) is of great theoretical value and practical significance for maintaining regional ecological security, guaranteeing food production capacity, and coping with climate change. This study established a multi-dimensional analysis framework of “scenario simulation–reservoir assessment–value quantification”. Using a sample of 195 cities, the PLUS-InVEST-GIS method was combined to explore the overall CS, spatial differentiation, and value changes in future scenarios. The results indicate that the following: (1) From 2000 to 2020, CS kept on declining, with cultivated land and forest land being the dominant carbon pools, accounting for over 86% of the total CS. (2) From a “city–grid–raster” perspective, the spatial pattern of high-value hot spots of CS remained stable, and the overall pattern remained unchanged under multi-scenario simulation, yet the overall carbon sink center of gravity shifted to the southwest. (3) The top five driving factors are elevation, slope, NDVI, GDP per capita, and population density, accounting for 77.2% of the total driving force. (4) The carbon sequestration capacity at the county scale continued to weaken, and the overall capacity presented the following order: 2035 Farmland protection scenario (FPS) > 2035 Natural development scenario (NDS) > 2035 Urban development scenario (UDS). The resulting carbon economic losses were USD 2.28 × 108, 4.57 × 108, and 6.90 × 108, respectively. The research results will provide scientific land use decision-making support for the realization of the “double-carbon” goals in the Huaihe River grain-producing area. Full article
Show Figures

Graphical abstract

20 pages, 5993 KiB  
Article
High-Precision Stored-Grain Insect Pest Detection Method Based on PDA-YOLO
by Fuyan Sun, Zhizhong Guan, Zongwang Lyu and Shanshan Liu
Insects 2025, 16(6), 610; https://doi.org/10.3390/insects16060610 - 10 Jun 2025
Viewed by 893
Abstract
Effective stored-grain insect pest detection is crucial in grain storage management to prevent economic losses and ensure food security throughout production and supply chains. Existing detection methods suffer from issues such as high labor costs, environmental interference, high equipment costs, and inconsistent performance. [...] Read more.
Effective stored-grain insect pest detection is crucial in grain storage management to prevent economic losses and ensure food security throughout production and supply chains. Existing detection methods suffer from issues such as high labor costs, environmental interference, high equipment costs, and inconsistent performance. To address these limitations, we proposed PDA-YOLO, an improved stored-grain insect pest detection algorithm based on YOLO11n which integrates three key modules: PoolFormer_C3k2 (PF_C3k2) for efficient local feature extraction, Attention-based Intra-Scale Feature Interaction (AIFI) for enhanced global context awareness, and Dynamic Multi-scale Aware Edge (DMAE) for precise boundary detection of small targets. Trained and tested on 6200 images covering five common stored-grain insect pests (Lesser Grain Borer, Red Flour Beetle, Indian Meal Moth, Maize Weevil, and Angoumois Grain Moth), PDA-YOLO achieved an mAP@0.5 of 96.6%, mAP@0.5:0.95 of 60.4%, and F1 score of 93.5%, with a computational cost of only 6.9 G and mean detection time of 9.9 ms per image. These results demonstrate the advantages over mainstream detection algorithms, balancing accuracy, computational efficiency, and real-time performance. PDA-YOLO provides a reference for pest detection in intelligent grain storage management. Full article
Show Figures

Figure 1

15 pages, 4652 KiB  
Article
The Formation of Metal Hydrides on the Surface of Spherical Structures and the Numerical Evaluation of the Hydrogenation Process
by Zulfiqar Khalil and Žydrūnas Kavaliauskas
Materials 2025, 18(11), 2595; https://doi.org/10.3390/ma18112595 - 2 Jun 2025
Viewed by 510
Abstract
Hydrogen possesses distinctive characteristics that position it as a potential energy carrier to substitute fossil fuels. Nonetheless, there is still an essential need to create secure and effective storage solutions prior to its broad application. The use of hydride-forming metals (HFMs) for hydrogen [...] Read more.
Hydrogen possesses distinctive characteristics that position it as a potential energy carrier to substitute fossil fuels. Nonetheless, there is still an essential need to create secure and effective storage solutions prior to its broad application. The use of hydride-forming metals (HFMs) for hydrogen storage is a method that has been researched thoroughly over the past several decades. This study investigates the structural and chemical modifications in titanium (Ti) and zirconium (Zr) thin coatings over aluminum hydroxide (AlO3) granules before and after hydrogenation. The materials were subjected to hydrogenation at 400 °C and 5 atm of hydrogen pressure for 2 h, with a hydrogen flow rate of 0.8 L/min. The SEM analysis revealed significant morphological changes, including surface roughening, a grain boundary separation, and microcrack formations, indicating the formation of metal hydrides. The EDS analysis showed a reduction in Ti and Zr contents post-hydrogenation, likely due to the formation of hydrides. The presence of hydride phases, with shifts in diffraction peaks indicating structural modifications due to hydrogen absorption, is confirmed by the XRD analysis. The FTIR analysis revealed dihydroxylation, with the removal of surface hydroxyl groups and the formation of new metal–hydride bonds, further corroborating the structural changes. The formation of metal hydrides was confirmed by the emergence of new peaks within the 1100–1200 cm−1 range, suggesting the incorporation of hydrogen. Mathematical modeling based on the experimental parameters was conducted to assess the hydride formation and the rate of hydrogen penetration. The hydride conversion rate for Ti- and Zr-coated AlO3 granules was determined to be 3.5% and 1.6%, respectively. While, the hydrogen penetration depth for Ti- and Zr-coated AlO3 granules over a time of 2 h was found to be 1200 nm and 850 nm approximately. The findings had a good agreement with the experimental results. These results highlight the impact of hydrogenation on the microstructure and chemical composition of Ti- and Zr-coated AlO3, shedding light on potential applications in hydrogen storage and related fields. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

21 pages, 5767 KiB  
Article
Research on the Spatial Torsional Effect of Column-Supported Structural Silo Groups Based on Shaking Table Tests
by Huifen Wang, Yonggang Ding, Xuesen Li, Guoqi Ren, Zhiyao Zhou and Qikeng Xu
Buildings 2025, 15(11), 1851; https://doi.org/10.3390/buildings15111851 - 28 May 2025
Viewed by 298
Abstract
Food security is a critical component of national security. Grain silos, as key infrastructure for food storage, must remain structurally resilient under seismic actions to ensure the stability of grain reserves. However, column-supported vertical-group silo structures are prone to spatial torsional effects during [...] Read more.
Food security is a critical component of national security. Grain silos, as key infrastructure for food storage, must remain structurally resilient under seismic actions to ensure the stability of grain reserves. However, column-supported vertical-group silo structures are prone to spatial torsional effects during earthquakes due to eccentricities between the mass center and the stiffness center after grain loading, which can lead to serious structural damage or collapse. Based on this background, shaking table tests were conducted on a column-supported vertical-group silo structure as the research subject, with a scale ratio of 1/25 and in the 1 row × 3 column combination form. The dynamic response and spatial torsional effect of the structure under different grain storage conditions and seismic intensity effects were studied. To thoroughly analyze the factors influencing the spatial torsion in the structure, finite element–discrete element numerical analysis models of the structure were established based on experiments in Abaqus (6.14) software. The results indicate that in the column-supported vertical-group silo structure, the mass center of the group silo structure deviates from its center of rigidity after grain storage, resulting in significant and irregular spatial torsional effects under earthquake motion. The torsional displacement ratio and inter-story horizontal torsional angle of the structure gradually increased with an increase in the seismic intensity, reaching maximum values of 1.34 and 0.035 rad, respectively, when the peak acceleration input on the table was 0.4 g and under the full–full–empty storage condition. The effects of the void distribution, mass void ratio, and combination form of the group silo structure on the spatial torsional effect of the structure were studied to provide a scientific reference for the seismic design of column-supported silo structures for grain storage. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

7 pages, 171 KiB  
Proceeding Paper
Assessment of Local Rice Processing, Packaging and Storage Among Rice Processors in Southwestern Nigeria, West Africa
by Sikiru Banjo, Timothy Olawumi, Abiala Abiala, John Jolayemi, Oye Ogunyanwo and Yemisi Asamu
Proceedings 2025, 118(1), 15; https://doi.org/10.3390/proceedings2025118015 - 26 May 2025
Viewed by 567
Abstract
Among the factors threatening food security in Nigeria are poor access to credit facilities, the high cost of inputs, and poor processing and storage. Cereals and grains are among the staple food crops highly consumed by Nigerians. In this study, multi-stage sampling procedure [...] Read more.
Among the factors threatening food security in Nigeria are poor access to credit facilities, the high cost of inputs, and poor processing and storage. Cereals and grains are among the staple food crops highly consumed by Nigerians. In this study, multi-stage sampling procedure was used to select 1200 registered rice processors from Agricultural Development Programme zones in the Nigerian states of Lagos, Oyo, Ogun, Ondo, Osun, and Ekiti, and a structured questionnaire was used to obtain data on primary, secondary, and tertiary postharvest operations. The data were analyzed using descriptive statistics and Pearson Product Moment Correlation. The results showed that the majority (65.1%) of the respondents were male, 54.5% were 30–60 years old, 86.9% were married, 96.3% had been formally educated, and 99.9% processed, 71.5% packaged, and 79.4% stored more than 5001 kg of rice monthly. The majority (85.9%) of the respondents had no knowledge of rice moisture content and still used local means of rice processing, while 14.1% of the respondents used modern means of rice processing. We concluded that stored local rice was still subject to more wastage, spoilage, and losses due to the poor processing, packaging, and storage methods used in the study area. We recommend the adoption of modern and suitable rice technologies for processing, packaging, and storage. Furthermore, credit facilities should be made available, and inputs should be subsidized for rice farmers and processors. Full article
17 pages, 1739 KiB  
Article
Dynamic Multi-Model Container Framework for Cloud-Based Distributed Digital Twins (dDTws)
by Nidhal Al-Sadoon, Raimar J. Scherer and Christoph F. Strnadl
Buildings 2025, 15(10), 1722; https://doi.org/10.3390/buildings15101722 - 19 May 2025
Viewed by 669
Abstract
The increasing complexity of data management in the Architecture, Engineering, and Construction (AEC) industry, driven by the adoption of distributed digital twins (dDTws) and cloud-based solutions, presents challenges in interoperability, data sovereignty, and scalability. Existing Building Information Modeling (BIM) and Common Data Environment [...] Read more.
The increasing complexity of data management in the Architecture, Engineering, and Construction (AEC) industry, driven by the adoption of distributed digital twins (dDTws) and cloud-based solutions, presents challenges in interoperability, data sovereignty, and scalability. Existing Building Information Modeling (BIM) and Common Data Environment (CDE) frameworks often fall short in addressing these issues due to their reliance on centralized and proprietary systems. This paper introduces a novel framework that transforms the Information Container for Linked Document Delivery (ICDD) into a dynamic, graph-based architecture. Unlike conventional file-based ICDD implementations, this approach enables fine-grained, semantically rich linking and querying across distributed models while maintaining data sovereignty and version control. The framework is designed to enhance real-time collaboration, ensure secure and sovereign data management, and improve interoperability across diverse project stakeholders. The framework leverages graph databases, semantic web technologies, and ISO standards such as ISO 21597 to facilitate seamless data exchange, automated linking, and advanced version control. Key functionalities include federated data storage, compliance with local and international regulations, and support for multidisciplinary workflows in large-scale AEC projects. To demonstrate the feasibility of the proposed framework, a simplified use case scenario is implemented and analyzed. By addressing critical challenges and enabling seamless integration of emerging technologies such as digital twins, this study advances the state of the art in data management for the AEC industry, providing a robust foundation for future innovations. Full article
(This article belongs to the Special Issue Advanced Research on Intelligent Building Construction and Management)
Show Figures

Figure 1

26 pages, 12545 KiB  
Article
Experimental Study on the Influence of Low Temperature on the Gas Permeability of Granite
by Wei Chen, Peng Wang and Yue Liang
Appl. Sci. 2025, 15(10), 5447; https://doi.org/10.3390/app15105447 - 13 May 2025
Viewed by 387
Abstract
Granite is widely regarded as an ideal material for the construction of underground liquefied natural gas (LNG) storage reservoirs due to its high mechanical strength and broad geological availability. However, the ultra-low storage temperature of LNG (−162 °C) poses potential risks in altering [...] Read more.
Granite is widely regarded as an ideal material for the construction of underground liquefied natural gas (LNG) storage reservoirs due to its high mechanical strength and broad geological availability. However, the ultra-low storage temperature of LNG (−162 °C) poses potential risks in altering the permeability of granite, which may compromise the long-term safety and integrity of the reservoir. To investigate the permeability characteristics and microstructural degradation of granite under low-temperature conditions, both coarse-grained and fine-grained granite samples were subjected to a series of experiments, including one-dimensional (1D) gas permeability tests (conducted before and after freeze–thaw cycles ranging from −20 °C to −120 °C), nuclear magnetic resonance (NMR) tests, and two-dimensional (2D) gas permeability tests performed under real-time low-temperature conditions. Experimental results indicated that the gas permeability of granite under real-time low-temperature conditions exhibited a linear increase as the temperature decreased. In contrast, the gas permeability after freeze–thaw cycling followed a nonlinear trend: it increased initially, plateaued, and then increased again as the freezing temperature continued to drop. A further analysis of pore structure evolution and permeability changes revealed distinct degradation mechanisms depending on grain size. In coarse-grained granite, freeze–thaw damage was primarily characterized by the initiation and propagation of new microcracks, which originated as micropores and expanded into mesopores. In fine-grained granite, the damage primarily resulted from the progressive widening of existing fissures, with micropores gradually evolving into mesopores over successive cycles. The study’s findings provide a useful theoretical foundation for the secure subterranean storage of LNG. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

42 pages, 1102 KiB  
Review
Optimising Nutrition for Sustainable Pig Production: Strategies to Quantify and Mitigate Environmental Impact
by Shane Maher, Torres Sweeney and John V. O’Doherty
Animals 2025, 15(10), 1403; https://doi.org/10.3390/ani15101403 - 13 May 2025
Viewed by 1395
Abstract
The intensifying global demand for food presents significant challenges for sustainable pig production, particularly in the context of escalating input costs, environmental degradation, and resource scarcity. Life cycle assessment provides a comprehensive framework for quantifying environmental impacts and identifying production hotspots within pig [...] Read more.
The intensifying global demand for food presents significant challenges for sustainable pig production, particularly in the context of escalating input costs, environmental degradation, and resource scarcity. Life cycle assessment provides a comprehensive framework for quantifying environmental impacts and identifying production hotspots within pig production systems. Feed production and manure management are consistently identified as major contributors, emphasising the need for targeted interventions. Although soybean meal remains a key protein source, its association with deforestation and biodiversity loss is driving an interest in more sustainable alternatives. In temperate climates, faba beans offer a promising, locally sourced option, though their wider adoption is limited by amino acid imbalances and anti-nutritional factors. Grain preservation is another critical consideration, as post-harvest losses and fungal contamination compromise feed quality and animal health. Organic acid preservation has emerged as an energy-efficient, cost-effective alternative to industrial drying, improving storage stability and reducing fossil fuel dependence. Additional nutritional strategies, including dietary crude protein reduction, carbohydrate source modification, feed additive inclusion, and maternal nutritional interventions, can enhance nutrient utilisation, intestinal health, and herd resilience while mitigating environmental impact. This review explores practical feed-based strategies to support sustainable, resilient, and resource-efficient pig production and contribute to global food security. Full article
Show Figures

Figure 1

21 pages, 7946 KiB  
Article
Research on Storage Grain Temperature Prediction Method Based on FTA-CNN-SE-LSTM with Dual-Domain Data Augmentation and Deep Learning
by Hailong Peng, Yuhua Zhu and Zhihui Li
Foods 2025, 14(10), 1671; https://doi.org/10.3390/foods14101671 - 9 May 2025
Viewed by 430
Abstract
Temperature plays a crucial role in the grain storage process and food security. Due to limitations in grain storage data acquisition in real-world scenarios, this paper proposes a data augmentation method for grain storage data that operates in both the time and frequency [...] Read more.
Temperature plays a crucial role in the grain storage process and food security. Due to limitations in grain storage data acquisition in real-world scenarios, this paper proposes a data augmentation method for grain storage data that operates in both the time and frequency domains, as well as an enhanced grain storage temperature prediction model. To address the issue of small sample sizes in grain storage temperature data, Gaussian noise is added to the grain storage temperature data in the time domain to highlight the subtle variations in the original data. The fast Fourier transform (FFT) is employed in the frequency domain to highlight periodicity and trends in the grain storage temperature data. The prediction model uses a long short-term memory (LSTM) network, enhanced with convolution layers for feature extraction and a Squeeze-and-Excitation Networks (SENet) module to suppress unimportant features and highlight important ones. Experimental results show that the FTA-CNN-SE-LSTM compares with the original LSTM network, and the MAE and RMSE are reduced by 74.77% and 74.02%, respectively. It solves the problem of data limitation in the actual grain storage process, greatly improves the accuracy of grain storage temperature prediction, and can accurately prevent problems caused by abnormal grain pile temperature. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

18 pages, 5069 KiB  
Article
Effect of Glow Discharge Cold Plasma Treatment on the Physicochemical Properties and Antioxidant Capacity of Maize
by Miao Li, Chengcheng Ren, Caihong Li, Zengxuan Fan, Jiayin Zhu and Chenling Qu
Foods 2025, 14(8), 1312; https://doi.org/10.3390/foods14081312 - 10 Apr 2025
Cited by 1 | Viewed by 550
Abstract
This study evaluated the effect of cold plasma (CP) on the physicochemical properties and antioxidant capacity of maize. CP treatments were performed using a glow discharge, applying argon and/or nitrogen at 50 W, with different working pressures (75, 100, and 125 Pa) and [...] Read more.
This study evaluated the effect of cold plasma (CP) on the physicochemical properties and antioxidant capacity of maize. CP treatments were performed using a glow discharge, applying argon and/or nitrogen at 50 W, with different working pressures (75, 100, and 125 Pa) and exposure times (1, 5, and 10 min). The maize samples were analyzed before and after treatments for color, fatty acid value (FAV), malondialdehyde content, superoxide dismutase and catalase activities, total phenol content (TPC), ascorbic acid content, reduced glutathione content, and antioxidant activity. The antioxidant activity was further evaluated during storage (25 °C for 180 days). After treatments, color parameters (brightness, yellowness, and saturation) showed measurable enhancement, while FAV and malondialdehyde content were significantly reduced by 14.95–56.37% and 11.38–43.71%, respectively. The optimal treatment conditions (100 Pa working pressure and 5 min exposure) maximized antioxidant enzyme activities and bioactive compound levels, accompanied by substantial increases in TPC. Under these conditions, maize samples had the highest organic radical scavenging capacities (DPPH), reaching 1.31-fold (argon plasma) and 1.25-fold (nitrogen plasma) that of untreated sample. During storage, all samples subjected to the optimal combined treatment exhibited higher DPPH radical scavenging capacity and ferric reducing antioxidant potential, along with lower FAVs and malondialdehyde contents compared to the untreated sample. Additionally, the DPPH radical scavenging capacity exhibited statistically inverse correlations with both FAV (r2 = −0.49) and malondialdehyde content (r2 = −0.15), as quantified through Pearson correlation analysis. These findings indicated that glow discharge cold plasma is a potentially effective non-thermal processing technique to enhance bioactive compound accumulation and antioxidant enzyme activity for preserving maize’s physicochemical properties, with possible use in the food industry for sustainable grain preservation strategies, particularly in delaying oxidative deterioration. Full article
Show Figures

Graphical abstract

Back to TopTop