Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (385)

Search Parameters:
Keywords = glass window

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1508 KiB  
Article
The Effect of the Structure of Aromatic Diamine on High-Performance Epoxy Resins
by Yan Zhou, Weibo Liu, Yu Feng, Pengfei Shi, Liqiang Wan, Xufeng Hao, Farong Huang, Jianhua Qian and Zuozhen Liu
J. Compos. Sci. 2025, 9(8), 416; https://doi.org/10.3390/jcs9080416 - 4 Aug 2025
Abstract
To study the influence of curing agent structure on the properties of epoxy resin, four types of aromatic diamines with the structure of diphenyl methane (4,4′-methylenedianiline (MDA), 4,4′-methylenebis(2-ethylaniline) (MOEA), 4,4′-methylenebis(2-chloroaniline) (MOCA), and 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA)) and a high-performance epoxy resin, 3-(oxiran-2-ylmethoxy)-N,N-bis(oxiran-2-ylmethyl)aniline (AFG-90MH), were used [...] Read more.
To study the influence of curing agent structure on the properties of epoxy resin, four types of aromatic diamines with the structure of diphenyl methane (4,4′-methylenedianiline (MDA), 4,4′-methylenebis(2-ethylaniline) (MOEA), 4,4′-methylenebis(2-chloroaniline) (MOCA), and 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA)) and a high-performance epoxy resin, 3-(oxiran-2-ylmethoxy)-N,N-bis(oxiran-2-ylmethyl)aniline (AFG-90MH), were used in this study. The resulting resin systems were designated as AFG-90MH-MDA, AFG-90MH-MOEA, AFG-90MH-MOCA, and AFG-90MH-MCDEA. After curing, these systems were named AFG-90MH-MDA-C, AFG-90MH-MOEA-C, AFG-90MH-MOCA-C, and AFG-90MH-MCDEA-C. The influence of the structure of the diamines on the processability, curing reaction activity, and thermal and mechanical properties (including flexural and tensile properties) of the epoxy resins were investigated. These systems demonstrate excellent processability with wide processing windows ranging from 30 °C to 110–160 °C while maintaining low viscosity. Consistent apparent activation energy (Ea) trends via both Kissinger and Flynn-Wall-Ozawa methods were observed. The epoxy systems exhibit the following increasing Ea sequence: AFG-90MH-MDA < AFG-90MH-MOEA < AFG-90MH-MOCA < AFG-90MH-MCDEA. The processability and curing reaction kinetic results indicate that the reactivities of the diamines decrease in the order: MDA > MOEA > MOCA > MCDEA. Polar chlorine substituents in diamines strengthen intermolecular interactions, thereby enhancing mechanical performance. The flexural strength of cured epoxy systems decreases as follows with corresponding values: AFG-90MH-MOCA-C (165 MPa) > AFG-90MH-MDA-C (158 MPa) > AFG-90MH-MCDEA-C (148 MPa) > AFG-90MH-MOEA-C (136 MPa). Diamines with substituents like chlorine or ethyl groups reduce the glass transition temperatures (Tg) of the cured resin systems. However, the cured resin systems with the diamines containing chlorine demonstrate superior thermal performance compared to those with ethyl groups. The cured epoxy systems exhibit the following descending glass transition temperature order with corresponding values: AFG-90MH-MDA-C (213 °C) > AFG-90MH-MOCA-C (190 °C) > AFG-90MH-MCDEA-C (183 °C) > AFG-90MH-MOEA-C (172 °C). Full article
Show Figures

Figure 1

19 pages, 2441 KiB  
Article
Simulation and Statistical Validation Method for Evaluating Daylighting Performance in Hot Climates
by Nivin Sherif, Ahmed Yehia and Walaa S. E. Ismaeel
Urban Sci. 2025, 9(8), 303; https://doi.org/10.3390/urbansci9080303 - 4 Aug 2025
Abstract
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three [...] Read more.
This study investigates the influence of façade-design parameters on daylighting performance in hot arid climates, with a particular focus on Egypt. A total of nine façade configurations of a residential building were modeled and simulated using Autodesk Revit and Insight 360, varying three critical variables: glazing type (clear, blue, and dark), Window-to-Wall Ratio (WWR) of 15%, 50%, 75%, and indoor wall finish (light, moderate, dark) colors. These were compared to the Leadership in Energy and Environmental Design (LEED) daylighting quality thresholds. The results revealed that clear glazing paired with high WWR (75%) achieved the highest Spatial Daylight Autonomy (sDA), reaching up to 92% in living spaces. However, this also led to elevated Annual Sunlight Exposure (ASE), with peak values of 53%, exceeding the LEED discomfort threshold of 10%. Blue and dark glazing types successfully reduced ASE to as low as 0–13%, yet often resulted in underlit spaces, especially in private rooms such as bedrooms and bathrooms, with sDA values falling below 20%. A 50% WWR emerged as the optimal balance, providing consistent daylight distribution while maintaining ASE within acceptable limits (≤33%). Similarly, moderate color wall finishes delivered the most balanced lighting performance, enhancing sDA by up to 30% while controlling reflective glare. Statistical analysis using Pearson correlation revealed a strong positive relationship between sDA and ASE (r = 0.84) in highly glazed, clear glass scenarios. Sensitivity analysis further indicated that low WWR configurations of 15% were highly influenced by glazing and finishing types, leading to variability in daylight metrics reaching ±40%. The study concludes that moderate glazing (blue), medium WWR (50%), and moderate color indoor finishes provide the most robust daylighting performance across diverse room types. These findings support an evidence-based approach to façade design, promoting visual comfort, daylight quality, and sustainable building practices. Full article
(This article belongs to the Topic Application of Smart Technologies in Buildings)
Show Figures

Figure 1

15 pages, 6688 KiB  
Article
Integrated Additive Manufacturing of TGV Interconnects and High-Frequency Circuits via Bipolar-Controlled EHD Jetting
by Dongqiao Bai, Jin Huang, Hongxiao Gong, Jianjun Wang, Yunna Pu, Jiaying Zhang, Peng Sun, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao and Chaoyu Liang
Micromachines 2025, 16(8), 907; https://doi.org/10.3390/mi16080907 (registering DOI) - 2 Aug 2025
Viewed by 159
Abstract
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to [...] Read more.
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to drive ink into deep and narrow vias; sufficiently high ink viscosity to prevent gravity-induced leakage; and stable meniscus dynamics to avoid satellite droplets and charge accumulation on the glass surface. By coupling electrostatic field analysis with transient level-set simulations, we establish a dimensionless regime map that delineates stable cone-jetting regime; these predictions are validated by high-speed imaging and surface profilometry. Operating within this window, the platform achieves complete, void-free filling of 200 µm × 1.52 mm TGVs and continuous 10 µm-wide traces in a single print pass. Demonstrating its capabilities, we fabricate transparent Ku-band substrate-integrated waveguide antennas on borosilicate glass: the printed vias and arc feed elements exhibit a reflection coefficient minimum of −18 dB at 14.2 GHz, a −10 dB bandwidth of 12.8–16.2 GHz, and an 8 dBi peak gain with 37° beam tilt, closely matching full-wave predictions. This physics-driven, all-in-one EHD approach provides a scalable route to high-performance, glass-integrated RF devices and transparent electronics. Full article
Show Figures

Figure 1

12 pages, 854 KiB  
Article
TOSQ: Transparent Object Segmentation via Query-Based Dictionary Lookup with Transformers
by Bin Ma, Ming Ma, Ruiguang Li, Jiawei Zheng and Deping Li
Sensors 2025, 25(15), 4700; https://doi.org/10.3390/s25154700 - 30 Jul 2025
Viewed by 264
Abstract
Sensing transparent objects has many applications in human daily life, including robot navigation and grasping. However, this task presents significant challenges due to the unpredictable nature of scenes that extend beyond/behind transparent objects, particularly the lack of fixed visual patterns and strong background [...] Read more.
Sensing transparent objects has many applications in human daily life, including robot navigation and grasping. However, this task presents significant challenges due to the unpredictable nature of scenes that extend beyond/behind transparent objects, particularly the lack of fixed visual patterns and strong background interference. This paper aims to solve the transparent object segmentation problem by leveraging the intrinsic global modeling capabilities of transformer architectures. We design a Query Parsing Module (QPM) that innovatively formulates segmentation as a dictionary lookup problem, differing fundamentally from conventional pixel-wise mechanisms, e.g., via attention-based prototype matching, and a set of learnable class prototypes as query inputs. Based on QPM, we propose a high-performance transformer-based end-to-end segmentation model, Transparent Object Segmentation through Query (TOSQ). TOSQ’s encoder is based on the Segformer’s backbone, and its decoder consists of a series of QPM modules, which progressively refine segmentation masks by the proposed QPMs. TOSQ achieves state-of-the-art performance on the Trans10K-V2 dataset (76.63% mIoU, 95.34% Acc), with particularly significant gains in challenging categories like windows (+23.59%) and glass doors (+11.22%), demonstrating its superior capability in transparent object segmentation. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

24 pages, 3226 KiB  
Article
The Environmental Impacts of Façade Renovation: A Case Study of an Office Building
by Patrik Štompf, Rozália Vaňová and Stanislav Jochim
Sustainability 2025, 17(15), 6766; https://doi.org/10.3390/su17156766 - 25 Jul 2025
Viewed by 433
Abstract
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University [...] Read more.
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University in Zvolen (Slovakia) using a life cycle assessment (LCA) approach. The aim is to quantify and compare these impacts based on material selection and its influence on sustainable construction. The analysis focuses on key environmental indicators, including global warming potential (GWP), abiotic depletion (ADE, ADF), ozone depletion (ODP), toxicity, acidification (AP), eutrophication potential (EP), and primary energy use (PERT, PENRT). The scenarios vary in the use of insulation materials (glass wool, wood fibre, mineral wool), façade finishes (cladding vs. render), and window types (aluminium vs. wood–aluminium). Uncertainty analysis identified GWP, AP, and ODP as robust decision-making categories, while toxicity-related results showed lower reliability. To support integrated and transparent comparison, a composite environmental index (CEI) was developed, aggregating characterisation, normalisation, and mass-based results into a single score. Scenario C–2, featuring an ETICS system with mineral wool insulation and wood–aluminium windows, achieved the lowest environmental impact across all categories. In contrast, scenarios with traditional cladding and aluminium windows showed significantly higher impacts, particularly in fossil fuel use and ecotoxicity. The findings underscore the decisive role of material selection in sustainable renovation and the need for a multi-criteria, context-sensitive approach aligned with architectural, functional, and regional priorities. Full article
Show Figures

Figure 1

17 pages, 2836 KiB  
Article
Estimating Heart Rate from Inertial Sensors Embedded in Smart Eyewear: A Validation Study
by Sarah Solbiati, Federica Mozzini, Jean Sahler, Paul Gil, Bruno Amir, Niccolò Antonello, Diana Trojaniello and Enrico Gianluca Caiani
Sensors 2025, 25(15), 4531; https://doi.org/10.3390/s25154531 - 22 Jul 2025
Viewed by 327
Abstract
Smart glasses are promising alternatives for the continuous, unobtrusive monitoring of heart rate (HR). This study validates HR estimates obtained with the “Essilor Connected Glasses” (SmartEW) during sedentary activities. Thirty participants wore the SmartEW, equipped with an IMU sensor for HR estimation, a [...] Read more.
Smart glasses are promising alternatives for the continuous, unobtrusive monitoring of heart rate (HR). This study validates HR estimates obtained with the “Essilor Connected Glasses” (SmartEW) during sedentary activities. Thirty participants wore the SmartEW, equipped with an IMU sensor for HR estimation, a commercial smartwatch (Garmin Venu 3), and an ECG device (Movesense Flash). The protocol included six static tasks performed under controlled laboratory conditions. The SmartEW algorithm analyzed 22.5 s signal windows using spectral analysis to estimate HR and provide a quality index (QI). Statistical analyses assessed agreement with ECG and the impact of QI on HR accuracy. SmartEW showed high agreement with ECG, especially with QI threshold equal to 70, as a trade-off between accuracy, low error, and acceptable data coverage (80%). Correlation for QI ≥ 70 was high across all the experimental phases (r2 up to 0.96), and the accuracy within ±5 bpm reached 95%. QI ≥ 70 also allowed biases to decrease (e.g., from −1.83 to −0.19 bpm while standing), with narrower limits of agreement, compared to ECG. SmartEW showed promising HR accuracy across sedentary activities, yielding high correlation and strong agreement with ECG and Garmin. SmartEW appears suitable for HR monitoring in static conditions, particularly when data quality is ensured. Full article
(This article belongs to the Special Issue IMU and Innovative Sensors for Healthcare)
Show Figures

Figure 1

18 pages, 5775 KiB  
Article
Precision Solar Spectrum Filtering in Aerogel Windows via Synergistic ITO-Ag Nanoparticle Doping for Hot-Climate Energy Efficiency
by Huilin Yang, Maoquan Huang, Mingyang Yang, Xuankai Zhang and Mu Du
Gels 2025, 11(7), 553; https://doi.org/10.3390/gels11070553 - 18 Jul 2025
Viewed by 204
Abstract
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant [...] Read more.
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant challenge for material design. We propose a plasma silica aerogel window utilizing the local surface plasmon resonance effect of plasmonic nanoparticles. This design incorporates indium tin oxide (ITO) nanospheres (for broad-band UV/NIR blocking) and silver (Ag) nanocylinders (targeted blocking of the 0.78–0.9 μm NIR band) co-doped into the silica aerogel. This design achieves a visible light transmittance of 0.8, a haze value below 0.12, and a photothermal ratio of 0.91. Building simulations indicate that compared to traditional glass, this window can achieve annual energy savings of 20–40% and significantly reduce the economic losses associated with traditional glass, providing a feasible solution for sustainable buildings. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

14 pages, 4651 KiB  
Article
Thermal-Induced Oxygen Vacancy Enhancing the Thermo-Chromic Performance of W-VO2−x@AA/PVP Nanoparticle Composite-Based Smart Windows
by Jiran Liang, Tong Wu, Chengye Zhang, Yunfei Bai, Dequan Zhang and Dangyuan Lei
Nanomaterials 2025, 15(14), 1084; https://doi.org/10.3390/nano15141084 - 12 Jul 2025
Viewed by 304
Abstract
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA [...] Read more.
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA core-shell nanoparticle is proposed to improve the thermo-chromic performance of W-VO2. Oxygen vacancies were used to promote the connection of W-VO2−x nanoparticles with L-ascorbic acid (AA) molecules. Oxygen vacancies were tuned in W-VO2 nanoparticles by thermal annealing temperatures in vacuum, and W-VO2−x@AA nanoparticles were synthesized by the hydrothermal method. A smart window was formed by dispersing W-VO2−x@AA core-shell nanoparticles into PVP evenly and spin-coating them on the surface of glass. The visual transmittance of this smart window reaches up to 67%, and the solar modulation reaches up to 12.1%. This enhanced thermo-chromic performance is related to the electron density enhanced by the AA surface molecular coordination effect through W dopant and oxygen vacancies. This work provides a new strategy to enhance the thermo-chromic performance of W-VO2 and its application in the building energy-saving field. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

13 pages, 2079 KiB  
Article
Preparation and Properties of a Composite Glass Protective Lubricating Coating for the Forging of Ti-6Al-4V Alloy
by Zunqi Xiao, Qiuyue Xie, Bin Zhang, Bing Ren and Shujian Tian
Coatings 2025, 15(7), 792; https://doi.org/10.3390/coatings15070792 - 5 Jul 2025
Viewed by 360
Abstract
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with [...] Read more.
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with distinct softening temperatures, extending its operational window to 700–950 °C. The composite glass showed initial softening at 700 °C and complete melting at 800 °C, with contact angle measurements confirming superior wettability (θ < 90°) across the forging range (800~950 °C). With an increase in temperature, the surface tension of the composite glass melt decreased, and subsequently, the wettability of the composite glass melt was significantly improved. XRD revealed that the uncoated Ti-6Al-4V formed a 22 μm thick rutile TiO2 scale with a porous structure and interfacial cracks, while the coated sample retained an amorphous glass layer with no TiO2. Cross-sectional SEM showed a crack-free, poreless interface with strong metallurgical bonding, in contrast to the uncoated sample’s spalled oxide layer. EDS showed minimal oxygen diffusion of the glass coating into the substrate. Ring upsetting tests showed that the coating reduced friction from 0.5–0.7 to 0.3 (50–57% decrease). Collectively, the glass protective lubricant coating showed good performance in terms of protection and lubrication. Full article
Show Figures

Figure 1

28 pages, 4750 KiB  
Article
A Multi-Objective Optimization Study on a Certain Lecture Hall Based on Thermal and Visual Comfort
by Hui Xi, Shichao Guo, Wanjun Hou and Bo Wang
Buildings 2025, 15(13), 2287; https://doi.org/10.3390/buildings15132287 - 29 Jun 2025
Viewed by 210
Abstract
Lecture halls are characterized by large spatial dimensions, deep floor plans, and high occupant densities. Lectures are typically conducted using multimedia and blackboard-based teaching, placing higher demands on the indoor light and thermal environment compared to standard classrooms. This study aims to simulate [...] Read more.
Lecture halls are characterized by large spatial dimensions, deep floor plans, and high occupant densities. Lectures are typically conducted using multimedia and blackboard-based teaching, placing higher demands on the indoor light and thermal environment compared to standard classrooms. This study aims to simulate the interrelationships between multiple building envelope parameters and building performance, in order to improve visual and thermal comfort while reducing energy consumption in cold-region lecture halls. Based on seven key envelope parameters—including openable window area ratio, west-facing window-to-wall ratio, exterior insulation thickness, shading element spacing, angle and width, and window glass type—a multi-objective optimization framework was established. The optimization process targeted three key performance indicators—useful daylight illuminance (UDI), energy use intensity (EUI), and thermal comfort percentage (TCP)—in the context of a stepped classroom. The results show that increasing the thickness of exterior insulation and reducing the width of shading components contribute positively to photothermal comfort without compromising thermal and visual performance. Compared with the baseline design, optimized schemes that incorporate appropriate west-facing window-to-wall ratios, openable window areas, insulation thicknesses, and external shading designs can reduce annual energy consumption by up to 10.82%, and increase UDI and TCP by 12.79% and 36.41%, respectively. These improvements are also found to be economically viable. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

32 pages, 7395 KiB  
Article
Exploring the Effects of Window Design on the Restorative Potential of Movable Smart Co-Working Offices in Small Village Environments Through Immersive Virtual Reality
by Antonio Ciervo, Massimiliano Masullo, Maria Dolores Morelli and Luigi Maffei
Sustainability 2025, 17(13), 5851; https://doi.org/10.3390/su17135851 - 25 Jun 2025
Viewed by 352
Abstract
As remote and hybrid work models continue to grow, the design of workspaces and their surrounding environments has gained even more importance. This study explores the impact of window design on the restorative potential of Prefabricated Movable Buildings (PMBs) of smart/co-working located in [...] Read more.
As remote and hybrid work models continue to grow, the design of workspaces and their surrounding environments has gained even more importance. This study explores the impact of window design on the restorative potential of Prefabricated Movable Buildings (PMBs) of smart/co-working located in small villages. Using Immersive Virtual Reality (IVR), seven window configurations, varying in size, frame ratio, and number of glass panes, were evaluated. Participants’ sense of presence, defined as the subjective feeling of ‘being there’ in the virtual environment, and perceived restoration, referring mainly to the psychological (attention and emotions) and physiological (stress) resources recovery, were assessed using, respectively, Igroup Presence Questionnaire (IPQ) and the Perceived Restorativeness Scale (PRS). The overall IPQ results suggest that the virtual environment in this study provides a “High” sense of presence, highlighting the validity of IVR to evaluate architectural designs. The PRS results found that larger, uninterrupted windows with a higher Window-to-Wall Ratio and lower Frame Ratio significantly enhance participants’ perceived restoration. Restoration effects were also higher when offices were located in small villages rather than in business districts. These results highlight the importance of incorporating large windows in smart/co-working spaces within culturally rich small villages to promote worker well-being and office sustainability. Full article
(This article belongs to the Special Issue Net Zero Carbon Building and Sustainable Built Environment)
Show Figures

Figure 1

24 pages, 24527 KiB  
Article
Design of Alternatives to Stained Glass with Open-Source Distributed Additive Manufacturing for Energy Efficiency and Economic Savings
by Emily Bow Pearce, Joshua M. Pearce and Alessia Romani
Designs 2025, 9(4), 80; https://doi.org/10.3390/designs9040080 - 24 Jun 2025
Viewed by 821
Abstract
Stained glass has played important roles in heritage building construction, however, conventional fabrication techniques have become economically prohibitive due to both capital costs and energy inefficiency, as well as high-level artistic and craft skills. To overcome these challenges, this study provides a new [...] Read more.
Stained glass has played important roles in heritage building construction, however, conventional fabrication techniques have become economically prohibitive due to both capital costs and energy inefficiency, as well as high-level artistic and craft skills. To overcome these challenges, this study provides a new design methodology for customized 3D-printed polycarbonate (PC)-based stained-glass window alternatives using a fully open-source toolchain and methodology based on digital fabrication and hybrid crafts. Based on design thinking and open design principles, this procedure involves fabricating an additional insert made of (i) a PC substrate and (ii) custom geometries directly 3D printed on the substrate with PC-based 3D printing feedstock (iii) to be painted after the 3D printing process. This alternative is intended for customizable stained-glass design patterns to be used instead of traditional stained glass or in addition to conventional windows, making stained glass accessible and customizable according to users’ needs. Three approaches are developed and demonstrated to generate customized painted stained-glass geometries according to the different users’ skills and needs using (i) online-retrieved 3D and 2D patterns; (ii) custom patterns, i.e., hand-drawn and digital-drawn images; and (iii) AI-generated patterns. The proposed methodology shows potential for distributed applications in the building and heritage sectors, demonstrating its practical feasibility. Its use makes stained-glass-based products accessible to a broader range of end-users, especially for repairing and replicating existing conventional stained glass and designing new customizable products. The developed custom patterns are 50 times less expensive than traditional stained glass and can potentially improve thermal insulation, paving the way to energy efficiency and economic savings. Full article
Show Figures

Graphical abstract

23 pages, 2032 KiB  
Article
Research on the Factors Influencing Broken-Bridge Aluminum Exterior Windows with the Goal of Thermal Performance Improvement
by Feining Yang, Yu Sun, Lei Li, Yu Zhang, Lingyun Sun, Dong Wang, Fengjun Sun and Lin Liu
Buildings 2025, 15(12), 2101; https://doi.org/10.3390/buildings15122101 - 17 Jun 2025
Viewed by 272
Abstract
The enhancement of the thermal performance of transparent envelopes has been demonstrated to be an effective measure for reducing building energy consumption. To achieve enhanced performance in the domain of building windows, considerable economic investments are frequently necessary. The present study focuses on [...] Read more.
The enhancement of the thermal performance of transparent envelopes has been demonstrated to be an effective measure for reducing building energy consumption. To achieve enhanced performance in the domain of building windows, considerable economic investments are frequently necessary. The present study focuses on the 70 series of broken-bridge aluminum windows, which are widely used in China. The investigation explores the potential factors affecting the thermal performance of these windows, mainly considering their glass and profiles. The study also explores the influencing characteristics of various factors and their optimal combinations for their combined effect by comprehensively applying the single-variable method, orthogonal test method, and a numerical simulation. The findings of the study indicate a substantial reduction in the heat transfer coefficient of the 70 series of broken-bridge aluminum windows, achieving a decrease of 25.98%. Additionally, the heat transfer coefficient of the frame and edge is reduced by 29–35%, and the heat transfer coefficient of the entire window is reduced by 28.34%. These findings suggest that the energy-saving requirements for green and low-carbon buildings in most regions of China can be met. Furthermore, the product offers a significant economic advantage over similar market offerings with an equivalent performance. Concurrently, the performance enhancement measures derived from the study are applicable to other types of aluminum windows. Full article
(This article belongs to the Special Issue Urban Climatic Suitability Design and Risk Management)
Show Figures

Figure 1

27 pages, 7310 KiB  
Article
Energy and Thermal Comfort Performance of Vacuum Glazing-Based Building Envelope Retrofit in Subtropical Climate: A Case Study
by Changyu Qiu, Hongxing Yang and Kaijun Dong
Buildings 2025, 15(12), 2038; https://doi.org/10.3390/buildings15122038 - 13 Jun 2025
Viewed by 846
Abstract
In the context of global warming, building transformation takes on a dual responsibility to be more energy-efficient and sustainable for climate change mitigation and to be more climate-resilient for occupants’ comfort. The building energy retrofitting is an urgent need due to the large [...] Read more.
In the context of global warming, building transformation takes on a dual responsibility to be more energy-efficient and sustainable for climate change mitigation and to be more climate-resilient for occupants’ comfort. The building energy retrofitting is an urgent need due to the large amount of existing building stock. Especially in high-rise and high-density cities under a subtropical climate, like Hong Kong, existing buildings with large glazed façades face the challenges of high energy consumption and overheating risks. An advanced glazing system, namely the vacuum insulating glazing (VIG), shows the potential for effective building envelope retrofitting due to its excellent thermal insulation ability. Yet, its performance for practical applications in the subtropical region has not been investigated. To enhance the energy performance and thermal comfort of existing high-rise buildings, this study proposed a novel retrofitting approach by integrating the VIG into the existing window system as secondary glazing. Field experiments were conducted in a commercial building in Hong Kong to investigate the thermal performance of the VIG retrofit application under real-world conditions. Furthermore, the energy-saving potential and thermal comfort performance of the VIG retrofit were evaluated by building energy simulations. The experimental results indicate that the VIG retrofit can effectively stabilize the fluctuation of the inside glass surface temperature and significantly reduce the heat gain by up to 85.3%. The simulation work shows the significant energy-saving potential of the VIG retrofit in Hong Kong. For the VIG retrofit cases under different scenarios, the energy-saving potential varies from 12.5% to 29.7%. In terms of occupants’ thermal comfort, the VIG retrofit can significantly reduce the overheating risk and improve thermal satisfaction by 9.2%. Due to the thermal comfort improvement, the cooling setpoint could be reset to 1 °C higher without compromising the overall thermal comfort. The average payback period for the VIG application is 5.8 years and 8.6 years for the clear glass retrofit and the coated glass retrofit, respectively. Therefore, the VIG retrofit approach provides a promising solution for building envelope retrofits under subtropical climate conditions. It not only benefits building owners and occupants but also contributes to achieving long-term climate resilience and the carbon neutrality of urban areas. Full article
Show Figures

Figure 1

24 pages, 23424 KiB  
Article
Hidden Treasures: Precious Textiles from the St Eustace Head Reliquary
by Joanne Dyer, Diego Tamburini, Naomi Speakman and Caroline R. Cartwright
Heritage 2025, 8(6), 206; https://doi.org/10.3390/heritage8060206 - 4 Jun 2025
Viewed by 685
Abstract
Almost 70 years after the surprise discovery of a cache of textile-wrapped relics inside an early 13th-century reliquary bust, the St Eustace head reliquary (accession number 1850,1127.1), four of the textile relic wrappings were analysed by combining multiband imaging and fibre-optic reflectance spectroscopy [...] Read more.
Almost 70 years after the surprise discovery of a cache of textile-wrapped relics inside an early 13th-century reliquary bust, the St Eustace head reliquary (accession number 1850,1127.1), four of the textile relic wrappings were analysed by combining multiband imaging and fibre-optic reflectance spectroscopy (FORS), as well as dye analysis by high-pressure liquid chromatography coupled to mass spectrometry (HPLC-MS) and fibre analysis by scanning electron microscopy—energy dispersive X-ray spectroscopy (SEM-EDX). In all cases, the use of silk was confirmed, in line with the idea that these precious textiles were purposefully chosen for reuse in a sacred setting. Additionally, dye analysis was able to point to the possible geographic origins of the textile fragments. For 1850,1127.1.a, a mixture of sappanwood (Biancaea sappan) and flavonoid yellow dyes was commensurate with a Chinese or Central Asian origin. Mediterranean origins were thought likely for 1850,1127.1.c and 1850,1127.1.f, from the mixture of kermes (Kermes vermilio) and cochineal (likely Porphyrophora sp.), found in the mauve band of the former, and the combination of weld (Reseda luteola), madder (Rubia tinctorum) and an indigoid dye found in the latter. Finally, the unusual combination of sappanwood, orchil and a yellow dye containing flavonoid glucuronides suggested a less straightforward origin for textile 1850,1127.1.g. The other textile fragments from the reliquary were only investigated using FORS without removing them from their Perspex glass mounts. Nonetheless, indications for the presence of insect-red anthraquinone dyes, safflower (Carthamus tinctorius) and an indigoid dye were obtained from some of these fragments. The study provides a window into the landscape of availability, use and re-use in sacred contexts of precious textiles in the 13th century and evidences the geographic reach of these silks, allowing a new perspective on the St Eustace head reliquary. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

Back to TopTop