Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (802)

Search Parameters:
Keywords = gas permeability properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3295 KB  
Article
Biobased Random Copolymers of Poly(Hexamethylene Furanoate) for Sustainable Food Packaging: Camphoric Acid as a Valuable Co-Monomer for Improved Mechanical Properties
by Enrico Bianchi, Michelina Soccio, Valentina Siracusa, Massimo Gazzano and Nadia Lotti
Polymers 2026, 18(2), 255; https://doi.org/10.3390/polym18020255 (registering DOI) - 17 Jan 2026
Abstract
In recent years, the unsustainable consumption of fossil resources has been causing major ecological concerns, especially for the production of polymeric materials. 2,5-furandicarboxylic acid (FDCA) is one of the most appealing biobased chemical building blocks, because of its potential to replace the industrially [...] Read more.
In recent years, the unsustainable consumption of fossil resources has been causing major ecological concerns, especially for the production of polymeric materials. 2,5-furandicarboxylic acid (FDCA) is one of the most appealing biobased chemical building blocks, because of its potential to replace the industrially widespread petrochemical, terephthalic acid. Camphoric acid (CA) is also an interesting biobased chemical derived from camphor, one of the most widespread fragrances. This work had the objective of combining CA, FDCA and biobased 1,6-hexanediol to synthesize random copolymers for sustainable food packaging applications by means of a solvent-free polycondensation process, obtaining poly(hexamethylene furanoate-co-camphorate)s (PHFC). The optimization of the synthesis made it possible to obtain high molecular weight polyesters with a percentage of camphoric acid up to 17 mol%, which could be compression-molded into films. They were subjected to molecular, structural, thermal and functional characterization via NMR, GPC, WAXS, DSC, and TGA analyses, as well as mechanical and gas permeability tests. Compared to the homopolymer of reference, it was possible to obtain higher flexibility, 430% higher elongation at break, and 223% higher toughness, with comparable, excellent gas permeability properties. Calorimetric evidence suggested that camphoric acid might have enhanced the formation of a partially ordered mesomorph phase in the copolymers under study. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
12 pages, 3584 KB  
Article
“In Situ” Studies on Coke Drilled from Tuyere in a Working COREX Melter Gasifier
by Hao Liu, Wen Hu, Xinyue Liu, Zipeng Dou and Weiqiang Liu
Processes 2026, 14(2), 323; https://doi.org/10.3390/pr14020323 - 16 Jan 2026
Abstract
The COREX smelting-reduction route is a representative non-blast furnace technology, but its scale-up is hindered by insufficient gas and liquid permeability in the melter gasifier. To improve the gas and liquid permeability of the melter gasifier, coke is charged together with an iron-bearing [...] Read more.
The COREX smelting-reduction route is a representative non-blast furnace technology, but its scale-up is hindered by insufficient gas and liquid permeability in the melter gasifier. To improve the gas and liquid permeability of the melter gasifier, coke is charged together with an iron-bearing material to partly replace lump coal to increase the burden voidage. The charged coke undergoes successive physical and chemical attacks that progressively weaken its strength, finally reducing the coke particle size and impairing overall burden permeability. Drilling “in situ” coke samples from the tuyere zone is an effective method to study coke behaviors inside a working melter gasifier. This work obtained tuyere coke samples by direct coke sample drilling during a melter gasifier blow-out and then systematically investigated the coke deterioration behaviors in the melter gasifier. The results show that the mean particle size decreased from an initial 50.3 mm to 31.6 mm at the tuyere, evidencing the severe fragmentation of coke. Basic oxides and alkali metals in the coke ash increased, indicating alkali recycling and enrichment occurred in the melter gasifier. Microcrystalline structure analysis of coke revealed a high degree of graphitization. Furthermore, coke degradation was further accelerated by both alkalis trapped in the coke pores and slag infiltration into the pores. This study clarifies the properties of the coke in the tuyere of the COREX melter gasifier and provides a theoretical basis for its operational optimization. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

25 pages, 7696 KB  
Article
Thermoplastic Starch Composites with Highly Exfoliated Nano-Clay Fillers and Excellent Barrier Properties
by Veronika Gajdosova, Beata Strachota, Vaclav Pokorny, Libuse Brozova, Jan Kozisek, Ewa Pavlova, Zdenek Stary, Miroslav Slouf and Adam Strachota
Materials 2026, 19(2), 347; https://doi.org/10.3390/ma19020347 - 15 Jan 2026
Viewed by 28
Abstract
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step [...] Read more.
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step TPS preparation protocol. In both the TPS/LAP and TPS/MMT composites, we achieved perfect dispersion and extensive exfoliation of the nano-clays, resulting in pronounced improvements in mechanical performance (modulus increased up to one order of magnitude) and in excellent gas-barrier properties (extremely small permeabilities for O2, CO2, and even H2). MMT, owing to its larger platelet size and to the formation of partially exfoliated multi-layer structures, generated a percolating filler network that provided particularly strong reinforcement, especially at 15 wt.% loading. LAP, though more completely exfoliated, generated a somewhat smaller mechanical reinforcement, but it more strongly increased processing viscosity due to its high specific surface area, which generated highly stable physical crosslinking that persisted even at processing temperatures of T ≥ 120 °C. Efficient matrix–filler interactions were confirmed by thermogravimetric analysis, where the better-exfoliated LAP generated a higher stabilization. The combination of strong mechanical reinforcement with outstanding gas-barrier properties makes the TPS/MMT and TPS/LAP nanocomposites attractive for food-packaging applications, where their natural origin, non-toxicity, bio-degradability, and abundance of nanocomposite components are an additional bonus. Full article
Show Figures

Graphical abstract

20 pages, 4698 KB  
Article
Controlling Mechanisms of Burial Karstification in Gypsum Moldic Vug Reservoirs of the 4-1 Sub-Member, Member 5 of the Majiagou Formation, Central Ordos Basin
by Jiang He, Hang Li, Lei Luo, Lin Qiao, Juzheng Li, Xiaolin Ma, Yuhan Zhang, Jian Yao, Sisi Jiang and Yaping Wang
Processes 2026, 14(2), 275; https://doi.org/10.3390/pr14020275 - 13 Jan 2026
Viewed by 102
Abstract
The moldic pore-vuggy reservoirs of the Ma54-Ma51 sub-member in the Majiagou Formation, central Ordos Basin, are key targets for deep natural gas exploration, yet the alteration mechanisms and controlling factors of burial-stage pressure-released water karstification remain unclear. Herein, an integrated [...] Read more.
The moldic pore-vuggy reservoirs of the Ma54-Ma51 sub-member in the Majiagou Formation, central Ordos Basin, are key targets for deep natural gas exploration, yet the alteration mechanisms and controlling factors of burial-stage pressure-released water karstification remain unclear. Herein, an integrated methodology encompassing core observation, thin-section analysis, and geochemical testing was adopted to systematically clarify the development characteristics and multi-factor coupling control mechanisms of this karst process. Results show that burial-stage pressure-released water karst is dominated by overprinting on pre-existing syndepositional and supergene pore networks, forming complex reservoir spaces via synergistic selective dissolution. The development of preferential dissolution zones is jointly controlled by differential compaction of the weathering crust, permeability heterogeneity of the overlying strata and weathered crust, and diagenetic fluid properties. After the supergene diagenetic stage, differential tectonic deformation and burial compaction induced overpressure in pore fluids, which drove acidic pressure-released water to migrate along high-permeability pathways such as the “sandstone windows” overlying the Ordovician weathering crust. These fluids preferentially dissolved high-permeability moldic pore-vuggy dolomites in paleo-karst platforms and steep slope zones, whereas tight micritic dolomites served as effective barriers. The acidic environment sustained by organic acids and H2S in pressure-released water promoted carbonate dissolution, and carbon-oxygen isotopes as well as pyrite δ34S values verify that the fluids were derived from mudstone compaction. This study reveals that the distribution of high-quality reservoirs is jointly determined by the synergistic preservation of moldic pore-vuggy systems in paleo-karst platforms and steep slopes and directional alteration of pressure-released water along preferential pathways, providing crucial geological guidance for the evaluation of deep carbonate reservoirs. Full article
Show Figures

Figure 1

11 pages, 1238 KB  
Article
Advanced Green Materials: Sustainable Cellulose–Lignin Composite Films Prepared via Ionic Liquid Processing
by Witold Madaj, Michał Puchalski, Konrad Sulak, Dariusz Wawro and Ewelina Pabjańczyk-Wlazło
Polymers 2026, 18(2), 211; https://doi.org/10.3390/polym18020211 - 13 Jan 2026
Viewed by 174
Abstract
The article presents the preparation method of a green composite material composed of cellulose and lignin using an ionic liquid as a solvent. In the process, cellulose and lignin are dissolved in the ionic liquid and subsequently regenerated into a composite film via [...] Read more.
The article presents the preparation method of a green composite material composed of cellulose and lignin using an ionic liquid as a solvent. In the process, cellulose and lignin are dissolved in the ionic liquid and subsequently regenerated into a composite film via coagulation in ethanol/water bath. The research focused on evaluating the mechanical properties of the resulting composite, which exhibited a high tensile strength exceeding 100 MPa, demonstrating its robustness and potential for various applications. Importantly, the simultaneous integration of lignin enabled a favorable balance between high mechanical strength and enhanced biodegradability, addressing a common trade-off in sustainable materials. Additionally, the biodegradation behavior of the composite in soil was investigated, showing that it gradually decomposes, making it environmentally friendly. Toxicity tests on soil bacteria indicated that the composite does not adversely affect microbial activity, supporting its suitability for ecological use. Furthermore, the gas permeability and water vapor transmission of the composite film was assessed, providing insight into its barrier properties. Overall, the study highlights the potential of cellulose-lignin composites produced via ionic liquids as sustainable and biodegradable materials with promising mechanical and environmental properties. Full article
(This article belongs to the Special Issue Cellulose and Its Composites: Preparation and Applications)
Show Figures

Graphical abstract

19 pages, 1343 KB  
Article
The Effect of Selected Phenolic Acids on the Functional Properties of Pectin-Based Packaging Films
by Magdalena Mikus and Sabina Galus
Appl. Sci. 2026, 16(2), 797; https://doi.org/10.3390/app16020797 - 13 Jan 2026
Viewed by 90
Abstract
In this study, pectin packaging films were enhanced with selected phenolic acids, including caffeic, coumaric, ferulic, gallic, protocatechuic, and sinapic acids. Edible films were created from apple pectin aqueous solutions that were plasticised with glycerol. The evaluation covered various properties, including optical, barrier, [...] Read more.
In this study, pectin packaging films were enhanced with selected phenolic acids, including caffeic, coumaric, ferulic, gallic, protocatechuic, and sinapic acids. Edible films were created from apple pectin aqueous solutions that were plasticised with glycerol. The evaluation covered various properties, including optical, barrier, mechanical, thermal, structural, and antioxidant activity. The findings showed that phenolic acids are beneficial and compatible components for pectin films. A higher barrier against UV-VIS light and mechanical strength, as well as a more resilient structure, was observed. All the films exhibited a compact and uniform structure, along with transparency and a light colour. The addition of phenolic acids caused greater permeability to oxygen and carbon. Except for caffeic and protocatechuic acids, which resulted in lower values of permeability for both gases, the other acids improved gas transmission. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed several functional groups, including hydroxyl (−OH) and carbonyl (C=O) groups. All films containing phenolic acids demonstrated increased antioxidant activity, with variations depending on the specific compound. Full article
Show Figures

Figure 1

23 pages, 3596 KB  
Article
Developing New Water-Based Drilling Fluid Additives for Mitigating Filtration Loss at High Pressure and High Temperature
by Sachitha Sulakshana, Foad Faraji, Hossein Habibi, David J. Hughes, Mardin Abdalqadir and Jagar A. Ali
Processes 2026, 14(2), 208; https://doi.org/10.3390/pr14020208 - 7 Jan 2026
Viewed by 207
Abstract
Sustainable oil and gas development demands eco-friendly and cost-effective drilling fluids. Water-based drilling fluids (WBDFs) are preferred over oil-based alternatives for their lower environmental impact, but they often suffer from excessive fluid loss in permeable formations, leading to thick filter cakes, reduced mud [...] Read more.
Sustainable oil and gas development demands eco-friendly and cost-effective drilling fluids. Water-based drilling fluids (WBDFs) are preferred over oil-based alternatives for their lower environmental impact, but they often suffer from excessive fluid loss in permeable formations, leading to thick filter cakes, reduced mud weight, and operational delays. Conventional chemical additives mitigate this issue but pose environmental and health risks due to their toxicity and non-biodegradability. This study explores the use of biodegradable additives extracted from avocado seed (AS), rambutan shell (RS), tamarind shell (TS) and banana trunk (BT) biomass in four particle sizes of 300, 150, 75 and 32 μm to improve filtration control in WBDFs. All four materials were crushed by ball milling and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray (EDX). In accordance with API Spec 13A recommendations, several water-based drilling fluids (WBDFs), including reference fluid and modified fluids formulated with biodegradable additives at a fixed percentage of 3 wt% and varied particle sizes, were prepared. The rheological and filtration properties of the formulated drilling fluids were investigated by conducting industry-standard rheology and filtration tests under LPLT conditions (100 psi, 25 °C) and HPHT conditions (1500 psi, 75 °C). The results show that 32 μm tamarind shell powder delivered the strongest performance, reducing fluid loss by 82.4% under HPHT conditions and producing the thinnest mud cake (0.33 mm); it also reduced fluid loss by 72.8% under LPLT conditions, outperforming the other biodegradable materials. Full article
Show Figures

Figure 1

27 pages, 7523 KB  
Article
Upregulation of the TCA Cycle and Oxidative Phosphorylation Enhances the Fitness of CD99 CAR-T Cells Under Dynamic Cultivation
by Jiaxuan Zhao, Youyong Wang, Yixuan Wang, Ge Dong, Han Wu, Yeting Cui, Lixing Gu, Fenfang Zhao, Guanlin Zhao, Jinyu Kang, Qian Zhang, Nan Liu, Ning Wang, Xiao Sun, Yao Xu, Tongcun Zhang and Jiangzhou Shi
Int. J. Mol. Sci. 2026, 27(2), 607; https://doi.org/10.3390/ijms27020607 - 7 Jan 2026
Viewed by 314
Abstract
The manufacturing process contributes significantly to the proliferation, metabolic state, and functional persistence of chimeric antigen receptor (CAR)-T cells. However, how different culture systems regulate CAR-T cell metabolism and thereby influence their long-term antitumor activity remains poorly understood. In this study, we compared [...] Read more.
The manufacturing process contributes significantly to the proliferation, metabolic state, and functional persistence of chimeric antigen receptor (CAR)-T cells. However, how different culture systems regulate CAR-T cell metabolism and thereby influence their long-term antitumor activity remains poorly understood. In this study, we compared dynamic cultivation using a wave bioreactor with static expansion systems (gas-permeable and conventional T-flasks) for the production of CD99-specific CAR-T cells. CAR-T cells expanded by the wave bioreactor exhibited faster proliferation and stronger cytotoxicity during culture. Upon repeated antigen stimulation, they retained these enhanced functional properties and showed the reduced expression of immune checkpoint molecules, preferentially preserved memory-like subsets, and displayed transcriptional features consistent with memory maintenance and exhaustion resistance. Targeted metabolomic profiling revealed enhanced Tricarboxylic Acid (TCA) cycle activity and features consistent with sustained oxidative phosphorylation, supporting mitochondrial-centered metabolic reprogramming. In a Ewing sarcoma xenograft model, wave bioreactor-cultured CAR-T cells showed a greater percentage of memory-like tumor-infiltrating lymphocytes. Collectively, these results indicate that wave bioreactor-based dynamic cultivation promotes mitochondrial metabolic reprogramming, which is characterized by an enhanced TCA cycle and sustained oxidative phosphorylation, thereby sustaining CAR-T cell functionality and providing a robust platform for the manufacturing of potent and durable cellular therapeutics. Full article
(This article belongs to the Special Issue Chimeric Antigen Receptors Against Cancers and Autoimmune Diseases)
Show Figures

Figure 1

33 pages, 1298 KB  
Review
Edible Coatings for Fresh Fruits: Functional Roles, Optimization Strategies, and Analytical Perspectives
by Siphumle Owen Jama, Robert Lufu, Umezuruike Linus Opara, Elke Crouch and Alemayehu Ambaw Tsige
Plants 2026, 15(1), 132; https://doi.org/10.3390/plants15010132 - 2 Jan 2026
Viewed by 276
Abstract
Fresh fruits are inherently prone to postharvest deterioration due to loss of moisture, respiration, mechanical damage, and microbial decay, making quality preservation a persistent challenge across fresh fruit supply chains. While conventional plastic packaging offers barrier protection and cost-efficiency, its environmental footprint, particularly [...] Read more.
Fresh fruits are inherently prone to postharvest deterioration due to loss of moisture, respiration, mechanical damage, and microbial decay, making quality preservation a persistent challenge across fresh fruit supply chains. While conventional plastic packaging offers barrier protection and cost-efficiency, its environmental footprint, particularly poor biodegradability and increasing incidence of plastic waste necessitates a transition toward more sustainable alternatives. Among these, the use of edible coatings, primarily based on natural biopolymers, have emerged as a versatile strategy capable of modulating transpiration, gas exchange, microbial activity, and sensory quality while addressing environmental concerns. Unlike biodegradable plastic films, edible coatings directly interface with the fruit surface and offer multifunctional roles extending beyond passive protection. This review synthesizes recent advances in edible coatings for fresh fruits, with emphasis on material classes, functional performance, optimization strategies, and analytical evaluation methods. Key findings indicate that polysaccharide-based coatings provide adequate gas permeability but limited moisture resistance, while nanocomposite and multi-component systems enhance water-vapor barrier performance without compromising respiration compatibility. Incorporation of bioactive agents such as essential oils, nanoparticles, and plant extracts further extends shelf life through antimicrobial and antioxidant mechanisms, though formulation trade-offs and sensory constraints persist. The review also highlights critical limitations, including variability in barrier and mechanical properties, challenges in industrial-scale application, insufficient long-term validation under commercial cold-chain conditions, and regulatory uncertainty for active formulations. Future research priorities are identified, including mechanistic transport–physiology integration, standardized performance metrics, scalable application technologies, and life-cycle-informed material design. Addressing these gaps is essential for transitioning edible coatings from experimental sustainability concepts to robust, function-driven solutions for fresh-fruit preservation. Full article
(This article belongs to the Special Issue Postharvest and Storage of Horticultural Plants)
Show Figures

Figure 1

16 pages, 2516 KB  
Article
Analysis of Occurrence of Deep Coalbed Methane and Its “Desorption–Diffusion–Seepage” Process
by Bingwen Zhang, Tao Jiang, Li Niu, Sha Li and Shu Tao
Separations 2026, 13(1), 19; https://doi.org/10.3390/separations13010019 - 30 Dec 2025
Viewed by 202
Abstract
China has abundant deep coalbed methane (CBM) resources; however, high temperature, stress, and reservoir pressure complicate the gas adsorption–desorption–diffusion–seepage processes, severely restricting the development of deep CBM. Through experimental research on adsorption, desorption, diffusion, and seepage behaviors of various coal samples, the control [...] Read more.
China has abundant deep coalbed methane (CBM) resources; however, high temperature, stress, and reservoir pressure complicate the gas adsorption–desorption–diffusion–seepage processes, severely restricting the development of deep CBM. Through experimental research on adsorption, desorption, diffusion, and seepage behaviors of various coal samples, the control mechanisms of deep coal reservoir properties on CBM production in the Linxing–Shenfu region have been revealed. The results indicate that CBM adsorption and desorption characteristics are jointly controlled by coal rank, ash yield, temperature. and pressure. Among the above conditions, coal rank and pressure exhibit positive effects, while ash yield and temperature show inhibitory effects. Analysis of desorption efficiency based on the Langmuir model further identifies sensitive desorption and rapid desorption stages as key phases for enhancing productivity. Moreover, the gas diffusion mechanism is dynamically evolving, with Knudsen diffusion and Fick diffusion being the main modes during high ground pressure stages, gradually transitioning to the coexistence of Knudsen, transition, and Fick diffusions as pressure decreases. Concurrently, gas–water seepage experiments demonstrate that increasing temperature will reduce the irreducible water saturation and enhance the relative permeability of the gas. Since irreducible water saturation is negatively correlated with relative permeability of gas, the relative permeability of the gas phase, cross-point saturation, and the range of the two-phase co-seepage zone all significantly increases with the increase in temperature. The findings systematically elucidate the regulatory mechanisms of deep coal reservoir properties in the process of “adsorption–desorption–diffusion–seepage,” providing critical theoretical support for optimizing development strategies and enhancing the efficiency of deep CBM development. Full article
Show Figures

Figure 1

18 pages, 4539 KB  
Article
A Combined FEM-CFD Method for Investigating Transport Properties of Compressed Porous Electrodes in PEMFC: A Microstructure Perspective
by Zhuo Zhang, Ruiyuan Zhang, Xiuli Zhang, Zhiyi Tang, Zixing Wang, Yang Wang, Yanjun Dai, Li Chen and Wenquan Tao
Energies 2026, 19(1), 99; https://doi.org/10.3390/en19010099 - 24 Dec 2025
Viewed by 207
Abstract
Hydrogen energy is vital for a clean, low-carbon society, and proton exchange membrane fuel cells (PEMFCs) represent a core technology for the conversion of hydrogen chemical energy into electrical energy. When PEMFC single cells are stacked under assembly force for high power output, [...] Read more.
Hydrogen energy is vital for a clean, low-carbon society, and proton exchange membrane fuel cells (PEMFCs) represent a core technology for the conversion of hydrogen chemical energy into electrical energy. When PEMFC single cells are stacked under assembly force for high power output, their porous electrodes (gas diffusion layers, GDLs; catalyst layers, CLs) undergo compressive deformation, altering internal transport processes and affecting cell performance. However, existing microscale studies on PEMFC porous electrodes insufficiently consider compression (especially in CLs) and have limitations in obtaining compressed microstructures. This study proposes a combined framework from a microstructure perspective. It integrates the finite element method (FEM) with computational fluid dynamics (CFD). It reconstructs microstructures of GDL, CL, and GDL-bipolar plate (BP) interface. FEM simulates elastic compressive deformation, and CFD calculates transport properties (solid zone: heat/charge conduction via Laplace equation; fluid zone: gas diffusion/liquid permeation via Fick’s/Darcy’s law). Validation shows simulated stress–strain curves and transport coefficients match experimental data. Under 2.5 MPa, GDL’s gas diffusivity drops 16.5%, permeability 58.8%, while conductivity rises 2.9-fold; CL compaction increases gas resistance but facilitates electron/proton conduction. This framework effectively investigates compression-induced transport property changes in PEMFC porous electrodes. Full article
Show Figures

Figure 1

13 pages, 1970 KB  
Article
Preparation and Performance of Nano-Silica-Modified Epoxy Resin Composite Coating for Concrete Subjected to Cryogenic Freeze–Thaw Cycles
by Pan Zhou, Sigui Zhao, Kang Gu, Hongji Chen, Qian Yang and Zhengwu Jiang
Coatings 2026, 16(1), 19; https://doi.org/10.3390/coatings16010019 - 23 Dec 2025
Viewed by 552
Abstract
Concrete is prone to deterioration and increased permeability under cryogenic freeze–thaw cycles. In this study, a novel method was proposed to prepare a nano-silica-modified epoxy resin composite coating with excellent anti-permeability. The effects of layer composition, a resin layer modified with different nanoparticles, [...] Read more.
Concrete is prone to deterioration and increased permeability under cryogenic freeze–thaw cycles. In this study, a novel method was proposed to prepare a nano-silica-modified epoxy resin composite coating with excellent anti-permeability. The effects of layer composition, a resin layer modified with different nanoparticles, and different nano-silica dosages on the oil impermeability of coated concrete were studied. The mechanical properties and chemical stability of the composite coating were also evaluated. The results showed that the composite coating composed of a nano-silica-modified resin layer, bonding layer, and surface layer presented good resistance to oil penetration under cryogenic freezing cycles. Moreover, nano-silica seemed to be a better choice for resin modification than nano-TiO2 and graphene. Macroscopic and morphological observation also confirmed a reduction in cracks and the integrity of the composite coating for concrete protection. Therefore, the coated concrete presented good mechanical properties and chemical stability. This study provides a guide for the preparation of composite coating concrete used for mountainous highway bridges and liquefied natural gas tanks. Full article
(This article belongs to the Special Issue Corrosion Resistant Coatings in Civil Engineering)
Show Figures

Figure 1

24 pages, 3887 KB  
Article
Numerical Simulation Study on Synergistic Influencing Factors of CO2 Flooding and Geological Storage in Low-Permeability and High-Water-Cut Reservoirs
by Qi Wang, Jihong Zhang, Guantong Huo, Peng Wang, Fei Li, Xinjian Tan and Qiang Xie
Energies 2025, 18(24), 6630; https://doi.org/10.3390/en18246630 - 18 Dec 2025
Viewed by 237
Abstract
How to economically and effectively mobilize remaining oil and achieve carbon sequestration after water flooding in low-permeability, high-water-cut reservoirs is an urgent challenge. This study, focusing on Block Y of the Daqing Oilfield, employs numerical simulation to systematically reveal the synergistic influencing mechanisms [...] Read more.
How to economically and effectively mobilize remaining oil and achieve carbon sequestration after water flooding in low-permeability, high-water-cut reservoirs is an urgent challenge. This study, focusing on Block Y of the Daqing Oilfield, employs numerical simulation to systematically reveal the synergistic influencing mechanisms of CO2 flooding and geological storage. A three-dimensional compositional model characterizing this reservoir was constructed, with a focus on analyzing the controlling effects of key geological (depth, heterogeneity, physical properties) and engineering (gas injection rate, gas injection volume, bottom-hole flowing pressure) parameters on the displacement and storage processes. Simulation results indicate that the low-permeability characteristics of Block Y effectively suppress gas channeling, enabling a CO2 flooding enhanced oil recovery (EOR) increment of 15.65%. Increasing reservoir depth significantly improves both oil recovery and storage efficiency by improving the mobility ratio and enhancing gravity segregation. Parameter optimization is key to achieving synergistic benefits: the optimal gas injection rate is 700–900 m3/d, the economically reasonable gas injection volume is 0.4–0.5 PV, and the optimal bottom-hole flowing pressure is 9–10 MPa. This study confirms that for Block Y and similar high-water-cut, low-permeability reservoirs, CO2 flooding is a highly promising replacement technology; through optimized design, it can simultaneously achieve significant crude oil production increase and efficient CO2 storage. Full article
Show Figures

Figure 1

16 pages, 3034 KB  
Article
Synthesis and CO2/N2 Separation Performance Analysis of Mixed Matrix Membrane (MMM) Based on Different Bimetallic Metal–Organic Frameworks (Ni-Cu-MOF-74, Ni-Co-MOF-74, and Ni-Zn-MOF-74)
by Shoaib Ahsan, Muhammad Ahsan, Tayyaba Noor, Sarah Farrukh and Humais Roafi
Membranes 2025, 15(12), 385; https://doi.org/10.3390/membranes15120385 - 18 Dec 2025
Viewed by 615
Abstract
Polydimethylsiloxane (PDMS) is commonly used in gas-separation studies because of its high CO2 permeability and stable mechanical properties. In this work, mixed matrix membranes (MMMs) were prepared by incorporating the bimetallic MOFs Ni-Cu-MOF-74, Ni-Co-MOF-74, and Ni-Zn-MOF-74 into a PDMS matrix. The membranes [...] Read more.
Polydimethylsiloxane (PDMS) is commonly used in gas-separation studies because of its high CO2 permeability and stable mechanical properties. In this work, mixed matrix membranes (MMMs) were prepared by incorporating the bimetallic MOFs Ni-Cu-MOF-74, Ni-Co-MOF-74, and Ni-Zn-MOF-74 into a PDMS matrix. The membranes were fabricated by solution casting and characterized by SEM, XRD, FT-IR, and BET analyses, which confirmed uniform filler dispersion and the successful incorporation of the MOF-74 structures. Single-gas permeation tests showed clear performance improvements with MOF loading. The best results were obtained for the membrane containing 1 wt.% Ni-Cu-MOF-74, which reached a CO2 permeability of 3188.25 Barrer and a CO2/N2 selectivity of 35.10. The improvement is attributed to the accessible metal sites and high surface area provided by the MOF-74 framework, which enhanced adsorption–diffusion pathways for CO2 transport. These results show that PDMS/MOF-74 mixed-matrix membranes are effective for CO2/N2 separation, with Ni-Cu-MOF-74 achieving the highest performance. Full article
(This article belongs to the Special Issue Composite Membranes for Gas and Vapor Separation)
Show Figures

Figure 1

13 pages, 787 KB  
Article
Comprehensive Investigation of the Mechanical and Durability Properties of High-Performance Concretes Containing CSA Cement
by Roman Jaskulski, Daria Jóźwiak-Niedźwiedzka and Maciej Banach
Appl. Sci. 2025, 15(24), 13227; https://doi.org/10.3390/app152413227 - 17 Dec 2025
Viewed by 304
Abstract
This study presents a comprehensive experimental evaluation of high-performance concretes incorporating calcium sulfoaluminate (CSA) cement as a partial replacement for ordinary Portland cement (OPC). Five CSA replacement levels (0, 15, 30, 45, and 60%) and two water-to-cement ratios (0.40 and 0.45) were examined [...] Read more.
This study presents a comprehensive experimental evaluation of high-performance concretes incorporating calcium sulfoaluminate (CSA) cement as a partial replacement for ordinary Portland cement (OPC). Five CSA replacement levels (0, 15, 30, 45, and 60%) and two water-to-cement ratios (0.40 and 0.45) were examined to assess their effects on mechanical performance and key durability parameters. The experimental program simultaneously investigated compressive strength, tensile splitting strength, water absorption, sorptivity, gas permeability, and freeze–thaw resistance, offering an integrated assessment rarely addressed in previous studies, which typically focus on selected parameters or narrower replacement ranges. The results show that CSA addition enhances microstructural densification, substantially reducing sorptivity and gas permeability and markedly improving freeze–thaw performance even without air entrainment. High CSA contents (45–60%) yielded superior transport-related durability while maintaining competitive 28-day strengths, especially for w/c = 0.40. These findings clarify the interplay between CSA content, transport properties, and frost resistance, highlighting CSA–OPC hybrid binders as a durable and sustainable solution for high-performance concrete applications. Full article
Show Figures

Figure 1

Back to TopTop