Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,032)

Search Parameters:
Keywords = generalized fractional integral

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 547 KiB  
Article
An Efficient Spectral Method for a Class of Asymmetric Functional-Order Diffusion–Wave Equations Using Generalized Chelyshkov Wavelets
by Quan H. Do and Hoa T. B. Ngo
Symmetry 2025, 17(8), 1230; https://doi.org/10.3390/sym17081230 - 4 Aug 2025
Abstract
Asymmetric functional-order (variable-order) fractional diffusion–wave equations (FO-FDWEs) introduce considerable computational challenges, as the fractional order of the derivatives can vary spatially or temporally. To overcome these challenges, a novel spectral method employing generalized fractional-order Chelyshkov wavelets (FO-CWs) is developed to efficiently solve such [...] Read more.
Asymmetric functional-order (variable-order) fractional diffusion–wave equations (FO-FDWEs) introduce considerable computational challenges, as the fractional order of the derivatives can vary spatially or temporally. To overcome these challenges, a novel spectral method employing generalized fractional-order Chelyshkov wavelets (FO-CWs) is developed to efficiently solve such equations. In this approach, the Riemann–Liouville fractional integral operator of variable order is evaluated in closed form via a regularized incomplete Beta function, enabling the transformation of the governing equation into a system of algebraic equations. This wavelet-based spectral scheme attains extremely high accuracy, yielding significantly lower errors than existing numerical techniques. In particular, numerical results show that the proposed method achieves notably improved accuracy compared to existing methods under the same number of basis functions. Its strong convergence properties allow high precision to be achieved with relatively few wavelet basis functions, leading to efficient computations. The method’s accuracy and efficiency are demonstrated on several practical diffusion–wave examples, indicating its suitability for real-world applications. Furthermore, it readily applies to a wide class of fractional partial differential equations (FPDEs) with spatially or temporally varying order, demonstrating versatility for diverse applications. Full article
(This article belongs to the Topic Numerical Methods for Partial Differential Equations)
Show Figures

Figure 1

16 pages, 1138 KiB  
Review
Cardiac Myosin Inhibitors in the Treatment of Hypertrophic Cardiomyopathy: Clinical Trials and Future Challenges
by Arnold Kukowka and Marek Droździk
Biomolecules 2025, 15(8), 1098; https://doi.org/10.3390/biom15081098 - 29 Jul 2025
Viewed by 322
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and often underdiagnosed genetic cardiac disorder characterized by left ventricular hypertrophy and, in many cases, dynamic left ventricular outflow tract obstruction (LVOTO). The development of cardiac myosin inhibitors (CMIs) represents an emerging therapeutic approach in the pharmacological [...] Read more.
Hypertrophic cardiomyopathy (HCM) is a prevalent and often underdiagnosed genetic cardiac disorder characterized by left ventricular hypertrophy and, in many cases, dynamic left ventricular outflow tract obstruction (LVOTO). The development of cardiac myosin inhibitors (CMIs) represents an emerging therapeutic approach in the pharmacological management of obstructive HCM (oHCM). This review offers an integrated and up-to-date synthesis of the cardiac myosin inhibitor class, with a focus on mavacamten, aficamten, and the broader landscape of emerging agents. It also highlights recent clinical trial outcomes, pharmacokinetic and pharmacogenetic considerations, and potential future directions in therapy. Furthermore, we incorporate the most recent data up to May 2025, including late-breaking trial results and real-world safety findings, aiming to provide clinicians with a practical and comprehensive perspective on this evolving drug class. A narrative review was conducted by systematically searching PubMed, Scopus, Google Scholar, and ClinicalTrials.gov for English-language articles and trials published between January 2016 and May 2025. Keywords included “cardiac myosin inhibitor”, mavacamten”, “aficamten”, “MYK-224”, and “hypertrophic cardiomyopathy.” Inclusion criteria encompassed clinical trials and comprehensive reviews specifically addressing CMIs in cardiac applications. CMIs such as mavacamten and aficamten have demonstrated significant clinical benefits in reducing LVOT gradients, improving exercise capacity, and alleviating symptoms in patients with oHCM. Mavacamten is currently approved for clinical use, while aficamten is in advanced regulatory review. Comparative data suggest potential advantages of aficamten in the onset of action, pharmacokinetic profile, and tolerability. Emerging evidence supports the exploration of CMIs in pediatric populations, heart failure with preserved ejection fraction (HFpEF), and non-obstructive HCM (nHCM), although results are still preliminary. Cardiac myosin inhibitors offer a novel, pathophysiology-targeted approach to managing oHCM. While mavacamten has established efficacy, next-generation agents like aficamten may offer improved safety and versatility. Further long-term studies are needed to clarify their role across broader patient populations. Full article
Show Figures

Figure 1

18 pages, 2661 KiB  
Article
Resonator Width Optimization for Enhanced Performance and Bonding Reliability in Wideband RF MEMS Filter
by Gwanil Jeon, Minho Jeong, Shungmoon Lee, Youngjun Jo and Nam-Seog Kim
Micromachines 2025, 16(8), 878; https://doi.org/10.3390/mi16080878 - 29 Jul 2025
Viewed by 188
Abstract
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. [...] Read more.
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. The study demonstrates that resonator width alignment significantly influences both electromagnetic field coupling and bonding interface integrity. The L3 configuration with complete width matching achieved optimal RF performance, demonstrating 3.34 dB insertion loss across 4.5 GHz bandwidth (25% fractional bandwidth), outperforming L2 (3.56 dB) and L1 (3.10 dB), while providing enhanced electromagnetic wave coupling and minimized contact resistance. Mechanical reliability testing revealed superior bonding strength for the L3 configuration, withstanding up to 7.14 Kgf in shear pull tests, significantly exceeding L1 (4.22 Kgf) and L2 (2.24 Kgf). SEM analysis confirmed uniform bonding interfaces with minimal void formation (~180 nm), while Q-factor measurements showed L3 achieved optimal loaded Q-factor (QL = 3.31) suitable for wideband operation. Comprehensive environmental testing, including thermal cycling (−50 °C to +145 °C) and humidity exposure per MIL-STD-810E standards, validated long-term stability across all configurations. This investigation establishes that complete resonator width matching between cap and bottom wafers optimizes both electromagnetic performance and mechanical bonding reliability, providing a validated framework for developing high-performance, reliable RF MEMS devices for next-generation communication, radar, and sensing applications. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
Show Figures

Figure 1

48 pages, 1213 KiB  
Article
Parameterized Fractal–Fractional Analysis of Ostrowski- and Simpson-Type Inequalities with Applications
by Saad Ihsan Butt, Muhammad Mehtab and Youngsoo Seol
Fractal Fract. 2025, 9(8), 494; https://doi.org/10.3390/fractalfract9080494 - 28 Jul 2025
Viewed by 197
Abstract
In this paper, we first introduce a parametric identity for generalized differentiable functions using a generalized fractal–fractional integral operators. Based on this identity, we establish several variants of parameterized inequalities for functions whose local fractional derivatives in absolute value satisfy generalized convexity conditions. [...] Read more.
In this paper, we first introduce a parametric identity for generalized differentiable functions using a generalized fractal–fractional integral operators. Based on this identity, we establish several variants of parameterized inequalities for functions whose local fractional derivatives in absolute value satisfy generalized convexity conditions. Furthermore, we demonstrate that our main results reduce to well-known Ostrowski- and Simpson-type inequalities by selecting suitable parameters. These inequalities contribute to finding tight bounds for various integrals over fractal spaces. By comparing the classical Hölder and Power mean inequalities with their new generalized versions, we show that the improved forms yield sharper and more refined upper bounds. In particular, we illustrate that the generalizations of Hölder and Power mean inequalities provide better results when applied to fractal integrals, with their tighter bounds supported by graphical representations. Finally, a series of applications are discussed, including generalized special means, generalized probability density functions and generalized quadrature formulas, which highlight the practical significance of the proposed results in fractal analysis. Full article
(This article belongs to the Section General Mathematics, Analysis)
Show Figures

Figure 1

15 pages, 5165 KiB  
Article
Microstructure and Mechanical Properties of Shoulder-Assisted Heating Friction Plug Welding 6082-T6 Aluminum Alloy Using a Concave Backing Hole
by Defu Li and Xijing Wang
Metals 2025, 15(8), 838; https://doi.org/10.3390/met15080838 - 27 Jul 2025
Viewed by 215
Abstract
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the [...] Read more.
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the joints exhibited no thinning on the top surface while forming a reinforcing boss structure within the concave backing hole on the backside, resulting in a slight increase in the overall load-bearing thickness. The introduction of the concave backing hole led to distinct microstructural zones compared to joints welded without it. The resulting joint microstructure comprised five regions: the nugget zone, a recrystallized zone, a shoulder-affected zone, the thermo-mechanically affected zone, and the heat-affected zone. Significantly, this process eliminated the poorly consolidated ‘filling zone’ often associated with conventional plug repairs. The microhardness across the joints was generally slightly higher than that of the base metal (BM), with the concave backing hole technique having minimal influence on overall hardness values or their distribution. However, under identical welding parameters, joints produced using the concave backing hole consistently demonstrated higher tensile strength than those without. The joints displayed pronounced ductile fracture characteristics. A maximum ultimate tensile strength of 278.10 MPa, equivalent to 89.71% of the BM strength, was achieved with an elongation at fracture of 9.02%. Analysis of the grain structure revealed that adjacent grain misorientation angle distributions deviated from a random distribution, indicating dynamic recrystallization. The nugget zone (NZ) possessed a higher fraction of high-angle grain boundaries (HAGBs) compared to the RZ and TMAZ. These findings indicate that during the SAH-FPW process, the use of a concave backing hole ultimately enhances structural integrity and mechanical performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

17 pages, 661 KiB  
Article
An Ultrasonication-Assisted Green Process for Simultaneous Production of a Bioactive Compound-Rich Extract and a Multifunctional Fibrous Ingredient from Spent Coffee Grounds
by Jaquellyne B. M. D. Silva, Mayara T. P. Paiva, Henrique F. Fuzinato, Nathalia Silvestre, Marta T. Benassi and Suzana Mali
Molecules 2025, 30(15), 3117; https://doi.org/10.3390/molecules30153117 - 25 Jul 2025
Viewed by 288
Abstract
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously [...] Read more.
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously recovering the residual solid fraction, resulting in the integral utilization of the residue. This process resulted in a liquid aqueous extract (LAE) rich in bioactive compounds (caffeine: 400.1 mg/100 g; polyphenols: 800.4 mg GAE/100 g; melanoidins: 2100.2 mg/100 g) and, simultaneously, a solid multifunctional ingredient from modified spent coffee grounds (MSCGs) rich in bioactive compounds and dietary fibers (73.0 g/100 g). The liquid extract can be used as a natural ingredient for drinks or to isolate caffeine, while the solid matrix can be used to produce functional foods. This technique proved to be a promising eco-friendly alternative for the simultaneous production of two different materials from SCGs, maximizing resource efficiency, with some advantages, including short time, simplicity, and cost-effectiveness; using water as a solvent; and requiring no further purification processing. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

20 pages, 11438 KiB  
Article
Investigating Chaotic Techniques and Wave Profiles with Parametric Effects in a Fourth-Order Nonlinear Fractional Dynamical Equation
by Jan Muhammad, Ali H. Tedjani, Ejaz Hussain and Usman Younas
Fractal Fract. 2025, 9(8), 487; https://doi.org/10.3390/fractalfract9080487 - 24 Jul 2025
Viewed by 282
Abstract
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the [...] Read more.
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the concepts to more intricate wave dynamics, relevant in engineering and science for understanding complex phenomena. To examine the solitary wave solutions of the proposed model, we employ sophisticated analytical techniques, including the generalized projective Riccati equation method, the new improved generalized exponential rational function method, and the modified F-expansion method, along with mathematical simulations, to obtain a deeper insight into wave propagation. To explore desirable soliton solutions, the nonlinear partial differential equation is converted into its respective ordinary differential equations by wave transforms utilizing β-fractional derivatives. Further, the solutions in the forms of bright, dark, singular, combined, and complex solitons are secured. Various physical parameter values and arrangements are employed to investigate the soliton solutions of the system. Variations in parameter values result in specific behaviors of the solutions, which we illustrate via various types of visualizations. Additionally, a key aspect of this research involves analyzing the chaotic behavior of the governing model. A perturbed version of the system is derived and then analyzed using chaos detection techniques such as power spectrum analysis, Poincaré return maps, and basin attractor visualization. The study of nonlinear dynamics reveals the system’s sensitivity to initial conditions and its dependence on time-decay effects. This indicates that the system exhibits chaotic behavior under perturbations, where even minor variations in the starting conditions can lead to drastically different outcomes as time progresses. Such behavior underscores the complexity and unpredictability inherent in the system, highlighting the importance of understanding its chaotic dynamics. This study evaluates the effectiveness of currently employed methodologies and elucidates the specific behaviors of the system’s nonlinear dynamics, thus providing new insights into the field of high-dimensional nonlinear scientific wave phenomena. The results demonstrate the effectiveness and versatility of the approach used to address complex nonlinear partial differential equations. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

23 pages, 30904 KiB  
Article
How Do Invasive Species Influence Biotic and Abiotic Factors Drive Vegetation Success in Salt Marsh Ecosystems?
by Yong Zhou, Chunqi Qiu, Hongyu Liu, Yufeng Li, Cheng Wang, Gang Wang, Mengyuan Su and Chen He
Land 2025, 14(8), 1523; https://doi.org/10.3390/land14081523 - 24 Jul 2025
Viewed by 235
Abstract
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution [...] Read more.
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution variation of invasive species (Spartina alterniflora) and native species (Suaeda salsa and Phragmites australis) from 1987 to 2022 via the Google Earth Engine and random forest method. Logistic/Gaussian models were used to quantify land–sea distribution changes and vegetation succession trajectories. By integrating data on soil salinity, invasion duration, and fractional vegetation cover, generalized additive models (GAMs) were applied to identify the main factors influencing vegetation succession and to explore how Spartina alterniflora invasion affects the succession of salt marsh vegetation. The results indicated that the areas of Spartina alterniflora and Phragmites australis significantly increased by 3787.49 ha and 3452.60 ha in 35 years, respectively, contrasting with Suaeda salsa’s 82.46% decline. The FVC in the area has significantly increased by 42.10%, especially in the coexisted areas of different vegetation communities, indicating intensified interspecific competition. The overall trend of soil salinity was decreasing, with a decrease in soil salinity in native species areas from 0.72% to 0.37%. From the results of GAMs, soil salinity, tidal action, and invasion duration were significant factors influencing the distribution of native species, but salinity was not a significant factor affecting the Spartina alterniflora distribution. The findings revealed that the expansion of Spartina alterniflora changed the soil salinity and interspecific interactions, thereby altering the original plant community structure and establishing a new vegetation succession. This study enhances the understanding of the impacts of invasive species on ecosystems and offers theoretical support for salt marsh restoration. Full article
Show Figures

Figure 1

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 379
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

19 pages, 946 KiB  
Article
Enhanced Fast Fractional Fourier Transform (FRFT) Scheme Based on Closed Newton-Cotes Rules
by Aubain Nzokem, Daniel Maposa and Anna M. Seimela
Axioms 2025, 14(7), 543; https://doi.org/10.3390/axioms14070543 - 20 Jul 2025
Viewed by 221
Abstract
The paper presents an enhanced numerical framework for computing the one-dimensional fast Fractional Fourier Transform (FRFT) by integrating closed-form Composite Newton-Cotes quadrature rules. We show that a FRFT of a QN-length weighted sequence can be decomposed analytically into two mathematically [...] Read more.
The paper presents an enhanced numerical framework for computing the one-dimensional fast Fractional Fourier Transform (FRFT) by integrating closed-form Composite Newton-Cotes quadrature rules. We show that a FRFT of a QN-length weighted sequence can be decomposed analytically into two mathematically commutative compositions: one involving the composition of a FRFT of an N-length sequence and a FRFT of a Q-length weighted sequence, and the other in reverse order. The composite FRFT approach is applied to the inversion of Fourier and Laplace transforms, with a focus on estimating probability densities for distributions with complex-valued characteristic functions. Numerical experiments on the Variance-Gamma (VG) and Generalized Tempered Stable (GTS) models show that the proposed scheme significantly improves accuracy over standard (non-weighted) fast FRFT and classical Newton-Cotes quadrature, while preserving computational efficiency. The findings suggest that the composite FRFT framework offers a robust and mathematically sound tool for transform-based numerical approximations, particularly in applications involving oscillatory integrals and complex-valued characteristic functions. Full article
(This article belongs to the Special Issue Numerical Analysis and Applied Mathematics)
Show Figures

Figure 1

18 pages, 2723 KiB  
Article
FTIR Characterization of Asphalt SARA Fractions in Response to Rubber Modification
by Mohyeldin Ragab, Eslam Deef-Allah and Magdy Abdelrahman
Appl. Sci. 2025, 15(14), 8062; https://doi.org/10.3390/app15148062 - 20 Jul 2025
Viewed by 351
Abstract
Asphalt–rubber binders (A-RBs) have a long and deep history of use; however, little is known regarding the interrelated chemical behaviors and miscibility of rubber with the asphalt fractions [saturates, aromatics, resins, and asphaltenes (SARA)]. This study comprehensively attempted to address this knowledge deficiency [...] Read more.
Asphalt–rubber binders (A-RBs) have a long and deep history of use; however, little is known regarding the interrelated chemical behaviors and miscibility of rubber with the asphalt fractions [saturates, aromatics, resins, and asphaltenes (SARA)]. This study comprehensively attempted to address this knowledge deficiency by employing Fourier transform infrared spectroscopy (FTIR) to investigate the chemical evolution of A-RBs. A-RB interacted at 190 °C and 3000 min−1 for 8 h was deemed to have the optimal rheological performance. FTIR of the liquid fractions of A-RB 190–3000 showed a prominent chemical shift in the SARA fractions, with new peaks that showed rubber polybutadiene (PB) and polystyrene migration into asphaltenes. Meanwhile, decreases in peaks with C–H aromatic bending and S=O stretching for the A-RB 190–3000 saturates showed that the rubber absorbed low-molecular-weight maltenes during swelling. Peaks associated with C=C aromatic appeared in saturates and aromatics, respectively, emphasizing that unsaturated components migrated from the rubber into the asphalt. Thermal analysis showed that rubber dissolution for this sample reached 82%. While a PB peak existed in asphaltenes of A-RB 220–3000, its intensity was diminished by depolymerization, thus compromising the integrity of the migrated rubber structure and generating less rheological enhancement. This study concludes that FTIR characterization of SARA fractions offers valuable insights into the interactions between asphalt and rubber, and that regulated processing conditions are essential for enhancing binder performance. Full article
(This article belongs to the Special Issue Infrastructure Resilience Analysis)
Show Figures

Figure 1

14 pages, 1735 KiB  
Article
Hydroelectric Unit Fault Diagnosis Based on Modified Fractional Hierarchical Fluctuation Dispersion Entropy and AdaBoost-SCN
by Xing Xiong, Zhexi Xu, Rende Lu, Yisheng Li, Bingyan Li, Fengjiao Wu and Bin Wang
Energies 2025, 18(14), 3798; https://doi.org/10.3390/en18143798 - 17 Jul 2025
Viewed by 168
Abstract
The hydropower unit is the core of the hydropower station, and maintaining the safety and stability of the hydropower unit is the first essential priority of the operation of the hydropower station. However, the complex environment increases the probability of the failure of [...] Read more.
The hydropower unit is the core of the hydropower station, and maintaining the safety and stability of the hydropower unit is the first essential priority of the operation of the hydropower station. However, the complex environment increases the probability of the failure of hydropower units. Therefore, aiming at the complex diversity of hydropower unit faults and the imbalance of fault data, this paper proposes a fault identification method based on modified fractional-order hierarchical fluctuation dispersion entropy (MFHFDE) and AdaBoost-stochastic configuration networks (AdaBoost-SCN). First, the modified hierarchical entropy and fractional-order theory are incorporated into the multiscale fluctuation dispersion entropy (MFDE) to enhance the responsiveness of MFDE to various fault signals and address its limitation of overlooking the high-frequency components of signals. Subsequently, the Euclidean distance is used to select the fractional order. Then, a novel method for evaluating the complexity of time-series signals, called MFHFDE, is presented. In addition, the AdaBoost algorithm is used to integrate stochastic configuration networks (SCN) to establish the AdaBoost-SCN strong classifier, which overcomes the problem of the weak generalization ability of SCN under the condition of an unbalanced number of signal samples. Finally, the features extracted via MFHFDE are fed into the classifier to accomplish pattern recognition. The results show that this method is more robust and effective compared with other methods in the anti-noise experiment and the feature extraction experiment. In the six kinds of imbalanced experimental data, the recognition rate reaches more than 98%. Full article
Show Figures

Figure 1

5 pages, 665 KiB  
Proceeding Paper
Opportunities of Coupling Hydrothermal Liquefaction with Wet Oxidation: Significance of Appropriate Thermodynamic Model Selection in Process Modeling
by Arif Hussain, Bertram Thoning Hvass Søgaard and Konstantinos Anastasakis
Proceedings 2025, 121(1), 7; https://doi.org/10.3390/proceedings2025121007 - 17 Jul 2025
Viewed by 182
Abstract
This study examines the significance of thermodynamic model selection to improve predictions when modeling a wet oxidation (WO) process. WO is a promising technology for treating the highly concentrated process water stream from hydrothermal liquefaction (HTL) while generating heat, due to the exothermic [...] Read more.
This study examines the significance of thermodynamic model selection to improve predictions when modeling a wet oxidation (WO) process. WO is a promising technology for treating the highly concentrated process water stream from hydrothermal liquefaction (HTL) while generating heat, due to the exothermic oxidation reactions, leading to a potential integrated HTL-WO autothermal process. However, the harsh process conditions employed fail to describe oxygen solubility accurately, leading to major deviations in predicted COD reduction, heat generation, vapor fraction, and final design. To accurately capture oxygen solubility at elevated temperatures and pressures, experimental oxygen solubility data were regressed using activity coefficient models. This yielded improved oxygen solubility predictions at 280–350 °C, more realistic vapor fractions and heat outputs, and COD reduction close to experimental values. Full article
Show Figures

Figure 1

15 pages, 1034 KiB  
Article
In Vitro Oral Cavity Permeability Assessment to Enable Simulation of Drug Absorption
by Pankaj Dwivedi, Priyata Kalra, Haiying Zhou, Khondoker Alam, Eleftheria Tsakalozou, Manar Al-Ghabeish, Megan Kelchen and Giovanni M. Pauletti
Pharmaceutics 2025, 17(7), 924; https://doi.org/10.3390/pharmaceutics17070924 - 17 Jul 2025
Viewed by 414
Abstract
Background/Objectives: The oral cavity represents a convenient route of administration for drugs that exhibit significant hepatic first-pass extraction. In this study, the mucosal permeation properties of selected active pharmaceutical ingredients (APIs) incorporated into oral cavity drug products that are approved by the U.S. [...] Read more.
Background/Objectives: The oral cavity represents a convenient route of administration for drugs that exhibit significant hepatic first-pass extraction. In this study, the mucosal permeation properties of selected active pharmaceutical ingredients (APIs) incorporated into oral cavity drug products that are approved by the U.S. Food and Drug Administration were quantified using the human-derived sublingual HO-1-u-1 and buccal EpiOral™ in vitro tissue models. Methods: Epithelial barrier properties were monitored using propranolol and Lucifer Yellow as prototypic transcellular and paracellular markers. APIs were dissolved in artificial saliva, pH 6.7, and transepithelial flux from the apical to the basolateral compartment was quantified using HPLC. Results: Apparent permeability coefficients (Papp) calculated for these APIs in the sublingual HO-1-u-1 tissue model varied from Papp = 2.72 ± 0.06 × 10−5 cm/s for asenapine to Papp = 6.21 ± 2.60 × 10−5 cm/s for naloxone. In contrast, the buccal EpiOral™ tissue model demonstrated greater discrimination power in terms of permeation properties for the same APIs, with values ranging from Papp = 3.31 ± 0.83 × 10−7 cm/s for acyclovir to Papp = 2.56 ± 0.68 × 10−5 cm/s for sufentanil. The tissue-associated dose fraction recovered at the end of the transport experiment was significantly increased in the buccal EpiOral™ tissue model, reaching up to 8.5% for sufentanil. Conclusions: Experimental permeation data collected for selected APIs in FDA-approved oral cavity products will serve as a training set to aid the development of predictive computational models for improving algorithms that describe drug absorption from the oral cavity. Following a robust in vitro–in vivo correlation analysis, it is expected that such innovative in silico modeling strategies will the accelerate development of generic oral cavity products by facilitating the utility of model-integrated evidence to support decision making in generic drug development and regulatory approval. Full article
Show Figures

Graphical abstract

17 pages, 1795 KiB  
Article
A Double-Parameter Regularization Scheme for the Backward Diffusion Problem with a Time-Fractional Derivative
by Qun Chen and Zewen Wang
Fractal Fract. 2025, 9(7), 459; https://doi.org/10.3390/fractalfract9070459 - 14 Jul 2025
Viewed by 224
Abstract
In this paper, we investigate the regularization of the backward problem for a diffusion process with a time-fractional derivative. We propose a novel double-parameter regularization scheme that integrates the quasi-reversibility method for the governing equation with the quasi-boundary method. Theoretical analysis establishes the [...] Read more.
In this paper, we investigate the regularization of the backward problem for a diffusion process with a time-fractional derivative. We propose a novel double-parameter regularization scheme that integrates the quasi-reversibility method for the governing equation with the quasi-boundary method. Theoretical analysis establishes the regularity and the convergence analysis of the regularized solution, along with a convergence rate under an a-priori regularization parameter choice rule in the general-dimensional case. Finally, numerical experiments validate the effectiveness of the proposed scheme. Full article
Show Figures

Figure 1

Back to TopTop