Next Article in Journal
On Joint Progressively Censored Gumbel Type-II Distributions: (Non-) Bayesian Estimation with an Application to Physical Data
Previous Article in Journal
Tame Secant Varieties and Group Actions
Previous Article in Special Issue
An Enhanced Method with Memory Derived from Newton’s Scheme in Solving Nonlinear Equations: Higher R-Order Convergence and Numerical Performance
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Enhanced Fast Fractional Fourier Transform (FRFT) Scheme Based on Closed Newton-Cotes Rules

1
Department of Mathematics & Statistics, York University, Toronto, ON M3J 1P3, Canada
2
Department of Statistics and Operations Research, University of Limpopo, Sovenga 0727, South Africa
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2025, 14(7), 543; https://doi.org/10.3390/axioms14070543
Submission received: 8 June 2025 / Revised: 12 July 2025 / Accepted: 18 July 2025 / Published: 20 July 2025
(This article belongs to the Special Issue Numerical Analysis and Applied Mathematics)

Abstract

The paper presents an enhanced numerical framework for computing the one-dimensional fast Fractional Fourier Transform (FRFT) by integrating closed-form Composite Newton-Cotes quadrature rules. We show that a FRFT of a Q N -length weighted sequence can be decomposed analytically into two mathematically commutative compositions: one involving the composition of a FRFT of an N-length sequence and a FRFT of a Q-length weighted sequence, and the other in reverse order. The composite FRFT approach is applied to the inversion of Fourier and Laplace transforms, with a focus on estimating probability densities for distributions with complex-valued characteristic functions. Numerical experiments on the Variance-Gamma (VG) and Generalized Tempered Stable (GTS) models show that the proposed scheme significantly improves accuracy over standard (non-weighted) fast FRFT and classical Newton-Cotes quadrature, while preserving computational efficiency. The findings suggest that the composite FRFT framework offers a robust and mathematically sound tool for transform-based numerical approximations, particularly in applications involving oscillatory integrals and complex-valued characteristic functions.

1. Introduction

The Fractional Fourier Transform (FRFT) is a generalization of the classical Fourier Transform (FT), characterized by a fractional order parameter that allows for continuous interpolation between the time and frequency domains [1,2,3,4,5]. Since its introduction, the FRFT has proven to be a versatile tool in applied mathematics, with significant applications in signal processing, optics, quantum mechanics, and financial modeling [6,7,8]. The increasing relevance of the FRFT is primarily attributed to its ability to represent non-stationary signals and analyze problems where phase and frequency information evolve continuously.
In recent years, applications in high-resolution radar imaging [6], quantum information systems [9], and fractional signal processing [10] have underscored the demand for FRFT algorithms that are not only computationally efficient but also numerically stable. However, current fast FRFT algorithms often suffer from precision limitations due to step-function approximations or fail to provide robust numerical integration schemes when applied to oscillatory integrals and complex-valued characteristic functions [2,11,12].
Conversely, Newton-Cotes quadrature rules, especially in their composite form, have long been recognized as effective and robust numerical integration methods. These rules approximate definite integrals by interpolating the integrand with polynomials evaluated at equally spaced points [13,14,15,16,17]. In particular, closed Newton-Cotes formulas, such as Simpson’s rule and the 3/8 rule, have been extended to higher-order schemes that provide accurate results for smooth integrands [18,19].
The motivation for the present work stems from the structural similarity between FRFT algorithms and numerical quadrature techniques. Both rely on integral approximations based on polynomial interpolation and discretization of function samples. In particular, classical fast FRFT algorithms approximate oscillatory integrals in a manner reminiscent of step-wise Filon-type quadrature methods [20,21,22,23]. This similarity suggests that incorporating high-order Newton-Cotes quadrature rules into the FRFT could yield a more accurate and mathematically tractable framework for evaluating fractional transforms.
This paper presents a composite FRFT scheme that integrates closed Newton-Cotes quadrature rules of degree Q for improved numerical integration. The proposed framework offers both computational efficiency and theoretical rigor, surpassing conventional FRFT algorithms in terms of both accuracy and numerical stability. To demonstrate the efficacy of the proposed method, we empirically validate it using probability models [24,25,26,27,28,29] commonly employed in financial mathematics, including the Variance-Gamma (VG) and Generalized Tempered Stable (GTS) distributions. Our results reveal significant improvements in both accuracy and stability compared to standard FRFT and classical quadrature methods.
The remainder of the paper is organized as follows: Section 2 provides a detailed discussion on the construction and properties of closed Newton-Cotes rules. Section 3 introduces the composite FRFT framework and its two commutative decompositions. Section 4 presents numerical experiments and performance comparisons using the VG and GTS models to validate the proposed method.

2. Composite Newton-Cotes Quadrature Formulas

The Newton-Cotes rules value the integrand f at equally spaced points x i over the interval [ a , b ] , where x i = a + i b a M = a + i h with h = b a M ; M = Q N and x Q p + Q = x Q ( p + 1 ) , where Q is the number of h within the subinterval [ x Q p , x Q p + Q ] of interval [ a , b ] .

2.1. Composite Rules

To have greater accuracy, the idea of the composite rule is to subdivide the interval [a, b] into smaller intervals such as [ x Q p , x Q p + Q ] , applying the quadrature formula in each of these smaller intervals and adding up the results to obtain more accurate approximations (1):
a b f ( x ) d x = p = 0 N 1 x Q p x Q p + Q f ( x ) d x .
We define the Lagrange basis polynomials over the sub-interval [ x Q p , x Q p + Q ] (2):
l Q p + j ( x ) = i j i = 0 Q x x Q p + i x Q p + j x Q p + i , l j ( x i ) = δ i j = 0 : i j 1 : i = j .
The Lagrange interpolating polynomial and the integration can be derived (3):
f ˜ ( x ) = j = 0 Q f ( x Q p + j ) l Q p + j ( x ) , x Q p x Q p + Q f ˜ ( x ) d x = j = 0 Q f ( x Q p + j ) x Q p x Q p + Q l Q p + j ( x ) d x .
The integration of Lagrange basis polynomials (4):
x Q p x Q p + Q l Q p + j ( x ) d x = b a M ( 1 ) ( Q j ) j ! ( Q j ) ! 0 Q i j i = 0 Q ( y i ) d y .
We have the Lagrange Interpolating integration over [ x Q p , x Q p + Q ] (5)
x Q p x Q p + Q f ˜ ( x ) d x = b a M j = 0 Q , W j f ( x Q p + j ) W j = ( 1 ) ( Q j ) j ! ( Q j ) ! 0 Q i j i = 0 Q ( y i ) d y .
For theoretical and applied perspectives on Composite Newton-Cotes quadrature methods, see  [30,31,32,33,34] and  [35,36,37,38], respectively.
Proposition 1.
For Q even, M = Q N integer, and  f C Q + 2 ( [ a , b ] ) , there exists η ] a , b [ such that
a b f ( x ) d x = b a M p = 0 M Q 1 j = 0 Q W j f ( x Q p + j ) + h Q + 3 N f ( Q + 2 ) ( η ) ( Q + 2 ) ! 0 Q 0 y i = 0 Q ( a i ) d a d y ,
with
W j = ( 1 ) ( Q j ) j ! ( Q j ) ! 0 Q i j i = 0 Q ( y i ) d y .
For Proposition 1 proof, see [39,40]
The error analysis of the Newton-Cotes formulas of degree Q in [39,40,41,42] shows that the level of accuracy is greater when Q is even. In fact, we have O ( h Q + 3 ) for Q even, against  O ( h Q + 2 ) for Q odd.

2.2. Weights Computation

Before using the formula in (6), the expression of { W j } 0 j Q can be simplified as follows:
Proposition 2.
For Q even and M = Q N integer, j { 0 , 1 , 2 , , Q }
W j = i = 0 Q C i j Q i + 1 i + 1 ( 1 ) ( Q j ) j ! ( Q j ) ! .
For Proposition 2 proof, see [39,40].
The coefficient values ( C i j ) 0 i Q 0 j Q of the polynomial function are obtained by solving the following Equation (8) with a Vandermonde matrix [43].
i j i = 0 Q ( y i ) = i = 0 Q C i j y i .
For Q 12 , Table 1 provides the values of weights { W j } 0 j Q in (7)
Remark 1.
For Q > 12 , the weights { W j } 0 j Q can be computed using the MATLAB R2023b scripts provided in Appendix A. Notably:
  • The return distribution and risk profile analysis in [44] utilized the weights with parameter values Q = 12 and Q = 13 .
  • The methodology for modeling financial return data in [45] adopted Q = 15 .
Figure 1 compares the performance of the standard non-weighted fast FRFT and the Composite Newton-Cotes integration scheme defined in Equation (6), using the approximation error ( f ˇ f ) and ( f ¯ f ) as evaluation metrics. The Variance-Gamma (VG*) distribution corresponds to the risk-neutral Probability Density Function (PDF) of the Variance-Gamma ( μ , δ , α , θ , σ ) model, as detailed in [46,47] and further elaborated in Section 4. The resulting error profiles reveal distinct behaviors for the two methods. The Composite Newton-Cotes approach, depicted by the blue curve, yields consistently lower approximation errors and thus demonstrates enhanced numerical accuracy.

3. Fast Fractional Fourier Transform (FRFT) and Composite Newton-Cotes Quadrature Rules

3.1. Fast Fourier Transform and Fractional Fourier Transform

The conventional fast Fourier transform (FFT) algorithm is widely used to compute discrete convolutions, discrete Fourier transforms (DFT) of sparse sequences, and perform high-resolution trigonometric interpolation [2,48]. The discrete Fourier transforms (DFT) are based on N t h roots of unity e 2 π i N . The generalization of DFT is the FRFT, which is based on fractional roots of unity e 2 π i α , where α is an arbitrary complex number.
The FRFT is defined on M-long sequence ( x 1 , x 2 , …, x M ) as follows:  
G k + s ( x , δ ) = j = 0 M 1 x j e 2 π i j ( k + s ) δ , 0 k < M , 0 s 1 .
Let us have 2 j ( k + s ) = j 2 + ( k + s ) 2 ( k j + s ) 2 ; Equation (9) becomes (10)  
G k + s ( x , δ ) = j = 0 M 1 x j e π i ( j 2 + ( k + s ) 2 ( k j + s ) 2 ) δ = e π i ( k + s ) 2 δ j = 0 M 1 x j e π i j 2 δ e π i ( k j + s ) 2 δ = e π i ( k + s ) 2 j = 0 M 1 y j z k j .
The expression j = 0 M 1 y j z k j is a discrete convolution. Still, we need a circular convolution (i.e., z k j = z k j + M ) to evaluate G k + s ( x , δ ) . The conversion from discrete convolution to discrete circular convolution is possible by extending the sequences y and z to length 2 M , as defined below:
y j = x j e π i j 2 δ , z j = e π i ( j + s ) 2 δ , 0 j < M . y j = 0 , z j = e π i ( j + s 2 M ) 2 δ , M j < 2 M .
Taking into account the 2 M -long sequence, the previous FRFT becomes  
G k + s ( x , δ ) = e π i ( k + s ) 2 δ j = 0 2 M 1 y j z k j = e π i ( k + s ) 2 δ D F T k 1 [ D F T ( y ) D F T ( z ) ] ,
where D F T is the Discrete Fourier Transform, and  D F T 1 is the inverse of D F T . For an M-long sequence z, we have  
D F T k ( z ) = j = 0 M 1 z j e 2 π M j k , D F T k 1 ( z ) = 1 M 1 j = 0 M 1 z j e 2 π M j k .
This procedure is referred to in the literature as the fast FRFT Algorithm, with a total computational cost of 20 M l o g 2 M + 44 M operations [48].
We assume that F [ f ] ( y ) is zero outside the interval [ a 2 , a 2 ] ; and β = a M is the step size of the M input values of F [ f ] ( y ) , defined by y j = ( j M 2 ) β for 0 j < M . Similarly, γ is the step size of the M output values of f ( x ) , defined by x k = ( k M 2 ) γ for 0 k < M .
By choosing the step size β on the input side and the step size γ in the output side, we fix the FRFT parameter δ = β γ 2 π and yield [49] the density function f at x k + s (13).
f ( x k + s ) = 1 2 π + F [ f ] ( y ) e i x k + s y d y 1 2 π a / 2 a / 2 F [ f ] ( y ) e i x k + s y d y γ 2 π j = 0 M 1 F [ f ] ( y j ) e 2 π i ( k + s M 2 ) ( j M 2 ) δ = γ 2 π e π i ( k + s M 2 ) M δ G k + s ( F [ f ] ( y j ) e π i j M δ , δ ) .
We have:  
f ˜ ( x k + s ) = γ 2 π e π i ( k + s M 2 ) M δ G k + s ( F [ f ] ( y j ) e π i j M δ , δ ) , 0 s < 1 .

3.2. FRFT of QN-Long Weighted Sequence

The Q-point rule Composite Newton-Cotes Quadrature (6) is integrated into the Fractional Fourier (FRFT) algorithm (13) to produce a FRFT of QN-long weighted sequence.
We assume that F [ f ] ( x ) is zero outside the interval [ a 2 , a 2 ] , M = Q N , and β = a M is the step size of the M input values F [ f ] ( y ) , defined by y j + Q p = ( Q p + j M 2 ) β for 0 p < N and 0 j < Q . Similarly, the output values of f ( x ) are defined by x Q l + f + s = ( Q l + f + s M 2 ) γ for 0 l < N , 0 f < Q and 0 s 1 .
f ( x Q l + f + s ) = 1 2 π + e i y x Q l + f + s F [ f ] ( y ) d y = 1 2 π a / 2 a / 2 e i y x Q l + f + s F [ f ] ( y ) d y = 1 2 π p = 0 N 1 y Q p y Q p + Q e i y x Q l + f + s F [ f ] ( y ) d y ( composite rule ) .
Based on the Lagrange interpolating integration over [ y Q p , y Q p + Q ] [39,40], we have (15):
y Q p y Q p + Q e i y x Q l + f + s F [ f ] ( y ) d y β j = 0 Q w j e i y j + Q p x Q l + f + s F [ f ] ( y j + Q p ) .
f ˜ ( x Q l + f + s ) is the approximation of f ( x Q l + f + s ) , and (14) becomes (16):
f ˜ ( x Q l + f + s ) = β 2 π p = 0 N 1 j = 0 Q w j F [ f ] ( y j + Q p ) e i x Q l + f + s y j + Q p , 0 s < 1 ; = β 2 π j = 0 Q p = 0 N 1 w j F [ f ] ( y j + Q p ) e 2 π i δ ( Q l + f + s M 2 ) ( Q p + j M 2 ) , β γ = 2 π δ ; = β 2 π e π i δ M ( Q l + f + s M 2 ) G Q l + f + s ( w j F [ f ] ( y j + Q p ) e π i ( j + Q p ) M δ , δ ) .
We have the following inverse Fourier transform function (17):  
f ˜ ( x Q l + f + s ) = β 2 π e π i δ M ( Q l + f + s M 2 ) G Q l + f + s ( w j F [ f ] ( y j + Q p ) e π i ( j + Q p ) M δ , δ ) .
FRFT is applied on the QN-long weighted sequence w j F [ f ] ( y j + Q p ) e π i ( j + Q p ) M δ 0 j < Q 0 p < N .

3.3. Composite of FRFTs: FRFT of Q-Long Weighted Sequence and FRFT of N-Long Sequence

We consider f ˜ Q N ( x Q l + f + s ) to be the approximation of f ( x Q l + f + s ) . We have the following development:
f ˜ Q N ( x Q l + f + s ) = β 2 π p = 0 N 1 j = 0 Q w j F [ f ] ( y j + Q p ) e i x Q l + f + s y j + Q p = β 2 π j = 0 Q w j p = 0 N 1 F [ f ] ( y j + Q p ) e 2 π i δ ( Q l + f + s M 2 ) ( Q p + j M 2 ) , β γ = 2 π δ = β 2 π e π i δ M ( Q l + f + s M 2 ) j = 0 Q w j e 2 π i δ ( Q l + f + s M 2 ) j p = 0 N 1 F [ f ] ( y j + Q p ) e 2 π i δ ( Q l + f + s M 2 ) Q p = β 2 π e π i δ M ( Q l + f + s M 2 ) j = 0 Q w j G l + f + s Q ( ξ p , δ Q 2 ) e 2 π i δ ( Q l M 2 ) j e 2 π i δ ( f + s ) j ,
where G l + f + s Q is a FRFT on N-long complex sequence { ξ p } 0 p < N . Let us have α 1 = δ Q 2 ; then,
G l + f + s Q ( ξ p , α 1 ) = p = 0 N 1 ξ p e 2 π i ( l + f + s Q ) p α 1 , ξ p = e π i M p Q δ F [ f ] ( y j + Q p )
and f ˜ Q N ( x Q l + f + s ) becomes (19)
f ˜ Q N ( x Q l + f + s ) = β 2 π e π i δ M ( Q l + f + s M 2 ) G f + s ( z j , δ ) ,
where G f + s is a FRFT on Q-long complex sequence { z j } 0 j Q . Let us have α 2 = δ ; then,
G f + s ( z j , α 2 ) = j = 0 Q z j e 2 π i ( f + s ) j α 2 , z j = w j G l + f + s Q ( ξ p , α 1 ) e 2 π i δ ( Q l M 2 ) j .
To sum up, we have the following expression for f ˜ Q N ( x Q l + f + s ) :
f ˜ Q N ( x Q l + f + s ) = β 2 π e π i δ M ( Q l + f + s M 2 ) G f + s ( G l + f + s Q ( ξ p , α 1 ) w j e 2 π i δ ( Q l M 2 ) j , α 2 ) .
It can be observed from (17) and (20) that the FRFT ( G Q l + f ) is equivalent to the composition of G f + s and G l + f + s Q , which means that
G Q l + f + s ( w j F [ f ] ( y j + Q p ) e π i ( j + Q p ) N δ , α 2 ) = G f + s G l + f + s Q ( ξ p , α 1 ) w j e 2 π i δ ( Q l M 2 ) j , α 2 .
Figure 2 displays the approximation errors, ( f ¯ f ) and ( f ^ f ), corresponding to the non-weighted fast FRFT (Equation (13)) and the composite FRFT method (Equation (20)), respectively. The observed error profiles are consistent with those in Figure 1, reinforcing the robustness of the results across different numerical schemes. The underlying Variance-Gamma (VG*) Probability Density Function (PDF) is derived from the risk-neutral distribution of the Variance-Gamma model, parameterized by ( μ , δ , α , θ , σ ) , as detailed in Section 4.

3.4. Composite of FRFTs: FRFT of N-Long Sequence and FRFT of Q-Long Weighted Sequence

The expression in (16) is recalled for further development:
f ˜ N Q ( x Q l + f + s ) = β 2 π p = 0 N 1 j = 0 Q w j F [ f ] ( y j + Q p ) e i x Q l + f + s y j + Q p , β γ = 2 π δ = β 2 π e π i δ M ( Q l + f + s M 2 ) p = 0 N 1 e 2 π i δ ( Q l + f + s M 2 ) Q p j = 0 Q w j F [ f ] ( y j + Q p ) e 2 π i δ ( Q l M 2 ) j e 2 π i δ ( f + s ) j = β 2 π e π i δ M ( Q l + f + s M 2 ) p = 0 N 1 G f + s ( z j , δ ) e π i δ M Q p e 2 π i ( l + f + s Q ) δ Q 2 p ,
where G f + s is a FRFT on Q-long complex sequence { z j } 0 j < Q
G f + s ( z j , α 2 ) = j = 0 Q z j e 2 π i ( f + s ) j α 2 , z j = w j F [ f ] ( y j + Q p ) e 2 π i δ ( Q l M 2 ) j ,
and f ˜ N Q ( ( x Q l + f + s ) becomes
f ˜ N Q ( x Q l + f + s ) = β 2 π e π i δ M ( Q l + f + s M 2 ) G l + f + s Q ( ξ p , α 1 ) ,
where G l + f + s Q is a FRFT on N-long complex sequence { ξ p } 0 p < N
G l + f + s Q ( ξ p , α 1 ) = p = 0 N 1 ξ p e 2 π i ( l + f + s Q ) p α 1 , ξ p = G f + s ( z j , α 2 ) e π i δ M Q p .
As a result, we have the following expression for f ˜ N Q ( x Q l + f + s ) :
f ˜ N Q ( x Q l + f + s ) = β 2 π e π i δ M ( Q l + f + s M 2 ) G l + f + s Q ( G f + s ( z j , δ ) e π i δ M Q p , δ Q 2 ) .
By comparing the inverse Fourier transform in (17) and (25), we deduce that the FRFT ( G Q l + f + s ) is a composition of two FRFTs ( G l + f + s Q and G f + s ). The result (26) is similar to the result (21).
G Q l + f + s ( w j F [ f ] ( y j + Q p ) e π i ( j + Q p ) N δ , α 2 ) = G l + f + s Q G f + s ( z j , α 2 ) e π i δ M Q p , α 1 .
Based on the numerical results obtained from Equations (20) and (25), the estimated error is between f ˜ N Q and f ˜ Q N is shown in Figure 3.
Figure 3 indicates that the composite FRFT formulations in Equations (21) and (26) are equivalent not only algebraically, but also numerically.

4. Illustration Examples

4.1. Variance-Gamma (VG) Distribution

In the study, the VG model has five parameters: parameters of location ( μ ), symmetry ( δ ), volatility ( σ ), and the Gamma parameters of shape ( α ) and scale ( θ ). The VG model density function can be proven to be (27):
f ( y ) = 1 σ Γ ( α ) θ α 0 + 1 2 π ν e ( y μ δ ν ) 2 2 ν σ 2 ν α 1 e ν θ d ν .
The VG model density function (27) has an analytical expression with a modified Bessel function of the second kind. The expression can be obtained by making some transformations and changing variables as follows:
( y μ δ ν ) 2 2 ν σ 2 ν θ = δ ( y μ σ 2 ) 1 2 σ 2 ( δ 2 + 2 σ 2 θ ) ν ( y μ σ ) 2 1 2 ν ,
and (27) becomes
f ( y ) = e δ ( y μ σ 2 ) 2 π σ Γ ( α ) θ α 0 + e 1 2 σ 2 ( δ 2 + 2 σ 2 θ ) ν ( y μ σ ) 2 1 2 ν ν α 3 2 d ν .
By considering the modified Bessel function of the second kind ( k α ( z ) ) [50], we have
k α ( z ) = 1 2 ( 1 2 z ) α 0 + e ( t z 2 4 t ) 1 t α + 1 d t , | a r g ( z ) | π 4 ,
where k α ( z ) is the second kind of solution for the modified Bessel’s equation:
z 2 d 2 w d z 2 + z d w d z ( z 2 + α 2 ) w = 0 .
By changing variable, u = 1 2 σ 2 ( δ 2 + 2 σ 2 θ ) ν , (29) becomes
f ( y ) = 2 e δ ( y μ σ 2 ) 2 π σ Γ ( α ) θ α | y μ | δ 2 + 2 σ 2 θ α 1 2 k α + 1 2 δ 2 + 2 σ 2 θ | y μ | σ 2 .
By choosing θ = 2 , one recovers the four-parameter Variance–Gamma (VG) distribution as highlighted in recent reviews and foundational work [51,52]. Equivalently, setting α = 1 θ yields a form often referred to as the generalized Laplace or Bessel-function distribution, which includes the symmetric Laplace distribution as a special case [53,54].
A special case f ( μ ) provides a simplified expression
f ( μ ) = 1 2 π σ Γ ( α ) θ α 0 + e 1 2 σ 2 ( δ 2 + 2 σ 2 θ ) ν ν α 3 2 d ν = Γ ( α 1 2 ) 2 π θ σ Γ ( α ) ( 1 + θ 2 δ 2 σ 2 ) α 1 2 .
Table 2 provides estimation results of the five parameters ( μ , δ , α , θ , σ ) of the Variance-Gamma variable. VG model estimation in the first row of Table 2 was obtained by the maximum likelihood method [46,55,56]. The VG(*) model estimation in the second row of Table 2 is the Equivalent Martingale Measure (EMM) [57] and generates a risk-neutral probability density function for a 0.8-year period.
Figure 4a provides a graphical representation of the risk-neutral probability associated with the Variance Gamma (VG*) model for a 0.8-year period. In this case, the probability density at u satisfies f ( μ ^ ) 0.8552 for the Variance-Gamma (VG) model and f ( μ ^ ) 2.5949 for the Variance-Gamma (VG*) model.
The Fourier transform function of the Variance Gamma distribution has an explicit closed form, and the inverse function is summarized as follows:
F [ f ] ( x ) = e i μ x 1 + 1 2 θ σ 2 x 2 + i δ θ x α , f ( y ) = 1 2 π + e i y x + Ψ ( x ) d x .
Based on the integral method in Proposition 1 (6), the non-weighted fast FRFT, and the composite FRFTs developed in (13) and (20), respectively, we have the following numerical estimation methods of the inverse function (34).
f ^ ( x Q l + f ) = β 2 π e π i δ M ( Q l + f M 2 ) G f ( G l + f Q ( ξ , α 1 ) w j e 2 π i δ ( Q l M 2 ) j , α 2 ) ( Composite FRFT ) .
f ¯ ( x k ) = γ 2 π e π i ( k N 2 ) N δ G k ( F [ f ] ( y j ) e π i j N δ , δ ) ( Non weighted fast FRFT ) .
f ˇ ( x k ) = β 2 π p = 0 N 1 j = 0 Q W j e ( i y j + Q p x k ) F [ f ] ( y j + Q p ) ( Integral approximation ) .
The error in the VG* probability density ( f ^ f ˇ ), shown in Figure 4b, indicates that the composite FRFTs (35) perform better than the Newton-Cotes integration (37). However, as the values of Q increase, the improvement in accuracy becomes marginal.

4.2. Generalized Tempered Stable (GTS) Distribution

We consider a GTS variable Y = μ + X = μ + X + X G T S ( μ , β + , β , α + , α , λ + , λ ) with X + T S ( β + , α + , λ + , λ ) and X T S ( β , α , λ , λ ) . The characteristic exponent can be written [44]
Ψ ( ξ ) = μ ξ i + α + Γ ( β + ) ( λ + i ξ ) β + λ + β + + α Γ ( β ) ( λ + ξ ) β λ β .
Table 3 presents the estimation results of the seven-parameter ( β + , β , α + , α , λ + , λ ) Generalized Tempered Stable (GTS) Distribution. The GTS model estimations presented in the first row of Table 3 were obtained using the Maximum Likelihood method, as described in [45,47].
The GTS(*) model estimations in the second row of Table 2 are the Equivalent Martingale Measure (EMM) [58] and generate a risk-neutral probability density function for a month period. Figure 5a provides a graphical representation of risk-neutral probability associated with the GTS Distribution for a month period. The characteristic function of the GTS variable, the Fourier Transform ( F ( f ) ), and the corresponding density function f are given by the following expressions:
ϑ ( ξ ) = E e i Y ξ = e Ψ ( ξ ) F [ f ] ( ξ ) = ϑ ( ξ ) f ( y ) = 1 2 π + e i y x + Ψ ( x ) d x .
The GTS probability density function does not have a closed-form expression. Figure 5 provides an estimation of the GTS* risk neutral probability density error using three methods: the integration method ( f ˇ ) in Equation (37), the non-weighted fast FRFT ( f ¯ ) in Equation (36), and the composite FRFTs ( f ^ ) in Equation (35). As shown in Figure 5c,d, the composite FRFTs and the integration method outperform the non-weighted fast FRFT. Figure 5b produces the same results as Figure 4b.
Refer to Appendices A–D for the Matlab scripts supporting the empirical results.
To complement the graphical evaluation with a quantitative assessment, we introduce the following error metrics, which serve to measure the magnitude of discrepancy between the proposed and reference methods.
R ( f ^ , f ¯ ) = + f ^ ( x ) f ¯ ( x ) d x
R ( f ^ , f ˇ ) = + f ^ ( x ) f ˇ ( x ) d x
R ( f ^ , f ¯ ) quantifies the absolute error between the composite FRFT method (Equation (35)) and the standard non-weighted fast FRFT (Equation (36)), without considering the direction of the error. Similarly, R ( f ^ , f ˇ ) measures the absolute discrepancy between the composite FRFT method (Equation (35)) and the integral approximation approach (Equation (37)). Table 4 reports the numerical estimates of R ( f ˇ , f ¯ ) and R ( f ^ , f ˇ ) for both the Variance-Gamma (VG) and the Generalized Tempered Stable (GTS) distributions.
Remark 2.
The risk-neutral Probability Density Function (PDF) and its estimation play a vital role in option pricing as they provide insight into market expectations about future asset prices [59,60,61,62]. However, their significance extends beyond pricing, with several important applications in other areas of finance including:
  • Risk Management: Assesses the potential for losses or gains in derivative portfolios.
  • Investment Strategy: Informs investment decisions by revealing market expectations about future asset prices.
  • Financial Analysis: Aids in analyzing the prices of financial instruments and evaluating their relative value.

5. Conclusions

This study presents an enhanced computational framework for the fast Fractional Fourier Transform (FRFT) by integrating closed-form Composite Newton-Cotes quadrature rules. The key theoretical contribution is the demonstration that the FRFT of a QN-length weighted sequence can be decomposed into two commutative compositions: (1) a composition of an N-length FRFT and a Q-length weighted FRFT, and (2) the reverse composition.
The proposed composite FRFT scheme significantly improves numerical accuracy compared to standard fast FRFT and classical Newton-Cotes quadrature while preserving computational efficiency. Comprehensive error analysis and numerical experiments, particularly on Variance-Gamma (VG) and Generalized Tempered Stable (GTS) distributions, validate the scheme’s accuracy and stability.
The composite FRFT’s ability to handle oscillatory integrals and complex-valued characteristic functions makes it particularly valuable for applications in signal processing, financial mathematics, and scientific computing, where high-precision transform inversion is critical.
Future research directions include extending the framework to multidimensional cases, exploring adaptive quadrature rules for further optimization, and investigating potential applications in machine learning for spectral and frequency-domain analysis. The paper establishes a robust and efficient alternative to existing FRFT methods, offering both theoretical rigor and practical utility in numerical analysis and applied mathematics.

Author Contributions

Conceptualization, A.N., D.M. and A.M.S.; methodology, A.N., D.M. and A.M.S.; visualization, A.N., D.M. and A.M.S.; resources, A.N., D.M. and A.M.S.; and writing—original draft and Editing, A.N., D.M. and A.M.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The data supporting the findings of this study are available in Table 1 of the following sources: for the Variance-Gamma (VG) distribution, refer to [57]; for the Generalized Tempered Stable (GTS) distribution, see Table 1 in [44].

Acknowledgments

The authors would like to thank the University of Limpopo for supporting the publication of this study.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A. Weight Vector Computation: weig(q)

W j = i = 0 Q C i j Q i + 1 i + 1 ( 1 ) ( Q j ) j ! ( Q j ) !
function result=weig(q);
% input: q 
% initialisation
res=zeros(q+1,q+1); x=zeros(q+1,1); y=ones(q+1,1);
z=ones(q+1,1); w=zeros(q+1,1); u1=ones(1);
% Compute the coefficients(res(i,k)) for a polynomial p(x) of degree q that is the best fit (in a least-squares sense) for the data in y 
for k=1:(q+1)
 x(k)=k-1;
end; 
% solving the following equations with a Vandermonde matrix 
for k=1:(q+1)
y=ones(q+1,1);
   for j=1:(q+1)
      for i=1:(q+1)
	  if x(k)==(i-1)  u1=u1; else u1=u1*(x(j)-(i-1)); end;
        end;
         y(j)=u1;  u1=1;
     end;
    z=polyfit(x,y,q);
 for i=1:(q+1)
     res(i,k)=z(q+1-(i-1));
 end;
 end;
 res=transpose(res);
 % compute the weight vector (output) : w(k) k=1,...,q,q+1 
 for k=1:(q+1)
     for j=1:(q+1)
         w(k)= w(k) + res(k,j)*(q^(j))*((-1)^(q-(k-1)))/(j*factorial(k-1)*factorial(q-(k-1)));
     end;
end;
 result=w;
        

Appendix B. Standard Fast FRFT Algorithm: GFR(f,k,s,alpha)

G k + s ( x , δ ) = e π i ( k + s ) 2 δ j = 0 2 M 1 y j z k j = e π i ( k + s ) 2 δ D F T k 1 [ D F T ( y ) D F T ( z ) ]
function result=weig(q);
% input: q 
% initialisation
res=zeros(q+1,q+1); x=zeros(q+1,1); y=ones(q+1,1);
z=ones(q+1,1); w=zeros(q+1,1); u1=ones(1);
% Compute the coefficients(res(i,k)) for a polynomial p(x) of degree q that is the best fit (in a least-squares sense) for the data in y 
for k=1:(q+1)
  x(k)=k-1;
end;
% solving the following equations with a Vandermonde matrix 
for k=1:(q+1)
y=ones(q+1,1);
   for j=1:(q+1)
      for i=1:(q+1)
         if x(k)==(i-1)  u1=u1;  else u1=u1*(x(j)-(i-1)); end;
         end;
         y(j)=u1;  u1=1;
     end;
    z=polyfit(x,y,q);
for i=1:(q+1)
     res(i,k)=z(q+1-(i-1));
end;
end;
res=transpose(res);
% compute the weight vector (output) : w(k) k=1,...,q,q+1 
for k=1:(q+1)
     for j=1:(q+1)
         w(k)= w(k) + res(k,j)*(q^(j))*((-1)^(q-(k-1)))/(j*factorial(k-1)*factorial(q-(k-1)));
     end;
end;
result=w;
        

Appendix C. Composite of FRFTs: FRFT of N-Long Sequence and FRFT of Q-Long Weighted Sequence

f ˜ N Q ( x Q l + f + s ) = β 2 π e π i δ M ( Q l + f + s M 2 ) G l + f + s Q ( G f + s ( z j , δ ) e π i δ M Q p , δ Q 2 )
function zxf=CompositeFRNQ(f,zx,q,alpha,beta,limit);
% compute the weight vector of size q
w=zeros(q,1); w=weig(q); pd=size(w,2);
if size(w,2)==1. pd=size(w,1); end; pd=pd-1;
 
% compute sizes: m, datm of the input vectors f and zx
m=size(f,2)-1; if size(f,2)==1  m=size(f,1)-1; end; n=m/pd;
datm=size(zx,2); if size(zx,2)==1 datm=size(zx,1); end;
 
% compute the lower (u1) and upper (u1) boundaries
u1=0; u2=0; i=1;
if min(zx(:)) < -limit   while zx(i)< -limit i=i+1; end;
  u1=i; else u1=i; end;
i=1; if limit<max(zx(:)) while zx(i)<limit i=i+1; end;
u2=i; else u2=datm; end;
 
% adjusting, creating and initializing variables
zx=scalev(zx,m,beta); alpha1=alpha*pd; alpha2=alpha*pd*pd;
  s=zeros(1,datm); zxf=zeros(1,datm); res=zeros(1,datm);
  quot=zeros(1,datm); quotq=zeros(1,datm); uyz=zeros(1,2*m);
  vyz=zeros(1,2*m); wyz=zeros(1,2*m); fp=zeros(n,pd+1);
  comp=zeros(n,datm); gp=zeros(n,datm);
if m==(datm-1)  zx=round(zx); end;
 
% data zx decomposition: Dividend( zx(P), Divisor (pd), Quotient (quot(p)), Remainder(res(p)) 
for p=1:datm
s(p)=(zx(p)-fix(zx(p))); res(p)=mod(fix(zx(p)),pd);
quot(p)=(fix(zx(p))-res(p))/pd; quotq(p)=(res(p)+ s(p))/pd;
end;
  
for p=u1:u2
for k=1:n
  
% adjusting the data f 
for j=1:(pd+1)
 fp(k,j)=w(j)*f(j+pd*(k-1))*exp(-2*pi*alpha*(pd*quot(p)-(m/2))*(j-1)*(1i));
  end;
end;
  
%  Computation of the FRFT compositions 
for k=1:n
comp(k,p)=GFR(fp(k,:),res(p),s(p),alpha);
gp(k,p)=comp(k,p)*exp(pi*alpha*m*pd*(k-1)*(1i));
end;
  
% output
zxf(p)=GFR(gp(:,p),quot(p),quotq(p),alpha2);
zxf(p)=beta*zxf(p)*exp(pi*alpha*m*(zx(p)-(m/2))*(1i));
  if alpha<0  zxf(p)=zxf(p)/(2*pi); end;
end;
       

Appendix D. Composite of FRFTs: FRFT of Q-Long Weighted Sequence and FRFT of N-Long Sequence

f ˜ Q N ( x Q l + f + s ) = β 2 π e π i δ M ( Q l + f + s M 2 ) G f + s ( G l + f + s Q ( ξ p , α 1 ) w j e 2 π i δ ( Q l M 2 ) j , α 2 )
function zxf=CompositeFRQN(f,zx,q,alpha,beta,limit);
  
% compute the weight vector of size q
w=zeros(q,1);w=weig(q); pd=size(w,2);
if size(w,2)==1 pd=size(w,1); end; pd=pd-1;
  
% compute sizes: m, datm of the input vectors f and zx
m=size(f,2)-1; if size(f,2)==1 m=size(f,1)-1; end;  n=m/pd;
datm=size(zx,2); if size(zx,2)==1 datm=size(zx,1); end;
  
% compute the lower (u1) and upper (u1) boundaries
u1=0; u2=0; i=1;
  if min(zx(:)) < -limit  while zx(i)< -limit  i=i+1; end;
  u1=i;else u1=i; end;
i=1; if limit<max(zx(:))  while zx(i)<limit i=i+1; end;
u2=i; else u2=datm; end;
  
% adjusting, creating and initializing variables
zx=scalev(zx,m,beta); alpha1=alpha*pd; alpha2=alpha*pd*pd;
s=zeros(1,datm); zxf=zeros(1,datm); res=zeros(1,datm);
quot=zeros(1,datm); quotq=zeros(1,datm); uyz=zeros(1,2*m);
vyz=zeros(1,2*m); wyz=zeros(1,2*m); fp=zeros(n,pd+1);
comp=zeros(pd+1,datm); gp=zeros(pd+1,datm);
if m==(datm-1) zx=round(zx); end 
  
% adjusting the data f 
for k=1:n
for j=1:(pd+1)
fp(k,j)=f(j+pd*(k-1))*exp(m*pi*alpha1*(k-1)*(1i));
end;
end;
  
% data zx decomposition: Dividend( zx(P), Divisor (pd), Quotient (quot(p)), Remainder(res(p)) 
for p=1:datm
s(p)=(zx(p)-fix(zx(p))); res(p)=mod(fix(zx(p)),pd);
quot(p)=(fix(zx(p))-res(p))/pd; quotq(p)=(res(p)+ s(p))/pd;
end;
  
%  FRFT composition computation 
for p=u1:u2
for k=1:(pd+1)
comp(k,p)=GFR(fp(:,k),quot(p),quotq(p),alpha2);
gp(k,p)=w(k)*comp(k,p)*exp(-2*((pd*quot(p))-(m/2))*pi*alpha*(k-1)*(1i));
end;
% output
  
zxf(p)=GFR(gp(:,p),res(p),s(p),alpha); zxf(p)=beta*zxf(p)*exp(pi*alpha*m*(zx(p)-(m/2))*(1i));
  if alpha<0  zxf(p)=zxf(p)/(2*pi); end;
end;
        

References

  1. Zhang, Y.; Wang, S.; Yang, J.F.; Zhang, Z.; Phillips, P.; Sun, P.; Yan, J. Comprehensive Survey on Fractional Fourier Transform. Fundam. Informaticae 2017, 151, 48. [Google Scholar] [CrossRef]
  2. Bailey, D.H.; Swarztrauber, P.N. A Fast Method for the Numerical Evaluation of Continuous Fourier and Laplace Transforms. SIAM J. Sci. Comput. 1994, 15, 1105–1110. [Google Scholar] [CrossRef]
  3. Mei, L.; Sha, X.; Ran, Q.; Zhang, N. Research on the Application of 4-Weighted Fractional Fourier Transform in Communication System. Sci. China Inf. Sci. 2010, 53, 1251–1260. [Google Scholar] [CrossRef]
  4. Creutzburg, R.; Rundblad, E.; Labunets, V.G. Fast Algorithms for Fractional Fourier Transforms. In Proceedings of the NSIP, Chicago, IL, USA, 5–7 November 1999; pp. 383–387. [Google Scholar]
  5. Wang, Y. Fractional Fourier Transform and Its Application. Theor. Nat. Sci. 2024, 42, 8–12. [Google Scholar] [CrossRef]
  6. Singh, U.; Singh, S.N. Application of Fractional Fourier Transform for Classification of Power Quality Disturbances. IET Sci. Meas. Technol. 2017, 11, 67–76. [Google Scholar] [CrossRef]
  7. Sejdić, E.; Djurović, I.; Stanković, L. Fractional Fourier Transform as a Signal Processing Tool: An Overview of Recent Developments. Signal Process. 2011, 91, 1351–1369. [Google Scholar] [CrossRef]
  8. Ma, J.; Miao, H.; Su, X.; Gao, C.; Kang, X.; Tao, R. Research Progress in Theories and Applications of the Fractional Fourier Transform. Opto-Electron. Eng. 2018, 45, 170747. [Google Scholar] [CrossRef]
  9. Zhao, T.; Chi, Y. Circuit of Quantum Fractional Fourier Transform. Fractal Fract. 2024, 8, 464. [Google Scholar] [CrossRef]
  10. Gupta, P.; Verma, A. Recent trends in Fourier-type transforms: A survey. arXiv 2024, arXiv:2402.06645. [Google Scholar]
  11. Pavlíček, V.; Bhandari, A. Sparse Sampling in Fractional Fourier Domain: Recovery Guarantees and Cramér–Rao Bounds. IEEE Signal Process. Lett. 2024, 31, 1665–1669. [Google Scholar] [CrossRef]
  12. Li, B.; Zhang, Z. Synchroextracting Transform Based on the Novel Short-Time Fractional Fourier Transform. Fractal Fract. 2024, 8. [Google Scholar] [CrossRef]
  13. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes 3rd Edition: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
  14. Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 6th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
  15. Guicciardini, N. Newton on Quadratures: A Brief Outline. In Theory, Evidence, Data: Themes from George E. Smith; Springer: Berlin/Heidelberg, Germany, 2023; pp. 197–222. [Google Scholar] [CrossRef]
  16. Iserles, A. On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 2004, 24, 365–391. [Google Scholar] [CrossRef]
  17. Júnior, P.A.A.M.; Magalhães, C.A. Higher-Order Newton–Cotes Formulas. J. Math. Stat. 2010, 6, 193–204. [Google Scholar] [CrossRef]
  18. Shampine, L.F.; Allen, R.C.; Pruess, S. Fundamentals of Numerical Computing; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
  19. Rangel-Kuoppa, V.T. Newton–Cotes Quadrature Formula, 3/8 Rule, and Boole’s Rule Integration. Discov. Electron. 2024, 1, 31. [Google Scholar] [CrossRef]
  20. Tuck, E.O. A Simple “Filon-Trapezoidal” Rule. Math. Comput. 1967, 21, 239–241. [Google Scholar] [CrossRef]
  21. Milovanović, G.V.; Stanić, M.P. Numerical Integration of Highly Oscillating Functions. In Analytic Number Theory, Approximation Theory, and Special Functions; Springer: Heidelberg, Germany, 2014; pp. 613–649. [Google Scholar] [CrossRef]
  22. Barakat, R.; Sandler, B.H. Filon Trapezoidal Schemes for Hankel Transforms of Orders Zero and One. Comput. Math. Appl. 2000, 40, 1037–1041. [Google Scholar] [CrossRef]
  23. Majidian, H. A Comparative Study of Filon-Type Rules for Oscillatory Integrals. J. Numer. Anal. Approx. Theory 2024, 53, 130–143. [Google Scholar] [CrossRef]
  24. Rachev, S.T.; Kim, Y.S.; Bianchi, M.L.; Fabozzi, F.J. Stable and Tempered Stable Distributions. In Financial Models with Lévy Processes and Volatility Clustering; The Frank J. Fabozzi Series; Rachev, S.T., Kim, Y.S., Bianchi, M.L., Fabozzi, F.J., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; Volume 187, Chapter 3; pp. 57–85. [Google Scholar] [CrossRef]
  25. Boyarchenko, S.I.; Levendorskiĭ, S.Z. Non-Gaussian Merton-Black-Scholes Theory; Advanced Series on Statistical Science & Applied Probability; World Scientific: Singapore; River Edge, NJ, USA, 2002; Volume 9. [Google Scholar] [CrossRef]
  26. Küchler, U.; Tappe, S. Bilateral Gamma distributions and processes in financial mathematics. Stoch. Process. Their Appl. 2008, 118, 261–283. [Google Scholar] [CrossRef]
  27. Küchler, U.; Tappe, S. Tempered stable distributions and processes. Stoch. Process. Their Appl. 2013, 123, 4256–4293. [Google Scholar] [CrossRef]
  28. Carr, P.; Geman, H.; Madan, D.B.; Yor, M. Stochastic volatility for Lévy processes. Math. Financ. 2003, 13, 345–382. [Google Scholar] [CrossRef]
  29. Nzokem, A.H. Self-Decomposable Laws Associated with General Tempered Stable (GTS) Distribution and their Simulation Applications. arXiv 2024, arXiv:2405.16614. [Google Scholar] [CrossRef]
  30. Sermutlu, E. A close look at Newton–Cotes integration rules. Results Nonlinear Anal. 2022, 2, 48–60. [Google Scholar]
  31. Trefethen, L.N. Exactness of Quadrature Formulas. SIAM Rev. 2022, 64, 132–150. [Google Scholar] [CrossRef]
  32. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover: New York, NY, USA, 1972. [Google Scholar]
  33. Huybrechs, D. Stable high-order quadrature rules with equidistant points. J. Comput. Appl. Math. 2009, 231, 933–947. [Google Scholar] [CrossRef]
  34. Aguilar, J.C. Higher-order Newton–Cotes rules with end corrections. Appl. Numer. Math. 2015, 88, 66–77. [Google Scholar] [CrossRef]
  35. Wiersma, M. Quadrature Rules with (Not Too Many) Derivatives. Atl. Electron. J. Math. 2012, 5, 60–67. [Google Scholar]
  36. Graça, M.M. A Simple Derivation of Newton-Cotes Formulas with Realistic Errors. J. Math. Res. 2012, 4, 34–47. [Google Scholar] [CrossRef]
  37. Moheuddin, M.M.; Uddin, M.J.; Kowsher, M. A New Study of Trapezoidal, Simpson’s 1/3 and Simpson’s 3/8 Rules of Numerical Integral Problems. Appl. Math. Sci. Int. J. (MathSJ) 2019, 6, 1–12. [Google Scholar] [CrossRef]
  38. Catapang, L.A.; Mendaje, J.R.; Siong, V.D. Convergence Analysis of Newton–Cotes Methods: Optimizing Sub-Intervals Selection for Precise Integral Approximation. Appl. Math. Sci. Int. J. (MathSJ) 2024, 11, 1–21. [Google Scholar] [CrossRef]
  39. Nzokem, A.H. Numerical Solution of a Gamma-Integral Equation Using a Higher Order Composite Newton-Cotes Formulas. J. Phys. Conf. Ser. 2021, 2084, 012019. [Google Scholar] [CrossRef]
  40. Nzokem, A.H. Stochastic and Renewal Methods Applied to Epidemic Models. Ph.D. Thesis, York University, North York, ON, Canada, 2020. [Google Scholar]
  41. Krylov, V.I.; Stroud, A.H. Approximate Calculation of Integrals, 6th ed.; Dover Books on Mathematics; Dover Publications: Mineola, NY, USA, 2006. [Google Scholar]
  42. AL-Sammarraie, O.A.; Bashir, M.A. Error Analysis of the High Order Newton-Cotes Formulas. Int. J. Sci. Res. Publ. 2015, 5, 1–6. [Google Scholar]
  43. Kalman, D. The Generalized Vandermonde Matrix. Math. Mag. 1984, 57, 15–21. [Google Scholar] [CrossRef]
  44. Nzokem, A.H.; Maposa, D. Bitcoin versus S&P 500 Index: Return and Risk Analysis. Math. Comput. Appl. 2024, 29, 44. [Google Scholar] [CrossRef]
  45. Nzokem, A.; Maposa, D. Fitting the Seven-Parameter Generalized Tempered Stable Distribution to Financial Data. J. Risk Financ. Manag. 2024, 17, 531. [Google Scholar] [CrossRef]
  46. Nzokem, A.H. Gamma Variance Model: Fractional Fourier Transform (FRFT). J. Phys. Conf. Ser. 2021, 2090, 012094. [Google Scholar] [CrossRef]
  47. Nzokem, A.H.; Montshiwa, V.T. Fitting Generalized Tempered Stable Distribution: Fractional Fourier Transform (FRFT) Approach. arXiv 2022, arXiv:2205.00586. [Google Scholar] [CrossRef]
  48. Bailey, D.H.; Swarztrauber, P.N. The Fractional Fourier Transform and Applications. SIAM Rev. 1991, 33, 389–404. [Google Scholar] [CrossRef]
  49. Nzokem, A.H. Fitting Infinitely Divisible Distribution: Case of Gamma-Variance Model. arXiv 2021, arXiv:2104.07580. [Google Scholar] [CrossRef]
  50. Olver, F.W.J.; Olde Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. NIST Digital Library of Mathematical Functions; Release 1.1.11; NIST: Gaithersburg, MD, USA, 2023. [Google Scholar]
  51. Fischer, A.; Gaunt, R.E.; Sarantsev, A. The Variance–Gamma Distribution: A Review. Statist. Sci. 2024, 40, 235–258. [Google Scholar] [CrossRef]
  52. Gaunt, R.E. Variance–Gamma approximation via Stein’s method. Electron. J. Probab. 2014, 19, 1–33. [Google Scholar] [CrossRef]
  53. Nestler, S.; Hall, A. The variance gamma distribution. Significance 2019, 16, 10–11. [Google Scholar] [CrossRef]
  54. Kotz, S.; Kozubowski, T.J.; Podgórski, K. The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance, 1st ed.; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar] [CrossRef]
  55. Nzokem, A.H.; Montshiwa, V.T. The Ornstein-Uhlenbeck Process and Variance Gamma Process: Parameter Estimation and Simulations. Thai J. Math. 2023, 21, 160–168. [Google Scholar]
  56. Nzokem, A.H. Five-Parameter Variance-Gamma Process: Lévy versus Probability Density. AIP Conf. Proc. 2024, 3005, 020030. [Google Scholar] [CrossRef]
  57. Nzokem, A.H. Pricing European Options under Stochastic Volatility Models: Case of Five-Parameter Variance-Gamma Process. J. Risk Financ. Manag. 2023, 16, 55. [Google Scholar] [CrossRef]
  58. Nzokem, A.H. European Option Pricing Under Generalized Tempered Stable Process: Empirical Analysis. arXiv 2023, arXiv:2304.06060. [Google Scholar] [CrossRef]
  59. Figlewski, S. Risk-Neutral Densities: A Review. Annu. Rev. Financ. Econ. 2018, 10, 329–359. [Google Scholar] [CrossRef]
  60. Ivanov, R.V. On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model. Risks 2023, 11, 111. [Google Scholar] [CrossRef]
  61. Qayyum, M.; Ahmad, E. New Solutions of Time-and Space-Fractional Black–Scholes European Option Pricing Model via Fractional Extension of He-Aboodh Algorithm. J. Math. 2024, 2024, 6623636. [Google Scholar] [CrossRef]
  62. Malz, A.M. A Simple and Reliable Way to Compute Option-Based Risk-Neutral Distributions. In FRB of New York Staff Report; Federal Reserve Bank of New York: New York, NY, USA, 2014. [Google Scholar]
Figure 1. Variance-Gamma (VG*) PDF Error: ( f ˇ f ) versus ( f ¯ f ), N = 6000, b − a = 100.
Figure 1. Variance-Gamma (VG*) PDF Error: ( f ˇ f ) versus ( f ¯ f ), N = 6000, b − a = 100.
Axioms 14 00543 g001
Figure 2. Variance-Gamma (VG*) PDF Error: ( f ^ f ) versus ( f ¯ f ), N = 6000 , b a = 100 .
Figure 2. Variance-Gamma (VG*) PDF Error: ( f ^ f ) versus ( f ¯ f ), N = 6000 , b a = 100 .
Axioms 14 00543 g002
Figure 3. Variance-Gamma (VG*) PDF Error ( f ˜ NQ ( x k ) f ˜ QN ( x k ) ): N = 6000 , b a = 100 .
Figure 3. Variance-Gamma (VG*) PDF Error ( f ˜ NQ ( x k ) f ˜ QN ( x k ) ): N = 6000 , b a = 100 .
Axioms 14 00543 g003
Figure 4. VG* probability density estimation error.
Figure 4. VG* probability density estimation error.
Axioms 14 00543 g004
Figure 5. GTS* probability density estimation error.
Figure 5. GTS* probability density estimation error.
Axioms 14 00543 g005
Table 1. Weight values { W j } 0 j Q .
Table 1. Weight values { W j } 0 j Q .
QW0W1W2W3W4W5W6W7W8W9W10W11W12
1 1 2 1 2 00000000000
2 1 3 4 3 1 3 0000000000
3 3 8 9 8 9 8 3 8 000000000
4 14 45 64 45 8 15 64 45 14 45 00000000
5 95 288 125 96 125 144 125 144 125 96 95 288 0000000
6 41 140 54 35 27 140 68 35 27 140 54 35 41 140 000000
7 108 355 810 559 343 640 649 536 649 536 343 640 810 559 108 355 00000
8 499 1788 1183 712 182 695 388 131 319 249 388 131 182 695 1183 712 499 1788 0000
9 130 453 419 265 23 212 307 158 213 367 213 367 307 158 23 212 419 265 130 453 000
10 139 518 245 138 171 211 414 91 557 128 1763 247 557 128 414 91 171 211 245 138 139 518 00
11 65 237 850 499 83 203 787 247 223 184 227 116 227 116 223 184 787 247 83 203 850 499 65 237 0
12 20 77 375 199 270 187 673 99 1019 104 816 49 1537 92 816 49 1019 104 673 99 270 187 375 199 20 77
Table 2. Estimated parameters for the Variance-Gamma (VG) distribution.
Table 2. Estimated parameters for the Variance-Gamma (VG) distribution.
Model μ δ σ α θ
VG 0.08476896 0.0577418 1.02948292 0.88450029 0.93779517
VG(*) 0.11998901 0.0343164 0.10294829 2.54736083 0.98780338
Table 3. Estimated parameters for the Generalized Tempered Stable (GTS) distribution.
Table 3. Estimated parameters for the Generalized Tempered Stable (GTS) distribution.
Model μ β + β α + α λ + λ
GTS−0.6934770.6822900.2425790.4585820.4144430.8222220.727607
GTS*−0.2080430.6822900.2425790.5942344.06843684.66709770.31591
Table 4. Absolute Error Metrics between approximation methods for the VG and GTS distributions at various levels Q.
Table 4. Absolute Error Metrics between approximation methods for the VG and GTS distributions at various levels Q.
R ( f ^ , f ¯ ) R ( f ^ , f ˇ )
QVGGTSVGGTS
20.05500.13509.975 × 10 05 9.975 × 10 05
50.02200.05383.983 × 10 05 3.983 × 10 05
100.01100.02701.947 × 10 05 1.947 × 10 05
150.00730.01811.307 × 10 05 1.307 × 10 05
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Nzokem, A.; Maposa, D.; Seimela, A.M. Enhanced Fast Fractional Fourier Transform (FRFT) Scheme Based on Closed Newton-Cotes Rules. Axioms 2025, 14, 543. https://doi.org/10.3390/axioms14070543

AMA Style

Nzokem A, Maposa D, Seimela AM. Enhanced Fast Fractional Fourier Transform (FRFT) Scheme Based on Closed Newton-Cotes Rules. Axioms. 2025; 14(7):543. https://doi.org/10.3390/axioms14070543

Chicago/Turabian Style

Nzokem, Aubain, Daniel Maposa, and Anna M. Seimela. 2025. "Enhanced Fast Fractional Fourier Transform (FRFT) Scheme Based on Closed Newton-Cotes Rules" Axioms 14, no. 7: 543. https://doi.org/10.3390/axioms14070543

APA Style

Nzokem, A., Maposa, D., & Seimela, A. M. (2025). Enhanced Fast Fractional Fourier Transform (FRFT) Scheme Based on Closed Newton-Cotes Rules. Axioms, 14(7), 543. https://doi.org/10.3390/axioms14070543

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop