Innovative Surface Treatment Technologies for Enhanced Coating Performance

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Surface Characterization, Deposition and Modification".

Deadline for manuscript submissions: 20 January 2026 | Viewed by 2099

Special Issue Editors


E-Mail Website
Guest Editor
School of Mechanical Engineering, Nantong University, Nantong 226019, China
Interests: laser cladding; high-entropy alloys; cavitation jet; shot peening; ultrahigh-pressure water rust removal
School of Mechanical Engineering, Nantong University, Nantong 226019, China
Interests: severe plastic deformation; surface treatment; fatigue and creep; additive manufacturing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recent advancements in surface treatment technologies, such as cavitation jets, shot peening, laser shock, and mechanical hammering, have opened new frontiers in enhancing coating performance. These techniques improve wear resistance, corrosion resistance, and mechanical properties, making them vital for the aerospace, automotive, and energy sectors. This Special Issue explores both the mechanisms of these processes and their effects on coatings, welcoming contributions on the following topics:

  • Theoretical and experimental research on the fundamental mechanisms of surface treatment processes, including the effects of cavitation, high-speed impacts, and laser-induced shock waves on material properties and microstructure evolution.
  • Insights into how surface treatments such as shot peening, laser shock, and mechanical hammering induce phase transformations, plastic deformation, and changes in the microstructure of coatings, enhancing their wear, corrosion, and fatigue resistance.
  • Recent advancements in the development and optimization of surface treatment techniques, with a focus on improving processing efficiency, precision, and scalability for industrial applications.
  • Investigations into the impact of surface treatment parameters (e.g., pressure, energy, treatment time) on the final coating properties, including the interaction between surface treatment processes and coating materials.
  • The exploration of new strategies to integrate multiple surface treatment techniques for the development of multi-functional coatings with superior properties.
  • The role of advanced characterization methods in understanding the effects of surface treatment on the microstructure and mechanical or chemical properties of coatings, and the development of modeling approaches to predict coating performance and durability in service environments.

We invite contributions from researchers and industry experts to present their latest findings on the surface treatment technologies themselves, as well as their applications in enhancing the performance of coatings across a wide range of industrial sectors.

Dr. Yongfei Yang
Dr. Yu Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • surface treatments
  • coating performance
  • wear resistance
  • corrosion resistance
  • microstructure modification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 6681 KB  
Article
Significantly Improved Protection Performance of Lotus-Leaf-Extract-Modified Mortar Against Chloride Corrosion
by Changyun Wu, Yangshun Zhu, Quan Hua, Hao Guan, Haoyu Wang, Guowei Wang, Shuguang Zhang and Dan Song
Coatings 2025, 15(9), 983; https://doi.org/10.3390/coatings15090983 - 22 Aug 2025
Viewed by 346
Abstract
Reinforced concrete structures in harsh environments are highly vulnerable to structural damage caused by rebar corrosion. However, there remains a critical shortage of high-performance, environmentally friendly repair materials that integrate both structural restoration and long-term corrosion protection functionalities to address this issue. To [...] Read more.
Reinforced concrete structures in harsh environments are highly vulnerable to structural damage caused by rebar corrosion. However, there remains a critical shortage of high-performance, environmentally friendly repair materials that integrate both structural restoration and long-term corrosion protection functionalities to address this issue. To meet this demand, this study innovatively developed an eco-friendly, high-performance repair material using lotus leaf extract (LLE)-modified mortar and systematically evaluated its corrosion protection performance and mechanisms under chloride attack conditions. The primary chemical constituents of LLE include alkaloids and flavonoids, rich in polar functional groups such as O–H, N–H, and C–O. The LLE modifier increased the fluidity of fresh cement paste, thereby improving its construction workability. A low dosage of LLE modifier promoted cement hydration. When the LLE dosage was 0.2 wt%, the 7-day and 28-day flexural strengths of the LLE-modified mortar increased by 16.8% and 7.48%, respectively, compared to those of unmodified mortar, while the compressive strengths increased by 30.6% and 14.5%, respectively. The LLE-modified mortar demonstrated significant protection against chloride corrosion, effectively inhibiting rebar corrosion. Electrochemical corrosion results indicated that compared to unmodified mortar, the modified mortar containing 0.5 wt% LLE exhibited an 80% improvement in protection efficiency against chloride corrosion. These results demonstrate that an appropriate dosage of LLE modifier can simultaneously optimize the fundamental properties of mortar and provide excellent chloride corrosion protection. Therefore, LLE-modified mortar shows promising application potential in integrated repair and corrosion protection engineering for reinforced concrete structures. Full article
Show Figures

Figure 1

13 pages, 2079 KB  
Article
Preparation and Properties of a Composite Glass Protective Lubricating Coating for the Forging of Ti-6Al-4V Alloy
by Zunqi Xiao, Qiuyue Xie, Bin Zhang, Bing Ren and Shujian Tian
Coatings 2025, 15(7), 792; https://doi.org/10.3390/coatings15070792 - 5 Jul 2025
Viewed by 447
Abstract
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with [...] Read more.
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with distinct softening temperatures, extending its operational window to 700–950 °C. The composite glass showed initial softening at 700 °C and complete melting at 800 °C, with contact angle measurements confirming superior wettability (θ < 90°) across the forging range (800~950 °C). With an increase in temperature, the surface tension of the composite glass melt decreased, and subsequently, the wettability of the composite glass melt was significantly improved. XRD revealed that the uncoated Ti-6Al-4V formed a 22 μm thick rutile TiO2 scale with a porous structure and interfacial cracks, while the coated sample retained an amorphous glass layer with no TiO2. Cross-sectional SEM showed a crack-free, poreless interface with strong metallurgical bonding, in contrast to the uncoated sample’s spalled oxide layer. EDS showed minimal oxygen diffusion of the glass coating into the substrate. Ring upsetting tests showed that the coating reduced friction from 0.5–0.7 to 0.3 (50–57% decrease). Collectively, the glass protective lubricant coating showed good performance in terms of protection and lubrication. Full article
Show Figures

Figure 1

17 pages, 3659 KB  
Article
Tribological Performance of TiN–WS2 Soft–Hard Multifunctional Composite Coatings Deposited by Magnetron Sputtering
by Hu Qiao, Shengchao Zhu, Suixin Fan, Jiawei Kang, Peichao Tian, Jianxin Yang and Youqing Wang
Coatings 2025, 15(5), 596; https://doi.org/10.3390/coatings15050596 - 17 May 2025
Cited by 1 | Viewed by 1062
Abstract
Titanium nitride (TiN) is a widely used industrial hard coating material, known for its excellent hardness and chemical stability. However, its relatively high coefficient of friction (COF) often leads to interfacial heat accumulation and adhesive wear during service, limiting its applicability in high-temperature [...] Read more.
Titanium nitride (TiN) is a widely used industrial hard coating material, known for its excellent hardness and chemical stability. However, its relatively high coefficient of friction (COF) often leads to interfacial heat accumulation and adhesive wear during service, limiting its applicability in high-temperature tribological environments. To enhance its tribological performance, a TiN–WS2 soft–hard composite coating was fabricated on cemented carbide substrates using reactive co-sputtering magnetron deposition. By adjusting the sputtering parameters and target power ratio, a synergistic deposition of the hard (TiN) and lubricating (WS2) phases was achieved and compared with a pure TiN coating. The results revealed that the incorporation of WS2 significantly reduced the COF at both room temperature (25 °C) and an elevated temperature (200 °C), with the average values decreasing from 0.61 to 0.39 at 25 °C and from 0.53 to 0.36 at 200 °C. A white light interferometry analysis showed that the TiN–WS2 coating exhibited narrower wear tracks and less surface damage than TiN at elevated temperatures, demonstrating superior friction-reducing and wear-resistant capabilities. In terms of mechanical properties, the composite coating showed a reduction in the hardness, the reduced elastic modulus (Er), and the adhesion strength by 27.3%, 19.8%, and 9.5%, respectively, compared to pure TiN. These findings indicate that the introduction of a quantitatively controlled lubricating WS2 phase allows for a balance between nanoscale hardness and wear resistance, offering promising potential for engineering applications under complex working conditions. Full article
Show Figures

Graphical abstract

Back to TopTop