Energy and Thermal Comfort Performance of Vacuum Glazing-Based Building Envelope Retrofit in Subtropical Climate: A Case Study
Abstract
1. Introduction
2. Methodology
2.1. Setup of Field Test Bedding
2.2. Numerical Simulation
2.3. Thermal Comfort Indices
2.4. Economic Analysis
3. Experimental Results and Discussion
3.1. Case 1: Sunny Day
3.2. Case 2: Cloudy Day
4. Numerical Simulation Results and Discussion
4.1. Case 1: VIG Retrofitting on Clear Glass
4.2. Case 2: VIG Retrofit on Coated Glass
5. Thermal Comfort Analysis
5.1. Improvement on Thermal Comfort by the VIG Retrofit
5.2. Potential Energy Saving Due to Thermal Comfort Improvement
6. Economic Benefits and Payback Period
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giardino, A.; Pelli, M.; Raitzer, D.A.; Bosello, F.; Campagnolo, L.; Mansi, G. Asia-Pacific Climate Report 2024; Asian Development Bank: Mandaluyong, Philippines, 2024. [Google Scholar]
- Clima, T.; Te, W. State of the Climate in Asia 2023; World Meteorological Organization: Geneva, Switzerland, 2024. [Google Scholar]
- World Meteorological Organization (WMO). State of the Global Climate 2024; World Meteorological Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Oree, V.; Khoodaruth, A.; Teemul, H. A case study for the evaluation of realistic energy retrofit strategies for public office buildings in the Southern Hemisphere. Build. Simul. 2016, 9, 113–125. [Google Scholar] [CrossRef]
- Ohene, E.; Chan, A.P.C.; Darko, A.; Nani, G. Navigating toward net zero by 2050: Drivers, barriers, and strategies for net zero carbon buildings in an emerging market. Build. Environ. 2023, 242, 110472. [Google Scholar] [CrossRef]
- Dulian, M. Revision of the Energy Performance of Buildings Directive–Fit for 55 package. EU Legis. Prog. 2024, 19, 2024. [Google Scholar]
- Adegoriola, M.; Darko, A.; Chen, L.; Chan, A.; Yang, J.; Tetteh, M. Existing building energy efficiency retrofit policies: Review and recommendations for Hong Kong. In Proceedings of the 46th Australasian Universities Building Education Association (AUBEA) 2023 Conference, Auckland, New Zealand, 26–28 November 2023. [Google Scholar]
- International Energy Agency (IEA). Tracking Clean Energy Progress 2023; International Energy Agency (IEA): Paris, France, 2023. [Google Scholar]
- Hong Kong Green Building Council (HKGBC). Hong Kong: Green Building in Action (2023); Hong Kong Green Building Council (HKGBC): Hong Kong, China, 2023. [Google Scholar]
- Environment Bureau. Hong Kong’s ClimateAction Plan 2050; Environment Bureau: Hong Kong, China, 2021.
- Jing, R.; Wang, M.; Zhang, R.; Li, N.; Zhao, Y. A study on energy performance of 30 commercial office buildings in Hong Kong. Energy Build. 2017, 144, 117–128. [Google Scholar] [CrossRef]
- Hwang, R.-L.; Shu, S.-Y. Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control. Build. Environ. 2011, 46, 824–834. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). 2023 Global Status Report for Buildings and Construction: Beyond Foundations—Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector; United Nations Environment Programme: Nairobi, Kenya, 2023. [Google Scholar]
- Shen, P.; Li, Y.; Gao, X.; Zheng, Y.; Huang, P.; Lu, A.; Gu, W.; Chen, S. Recent progress in building energy retrofit analysis under changing future climate: A review. Appl. Energy 2025, 383, 125441. [Google Scholar] [CrossRef]
- Tolba, L.E.; El Mokadem, A.A.; Badawy, N.; Shahda, M.M. A retrofitting framework for improving curtain wall performance by the integration of adaptive technologies. J. Build. Eng. 2023, 80, 107979. [Google Scholar] [CrossRef]
- Sarihi, S.; Mehdizadeh Saradj, F.; Faizi, M. A Critical Review of Façade Retrofit Measures for Minimizing Heating and Cooling Demand in Existing Buildings. Sustain. Cities Soc. 2021, 64, 102525. [Google Scholar] [CrossRef]
- Kamel, E.; Memari, A.M. Residential Building Envelope Energy Retrofit Methods, Simulation Tools, and Example Projects: A Review of the Literature. Buildings 2022, 12, 954. [Google Scholar] [CrossRef]
- Pereira, J.; Rivero, C.C.; Gomes, M.G.; Rodrigues, A.M.; Marrero, M. Energy, environmental and economic analysis of windows’ retrofit with solar control films: A case study in Mediterranean climate. Energy 2021, 233, 121083. [Google Scholar] [CrossRef]
- Huang, Y.; Niu, J.-l.; Chung, T.-m. Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates. Appl. Energy 2014, 134, 215–228. [Google Scholar] [CrossRef]
- Moghaddam, S.A.; Mattsson, M.; Ameen, A.; Akander, J.; Gameiro Da Silva, M.; Simões, N. Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate. Energies 2021, 14, 7584. [Google Scholar] [CrossRef]
- El-Darwish, I.; Gomaa, M. Retrofitting strategy for building envelopes to achieve energy efficiency. Alex. Eng. J. 2017, 56, 579–589. [Google Scholar] [CrossRef]
- Farghaly, Y.; Hassan, F. A Simulated Study of Building Integrated Photovoltaics (BIPV) as an Approach for Energy Retrofit in Buildings. Energies 2019, 12, 3946. [Google Scholar] [CrossRef]
- Shaik, S.; Maduru, V.R.; Kontoleon, K.J.; Arıcı, M.; Gorantla, K.; Afzal, A. Building glass retrofitting strategies in hot and dry climates: Cost savings on cooling, diurnal lighting, color rendering, and payback timeframes. Energy 2022, 243, 123106. [Google Scholar] [CrossRef]
- Park, J.H.; Jeon, J.; Lee, J.; Wi, S.; Yun, B.Y.; Kim, S. Comparative analysis of the PCM application according to the building type as retrofit system. Build. Environ. 2019, 151, 291–302. [Google Scholar] [CrossRef]
- Peng, J.; Tan, Y.; Fang, Y.; Yang, H.; Song, A.; Curcija, C.; Selkowitz, S. Excellent Insulation Vacuum Glazing for Low-Carbon Buildings: Fabrication, Modeling, and Evaluation. Engineering 2024. [Google Scholar] [CrossRef]
- Fang, Y.; Eames, P.C.; Norton, B.; Hyde, T.J. Experimental validation of a numerical model for heat transfer in vacuum glazing. Sol. Energy 2006, 80, 564–577. [Google Scholar] [CrossRef]
- Fang, Y.; Eames, P.C.; Norton, B.; Hyde, T.J.; Zhao, J.; Wang, J.; Huang, Y. Low emittance coatings and the thermal performance of vacuum glazing. Sol. Energy 2007, 81, 8–12. [Google Scholar] [CrossRef]
- Fang, Y.; Hyde, T.J.; Arya, F.; Hewitt, N. A novel building component hybrid vacuum glazing-a modelling and experimental validation. ASHRAE Trans. 2013, 119, 430. [Google Scholar]
- Manz, H.; Brunner, S.; Wullschleger, L. Triple vacuum glazing: Heat transfer and basic mechanical design constraints. Sol. Energy 2006, 80, 1632–1642. [Google Scholar] [CrossRef]
- Fang, Y.; Hyde, T.J.; Arya, F.; Hewitt, N.; Wang, R.; Dai, Y. Enhancing the thermal performance of triple vacuum glazing with low-emittance coatings. Energy Build. 2015, 97, 186–195. [Google Scholar] [CrossRef]
- Fang, Y.; Memon, S.; Peng, J.; Tyrer, M.; Ming, T. Solar thermal performance of two innovative configurations of air-vacuum layered triple glazed windows. Renew. Energy 2020, 150, 167–175. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B.; Duffy, A. Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell. Appl. Energy 2016, 177, 196–203. [Google Scholar] [CrossRef]
- Cho, S. Analysis of the performance of vacuum glazing in office buildings in Korea: Simulation and experimental studies. Sustainability 2017, 9, 936. [Google Scholar] [CrossRef]
- Baek, S.; Kim, S. Potential Effects of Vacuum Insulating Glazing Application for Reducing Greenhouse Gas Emission (GHGE) from Apartment Buildings in the Korean Capital Region. Energies 2020, 13, 2828. [Google Scholar] [CrossRef]
- Litti, G.; Audenaert, A.; Lavagna, M. Life cycle operating energy saving from windows retrofitting in heritage buildings accounting for technical performance decay. J. Build. Eng. 2018, 17, 135–153. [Google Scholar] [CrossRef]
- Jelle, B.P.; Hynd, A.; Gustavsen, A.; Arasteh, D.; Goudey, H.; Hart, R. Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Sol. Energy Mater. Sol. Cells 2012, 96, 1–28. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, W.; Yang, H.; Qiu, C. Thermal performance study of retrofitting existing glazing curtain walls with vacuum glazing in Hong Kong. J. Xi’an Polytech. Univ. 2024, 38, 19–27. (In Chinese) [Google Scholar]
- Hong Kong Building Authority. Code of Practice for Overall Thermal Transfer Value in Buildings; Building Authority: Hong Kong, China, 1995.
- Imani, E.; Dawood, H.; Williams, S.; Dawood, N. Physics-Based and Data-Driven Retrofitting Solutions for Energy Efficiency and Thermal Comfort in the UK: IoT-Validated Analysis. Buildings 2025, 15, 1050. [Google Scholar] [CrossRef]
- Cheung, T.; Schiavon, S.; Parkinson, T.; Li, P.; Brager, G. Analysis of the accuracy on PMV—PPD model using the ASHRAE Global Thermal Comfort Database II. Build. Environ. 2019, 153, 205–217. [Google Scholar] [CrossRef]
- ASHRAE Standard 55; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Peachtree Corners, GA, USA, 2020.
- EN 15251; Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. Comite Europe en de Normalisation: Bruxelles, Belgium, 2007.
- Li, B.; Tan, M.; Liu, H.; Ma, X.; Zhang, W. Occupant’s perception and preference of thermal environment in free-running buildings in China. Indoor Built Environ. 2010, 19, 405–412. [Google Scholar]
- Rupp, R.F.; Andersen, R.K.; Toftum, J.; Ghisi, E. Occupant behaviour in mixed-mode office buildings in a subtropical climate: Beyond typical models of adaptive actions. Build. Environ. 2021, 190, 107541. [Google Scholar] [CrossRef]
Equipment | Function | Manufacturer and Model | Range/Accuracy | Location | No. |
---|---|---|---|---|---|
Pyranometer | Outdoor incident solar radiation | EKO (MS802) | 0~4000 W/m2; Non-linearity < 0.2% | Outdoor (Rooftop) | 1 |
Indoor transmitted solar radiation | EKO (MS802) | 0~4000 W/m2; Non-linearity < 0.2% | Indoor | 2 | |
Heat flux sensor | Heat flux through the glazing | Captec (HS-30) | ±200 W/m2; Error < 3% | Inside glazing surface | 2 |
Thermocouple | Outside surface temperature | TC Type K | −50~200 °C; Accuracy: ±0.1 °C | Outside glazing surface | 6 |
Inside surface temperature | TC Type K | −50~200 °C; Accuracy: ±0.1 °C | Inside glazing surface | 4 | |
Wall temperature | TC Type K | −50~200 °C; Accuracy: ±0.1 °C | Inside wall surface | 2 | |
Globe thermometer | Globe radiative temperature | Renke (RS-HQ-USE) | 0~120 °C; Accuracy: ±0.1 °C | Indoor | 2 |
Temperature and humidity sensors | Indoor air temperature and relative humidity | Chengqian (DWTCP) | −40~80 °C, 5%~95% RH; Accuracy: ±0.5 °C, ±3% RH | Indoor | 2 |
Data logger | Data monitoring and record | Graghtec (GL840) | Voltage: 20 mV~100 V, temperature, humidity, logic/pulse inputs; Resolution: 1 μV and 0.1 °C | Indoor | 2 |
Materials | Thickness (mm) | Thermal Conductivity (W/mK) | Density (kg/m3) | Specific Heat Capacity (J/kgK) |
---|---|---|---|---|
Mosaic tiles cladding | 5 | 1.5 | 2500 | 840 |
Cement/sand render | 10 | 0.72 | 1860 | 1050 |
Concrete panel | 100 | 2.16 | 2400 | 840 |
Gypsum plaster | 10 | 0.38 | 1120 | 95 |
Window Type | Structure | U-Value (W/m2K) | SHGC | Tvis | Tsol |
---|---|---|---|---|---|
Single-pane clear glass | 10 mm clear glass | 5.54 | 0.82 | 0.88 | 0.77 |
Single-pane coated glass | 10 mm clear glass with grey coating | 4.15 | 0.29 | 0.14 | 0.11 |
Vacuum glazing | 5 mm clear glass with low-e coating + 0.3 mm vacuum gap + 5 mm clear glass | 0.65 | 0.38 | 0.71 | 0.37 |
VIG retrofit on clear glass | 10 mm single clear glass + 8 mm air gap + 10.3 mm VIG | 0.59 | 0.36 | 0.63 | 0.31 |
VIG retrofit on coated glass | 10 mm single pane coated glass + 6 mm air gap + 10.3 mm VIG | 0.58 | 0.08 | 0.10 | 0.05 |
Type | Weather | Value Limit | Transmitted Solar Radiation (W/m2) | Inside Surface Temperature (°C) | Outside Surface Temperature (°C) | Heat Flux (W/m2) |
---|---|---|---|---|---|---|
VIG retrofit | Sunny day | Max | 19.7 | 29.2 | 56.9 | 19.4 |
Min | 0.8 | 24.9 | 25.6 | −1.2 | ||
Ave | 8.14 (7:00–18:00) | 26.4 | 34.3 | 4.3 | ||
Cloudy day | Max | 8.5 | 25.3 | 37.2 | 8.8 | |
Min | 0.2 | 24.3 | 26.7 | −0.9 | ||
Ave | 3.79 (7:00–18:00) | 24.9 | 29.5 | 2.2 | ||
Single-pane coated glass | Sunny day | Max | 35.5 | 50.2 | 47.8 | 137.5 |
Min | 0.8 | 25.5 | 25.6 | −1.3 | ||
Ave | 11.86 (7:00–18:00) | 32.3 | 31.8 | 29.1 | ||
Cloudy day | Max | 15.1 | 35.6 | 34.7 | 47.8 | |
Min | 0 | 26.4 | 26.4 | 0.8 | ||
Ave | 4.75 (7:00–18:00) | 28.6 | 28.4 | 11.0 |
VIG Retrofit on Clear Glass | South | West | North | East |
---|---|---|---|---|
Annual energy saving per window area (kWh/m2) | 111.65 | 191.22 | 105.68 | 168.52 |
Annual benefit of energy saving of the first year (HK$/year) | 189.81 | 325.07 | 179.66 | 286.48 |
Payback Period (year) | 7.36 | 4.66 | 7.70 | 5.50 |
VIG Retrofit on Coated Glass | South | West | North | East |
---|---|---|---|---|
Annual energy saving per window area (kWh/m2) | 56.61 | 162.90 | 50.00 | 102.87 |
Annual benefit of energy saving of the first year (HK$/year) | 96.24 | 276.93 | 85.00 | 174.89 |
Payback Period (year) | 12.42 | 5.37 | 13.56 | 7.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, C.; Yang, H.; Dong, K. Energy and Thermal Comfort Performance of Vacuum Glazing-Based Building Envelope Retrofit in Subtropical Climate: A Case Study. Buildings 2025, 15, 2038. https://doi.org/10.3390/buildings15122038
Qiu C, Yang H, Dong K. Energy and Thermal Comfort Performance of Vacuum Glazing-Based Building Envelope Retrofit in Subtropical Climate: A Case Study. Buildings. 2025; 15(12):2038. https://doi.org/10.3390/buildings15122038
Chicago/Turabian StyleQiu, Changyu, Hongxing Yang, and Kaijun Dong. 2025. "Energy and Thermal Comfort Performance of Vacuum Glazing-Based Building Envelope Retrofit in Subtropical Climate: A Case Study" Buildings 15, no. 12: 2038. https://doi.org/10.3390/buildings15122038
APA StyleQiu, C., Yang, H., & Dong, K. (2025). Energy and Thermal Comfort Performance of Vacuum Glazing-Based Building Envelope Retrofit in Subtropical Climate: A Case Study. Buildings, 15(12), 2038. https://doi.org/10.3390/buildings15122038