The Effect of Selected Phenolic Acids on the Functional Properties of Pectin-Based Packaging Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.3. Optical Properties
2.3.1. UV-VIS Light Transmittance
2.3.2. Colour Stability
2.3.3. Gloss
2.3.4. Opacity
2.4. Barrier Properties
2.5. Thermogravimetric Analysis
2.6. Fourier Transform Infrared Spectroscopy (FT-IR)
2.7. Mechanical Properties
2.8. Antioxidant Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. The Effect of Phenolic Acids on the Optical Properties of Pectin Packaging Films
3.1.1. UV-VIS Transmittance
3.1.2. Colour
3.1.3. Gloss and Opacity
3.2. The Effect of Phenolic Acids on the Barrier Properties of Pectin Packaging Films
3.3. The Effect of Phenolic Acids on the Thermal Properties of Pectin Packaging Films
3.4. The Effect of Phenolic Acids on the Structural Properties of Pectin Packaging Films
3.5. The Effect of Phenolic Acids on the Mechanical Properties of Pectin Packaging Films
3.6. The Effect of Phenolic Acids on the Antioxidant Properties of Pectin Packaging Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pacheco, N.; Naal-Ek, M.G.; Ayora-Talavera, T.; Shirai, K.; Roman-Guerrero, A.; Fabela-Moron, M.F.; Cuevas-Bernardino, J.C. Effect of bio-chemical chitosan and gallic acid into rheology and physicochemical properties of ternary edible films. Int. J. Biol. Macromol. 2019, 125, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.Z.A.; Mobarak, M.H.; Hossain, N. Emerging trends in biomaterials for sustainable food packaging: A comprehensive review. Heliyon 2024, 10, e24122. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, I.S.; Maciel, G.M.; Bortolini, D.G.; Fernandes, I.d.A.A.; Maroldi, W.V.; Pedro, A.C.; Rubio, F.T.V.; Haminiuk, C.W.I. Sustainable innovations in edible films and coatings: An overview. Trends Food Sci. Technol. 2024, 143, 104272. [Google Scholar] [CrossRef]
- Ali, M.; Ali, A.; Ali, S.; Chen, H.; Wu, W.; Liu, R.; Chen, H.; Ahmed, Z.F.R.; Gao, H. Global insights and advances in edible coatings or films toward quality maintenance and reduced postharvest losses of fruit and vegetables: An updated review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70103. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, H.; Hu, L. Recent Advances of Proteins, Polysaccharides and Lipids-Based Edible Films/Coatings for Food Packaging Applications: A Review. Food Biophys. 2024, 19, 29–45. [Google Scholar] [CrossRef]
- Saidi, L.; Wang, Y.; Wich, P.R.; Selomulya, C. Polysaccharide-based edible films—Strategies to minimize water vapor permeability. Curr. Opin. Food Sci. 2025, 61, 101258. [Google Scholar] [CrossRef]
- Kocira, A.; Kozlowicz, K.; Panasiewicz, K.; Staniak, M.; Szpunar-Krok, E.; Hortynska, P. Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality-A Review. Agronomy 2021, 11, 813. [Google Scholar] [CrossRef]
- Pan, J.; Li, C.; Liu, J.; Jiao, Z.; Zhang, Q.; Lv, Z.; Yang, W.; Chen, D.; Liu, H. Polysaccharide-Based Packaging Coatings and Films with Phenolic Compounds in Preservation of Fruits and Vegetables—A Review. Foods 2024, 13, 3896. [Google Scholar] [CrossRef]
- Pawase, P.A.; Rout, S.; Tripathy, S.; Pathare, A.M.; Srivastav, P.P.; Bashir, O.; Panghal, A. Recent advances in cellulose, chitosan, and protein-based edible films for sustainable food packaging: A comprehensive review. Int. J. Biol. Macromol. 2025, 321, 146172. [Google Scholar] [CrossRef]
- Figueroa-Enriquez, C.E.; Rodríguez-Félix, F.; Ruiz-Cruz, S.; Castro-Enriquez, D.D.; Gonzalez-Rios, H.; Perez-Alvarez, J.Á.; Madera-Santana, T.J.; Burruel-Ibarra, S.E.; Tapia-Hernández, J.A.; Estrella-Osuna, D.E. Edible Coating of Sodium Alginate With Gelatin Nanoparticles and Pitaya Extract (Stenocereus thurberi): Physicochemical and Antioxidant Properties. J. Food Qual. 2025, 2025, 5756522. [Google Scholar] [CrossRef]
- Teixeira, S.C.; de Oliveira, T.V.; de Fátima Ferreira Soares, N.; Raymundo-Pereira, P.A. Sustainable and biodegradable polymer packaging: Perspectives, challenges, and opportunities. Food Chem. 2025, 470, 142652. [Google Scholar] [CrossRef]
- Nahar, L.; Habibi, E.; Gavril, G.-L.; Abdelfattah, G.M.M.; Wrona, M.; Nerín, C.; Guo, M.; Sarker, S.D. Towards sustainable food packaging using natural compounds: A review of current research update. Food Bioprod. Process. 2025, 150, 260–274. [Google Scholar] [CrossRef]
- Oliveira, I.; Pinto, T.; Afonso, S.; Karaś, M.; Szymanowska, U.; Gonçalves, B.; Vilela, A. Sustainability in Bio-Based Edible Films, Coatings, and Packaging for Small Fruits. Appl. Sci. 2025, 15, 1462. [Google Scholar] [CrossRef]
- Usman, I.; Sana, S.; Jaffar, H.M.; Munir, M.; Afzal, A.; Sukhera, S.; Boateng, I.D.; Afzaal, M.; Urugo, M.M. Recent progress in edible films and coatings: Toward green and sustainable food packaging technologies. Appl. Food Res. 2025, 5, 101070. [Google Scholar] [CrossRef]
- Omid Jeivan, A.; Galus, S. Edible Pouch Packaging for Food Applications—A Review. Processes 2025, 13, 2910. [Google Scholar] [CrossRef]
- Kumar, L.; Ramakanth, D.; Akhila, K.; Gaikwad, K.K. Edible films and coatings for food packaging applications: A review. Environ. Chem. Lett. 2022, 20, 875–900. [Google Scholar] [CrossRef]
- Bisht, B.; Lohani, U.C.; Kumar, V.; Gururani, P.; Sinhmar, R. Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Crit. Rev. Food Sci. Nutr. 2022, 62, 693–725. [Google Scholar] [CrossRef]
- Syarifuddin, A.; Muflih, M.H.; Izzah, N.; Fadillah, U.; Ainani, A.F.; Dirpan, A. Pectin-based edible films and coatings: From extraction to application on food packaging towards circular economy—A review. Carbohydr. Polym. Technol. Appl. 2025, 9, 100680. [Google Scholar] [CrossRef]
- Mikus, M.; Galus, S. Biopolymer active materials for food. Food Sci. Technol. Qual. 2023, 30, 18–32. [Google Scholar] [CrossRef]
- Bremenkamp, I.; Sousa Gallagher, M.J. Edible Coatings for Ready-to-Eat Products: Critical Review of Recent Studies, Sustainable Packaging Perspectives, Challenges and Emerging Trends. Polymers 2025, 17, 376. [Google Scholar] [CrossRef]
- Upadhyay, A.; Agbesi, P.; Arafat, K.M.Y.; Urdaneta, F.; Dey, M.; Basak, M.; Hong, S.; Umeileka, C.; Argyropoulos, D. Bio-based smart packaging: Fundamentals and functions in sustainable food systems. Trends Food Sci. Technol. 2024, 145, 104369. [Google Scholar] [CrossRef]
- Cazón, P.; Mateus, A.R.; Silva, A.S. Advances in active packaging using natural biopolymers and fruit by-products for enhanced food preservation. Food Res. Int. 2025, 213, 116439. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Hu, Y.; Pandi, A.; Yi, G.; Tan, Z. Caffeic acid-integrated biopolymer systems: Advancing sustainable active packaging for food preservation. Food Chem. X 2025, 29, 102763. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Singh, J.; Rasane, P.; Gupta, P.; Kaur, S.; Sharma, N.; Sowdhanya, D. Natural additives as active components in edible films and coatings. Food Biosci. 2023, 53, 102689. [Google Scholar] [CrossRef]
- Said, N.S.; Lee, W.Y. Pectin-Based Active and Smart Film Packaging: A Comprehensive Review of Recent Advancements in Antimicrobial, Antioxidant, and Smart Colorimetric Systems for Enhanced Food Preservation. Molecules 2025, 30, 1144. [Google Scholar] [CrossRef]
- Assifaoui, A.; Hayrapetyan, G.; Gallery, C.; Agoda-Tandjawa, G. Exploring techno-functional properties, synergies, and challenges of pectins: A review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100496. [Google Scholar] [CrossRef]
- Kalita, P.; Bhattacharjee, B.; Pachuau, L.; Roy, S. Recent trends in pectin sources, extraction, and active-edible coating applications. Food Control 2025, 171, 111105. [Google Scholar] [CrossRef]
- Yao, Q.-b.; Huang, F.; Lu, Y.-h.; Huang, J.-m.; Ali, M.; Jia, X.-Z.; Zeng, X.-A.; Huang, Y.-y. Polysaccharide-based food packaging and intelligent packaging applications: A comprehensive review. Trends Food Sci. Technol. 2024, 147, 104390. [Google Scholar] [CrossRef]
- Lee, C.R.; Lee, S.J.; Kim, T.I.; Chathuranga, K.; Lee, J.S.; Kim, S.; Kim, M.H.; Park, W.H. Chitosan-gallic acid conjugate edible coating film for perishable fruits. Food Chem. 2025, 463, 141322. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. Structural and antioxidant properties of hydroxytyrosol-pectin conjugates: Comparative analysis of adsorption and free radical methods and their impact on in vitro gastrointestinal process. Food Hydrocoll. 2025, 162, 110954. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Huang, B.; Zhuang, Y.; Hu, Y.; Fei, P. Pectin modified with phenolic acids: Evaluation of their emulsification properties, antioxidation activities, and antibacterial activities. Int. J. Biol. Macromol. 2021, 174, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Karaki, N.; Aljawish, A.; Muniglia, L.; Humeau, C.; Jasniewski, J. Physicochemical characterization of pectin grafted with exogenous phenols. Food Hydrocoll. 2016, 60, 486–493. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, J.Y.; Lee, Y.S. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022, 27, 7513. [Google Scholar] [CrossRef] [PubMed]
- Mikus, M.; Galus, S. Extending the Shelf Life of Apples After Harvest Using Edible Coatings as Active Packaging—A Review. Appl. Sci. 2025, 15, 767. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.-J.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef]
- Rahmawati, I.; Pratama, A.W.; Pratama, S.A.; Khozin, M.N.; Firmanda, A.; Irawan, F.H.; Asranudin; Ansori, A.N.M.; Sucipto, T.H. Gallic acid: A promising bioactive agent for food preservation and sustainable packaging development. Case Stud. Chem. Environ. Eng. 2024, 10, 100776. [Google Scholar] [CrossRef]
- Gangadharan, G.; Gupta, S.; Kudipady, M.L.; Puttaiahgowda, Y.M. Gallic Acid Based Polymers for Food Preservation: A Review. ACS Omega 2024, 9, 37530–37547. [Google Scholar] [CrossRef]
- Kaczmarek-Szczepańska, B.; Grabska-Zielińska, S.; Michalska-Sionkowska, M. The Application of Phenolic Acids in The Obtainment of Packaging Materials Based on Polymers—A Review. Foods 2023, 12, 1343. [Google Scholar] [CrossRef]
- Mikus, M.; Galus, S. The Effect of Phenolic Acids on the Sorption and Wetting Properties of Apple Pectin-Based Packaging Films. Molecules 2025, 30, 1960. [Google Scholar] [CrossRef]
- Łyczak, A.; Kirmani, I.; Galus, S. Valorisation of Cocoa Waste into Edible Packaging Films: Physicochemical Characterisation and Potential Use as Edible Pouches with Enhanced Light Barrier, Mechanical and Antioxidant Properties. Appl. Sci. 2025, 15, 11643. [Google Scholar] [CrossRef]
- Sobral, P.; Santos, J.; García, F. Effect of protein and plasticizer concentrations in film forming solutions on physical properties of edible films based on muscle proteins of a Thai Tilapia. J. Food Eng. 2005, 70, 93–100. [Google Scholar] [CrossRef]
- ASTM D1434-82; Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting. ASTM International: West Conshohocken, PA, USA, 2015.
- Moll, E.; Chiralt, A. Active PHBV films with ferulic acid or rice straw extracts for food preservation. LWT 2025, 228, 118115. [Google Scholar] [CrossRef]
- Cai, L.; Shi, H.; Cao, A.; Jia, J. Characterization of gelatin/chitosan ploymer films integrated with docosahexaenoic acids fabricated by different methods. Sci. Rep. 2019, 9, 8375. [Google Scholar] [CrossRef] [PubMed]
- Spence, C.; Velasco, C. On the multiple effects of packaging colour on consumer behaviour and product experience in the ‘food and beverage’ and ‘home and personal care’ categories. Food Qual. Prefer. 2018, 68, 226–237. [Google Scholar] [CrossRef]
- Durmus, A. CIELAB color space boundaries under theoretical spectra and 99 test color samples. Color Res. Appl. 2020, 45, 796–802. [Google Scholar] [CrossRef]
- Ngo, T.M.P.; Nguyen, T.H.; Dang, T.M.Q.; Tran, T.X.; Rachtanapun, P. Characteristics and Antimicrobial Properties of Active Edible Films Based on Pectin and Nanochitosan. Int. J. Mol. Sci. 2020, 21, 2224. [Google Scholar] [CrossRef]
- Insaward, A.; Duangmal, K.; Mahawanich, T. Mechanical, Optical, and Barrier Properties of Soy Protein Film As Affected by Phenolic Acid Addition. J. Agric. Food Chem. 2015, 63, 9421–9426. [Google Scholar] [CrossRef]
- Liu, X.; Sun, X.; Du, H.; Li, Y.; Wen, Y.; Zhu, Z. A transparent p-coumaric acid-grafted-chitosan coating with antimicrobial, antioxidant and antifogging properties for fruit packaging applications. Carbohydr. Polym. 2024, 339, 122238. [Google Scholar] [CrossRef]
- Fabra, M.; Hambleton, A.; Talens, P.; Debeaufort, F.; Chiralt, A. Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocoll. 2011, 25, 1441–1447. [Google Scholar] [CrossRef]
- Kozakiewicz, G.; Małajowicz, J.; Karwacka, M.; Ciurzyńska, A.; Szulc, K.; Żelazko, A.; Janowicz, M.; Galus, S. The Effects of Gamma-Decalactone on the Physicochemical and Antimicrobial Properties of Pectin-Based Packaging Films. Materials 2025, 18, 3831. [Google Scholar] [CrossRef]
- Devi, L.S.; Jaiswal, A.K.; Jaiswal, S. Lipid incorporated biopolymer based edible films and coatings in food packaging: A review. Curr. Res. Food Sci. 2024, 8, 100720. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Wada, O.Z.; Ige, A.O. Advances and recent trends in plant-based materials and edible films: A mini-review. Front. Chem. 2024, 12, 1441650. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhu, J.; Guan, G.; Wu, H. Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism. Int. J. Biol. Macromol. 2019, 122, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ren, J.; Xiao, X.; Cao, Y.; Zou, Y.; Qi, B.; Luo, X.; Liu, F. Recent advances in polysaccharide-based edible films/coatings for food preservation: Fabrication, characterization, and applications in packaging. Carbohydr. Polym. 2025, 364, 123779. [Google Scholar] [CrossRef]
- Chhikara, S.; Kumar, D. Edible Coating and Edible Film as Food Packaging Material: A Review. J. Packag. Technol. Res. 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Fathi, M.; Mirlohi, M.; Varshosaz, J.; Madani, G. Novel Caffeic Acid Nanocarrier: Production, Characterization, and Release Modeling. J. Nanomater. 2013, 2013, 434632. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Z.; Kadouh, H.; Zhou, K. The antimicrobial, mechanical, physical and structural properties of chitosan–gallic acid films. LWT-Food Sci. Technol. 2014, 57, 83–89. [Google Scholar] [CrossRef]
- Eslami, Z.; Elkoun, S.; Robert, M.; Adjallé, K. A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films. Molecules 2023, 28, 6637. [Google Scholar] [CrossRef]
- Bhatia, S.; Al-Harrasi, A.; Shah, Y.A.; Saif Alrasbi, A.N.; Jawad, M.; Koca, E.; Aydemir, L.Y.; Alamoudi, J.A.; Almoshari, Y.; Mohan, S. Structural, mechanical, barrier and antioxidant properties of pectin and xanthan gum edible films loaded with grapefruit essential oil. Heliyon 2024, 10, e25501. [Google Scholar] [CrossRef]
- Shah, A.; Bhatia, S.; Al-Harrasi, A.; Oz, F.; Khan, M.; Roy, S.; Esatbeyoglu, T.; Pratap-Singh, A. Thermal Properties of Biopolymer Films: Insights for Sustainable Food Packaging Applications. Food Eng. Rev. 2024, 16, 497–512. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Z.; Hu, L.; Li, G.; Yao, Q.; Hu, Y. Pectin-based active packaging: A critical review on preparation, physical properties and novel application in food preservation. Trends Food Sci. Technol. 2021, 118, 167–178. [Google Scholar] [CrossRef]
- Esfandiari, Z.; Hassani, B.; Sani, I.K.; Talebi, A.; Mohammadi, F.; Zomorodi, S.; Kaveh, M.; Assadpour, E.; Khodaei, S.M.; Eghbaljoo, H.; et al. Characterization of edible films made with plant carbohydrates for food packaging: A comprehensive review. Carbohydr. Polym. Technol. Appl. 2025, 11, 100979. [Google Scholar] [CrossRef]
- Cao, T.L.; Song, K.B. Effects of gum karaya addition on the characteristics of loquat seed starch films containing oregano essential oil. Food Hydrocoll. 2019, 97, 105198. [Google Scholar] [CrossRef]
- Giz, A.S.; Berberoglu, M.; Bener, S.; Aydelik-Ayazoglu, S.; Bayraktar, H.; Alaca, B.E.; Catalgil-Giz, H. A detailed investigation of the effect of calcium crosslinking and glycerol plasticizing on the physical properties of alginate films. Int. J. Biol. Macromol. 2020, 148, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Yerramathi, B.B.; Kola, M.; Annem Muniraj, B.; Aluru, R.; Thirumanyam, M.; Zyryanov, G.V. Structural studies and bioactivity of sodium alginate edible films fabricated through ferulic acid crosslinking mechanism. J. Food Eng. 2021, 301, 110566. [Google Scholar] [CrossRef]
- Sharma, S.; Jaiswal, A.K.; Duffy, B.; Jaiswal, S. Ferulic acid incorporated active films based on poly(lactide)/poly(butylene adipate-co-terephthalate) blend for food packaging. Food Packag. Shelf Life 2020, 24, 100491. [Google Scholar] [CrossRef]
- Chaves, M.L.C.; Jesus, G.A.M.; Castro, M.C.; Bruni, A.R.S.; Monteiro, J.P.; SantosJunior, O.O.; Martins, A.F.; Bonafé, E.G. Biodegradable Pectin/Starch-Based Films Applied on Fresh Pears. ACS Omega 2025, 10, 24050–24062. [Google Scholar] [CrossRef]
- Cruz, R.M.S.; Rainer, B.; Wagner, I.; Krauter, V.; Janalíková, M.; Vicente, A.A.; Vieira, J.M. Valorization of Cork Stoppers, Coffee-Grounds and Walnut Shells in the Development and Characterization of Pectin-Based Composite Films: Physical, Barrier, Antioxidant, Genotoxic, and Biodegradation Properties. Polymers 2024, 16, 1053. [Google Scholar] [CrossRef]
- Lindi, A.M.; Gorgani, L.; Mohammadi, M.; Hamedi, S.; Darzi, G.N.; Cerruti, P.; Fattahi, E.; Moeini, A. Fenugreek seed mucilage-based active edible films for extending fresh fruit shelf life: Antimicrobial and physicochemical properties. Int. J. Biol. Macromol. 2024, 269, 132186. [Google Scholar] [CrossRef]
- Fiedot, M.; Rac-Rumijowska, O.; Suchorska-Woźniak, P.; Czajkowski, M.; Szustakiewicz, K.; Safandowska, M.; Różański, A.; Zdunek, A.; Stawiński, W.; Cybińska, J.; et al. The smart apple-based foil: The role of pectin-glycerol-lipid interactions on thermoresponsive mechanism. Food Hydrocoll. 2024, 154, 110067. [Google Scholar] [CrossRef]
- Cabrera-Barjas, G.; González, M.; Benavides-Valenzuela, S.; Preza, X.; Paredes-Padilla, Y.A.; Castaño-Rivera, P.; Segura, R.; Durán-Lara, E.F.; Nesic, A. Active Packaging Based on Hydroxypropyl Methyl Cellulose/Fungal Chitin Nanofibers Films for Controlled Release of Ferulic Acid. Polymers 2025, 17, 2113. [Google Scholar] [CrossRef] [PubMed]
- Serrafi, A.; Wikiera, A.; Cyprych, K.; Malik, M. Spectroscopic and Microscopic Analysis of Apple Pectins. Molecules 2025, 30, 1633. [Google Scholar] [CrossRef] [PubMed]
- Dobrucka, R.; Pawlik, M.; Szymański, M. Green Packaging Films with Antioxidant Activity Based on Pectin and Camellia sinensis Leaf Extract. Molecules 2024, 29, 4699. [Google Scholar] [CrossRef] [PubMed]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Afzaal, M.; Saeed, F.; Anwer, M.K.; Khan, M.R.; Jawad, M.; Akram, N.; Faisal, Z. Mechanical Properties of Protein-Based Food Packaging Materials. Polymers 2023, 15, 1724. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, L.; Zeng, Y.; Zhou, Z.; Han, Y. Preparation and characterization of Levan composite film incorporating vanillin for use as a potential edible coating for peony seed oil. Int. J. Biol. Macromol. 2025, 288, 138732. [Google Scholar] [CrossRef]
- Gupta, R.K.; Rajan, D.; Meena, D.; Srivastav, P.P. Ferulic Acid as a Sustainable and Green Crosslinker for Biopolymer-Based Food Packaging Film. Macromol. Chem. Phys. 2025, 226, 2400441. [Google Scholar] [CrossRef]
- Kaczmarek, B.; Lewandowska, K.; Sionkowska, A. Modification of Collagen Properties with Ferulic Acid. Materials 2020, 13, 3419. [Google Scholar] [CrossRef]
- Zasada, L.; Chmielniak, D.; Gwizdalska, K.; Kaczmarek-Szczepańska, B. Preparation and comprehensive characterization of chitosan-based films enhanced with ferulic acid. Eng. Biomater. 2024, 27, 8. [Google Scholar] [CrossRef]
- Wu, C.; Tian, J.; Li, S.; Wu, T.; Hu, Y.; Chen, S.; Sugawara, T.; Ye, X. Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging. Carbohydr. Polym. 2016, 146, 10–19. [Google Scholar] [CrossRef]
- Woranuch, S.; Yoksan, R.; Akashi, M. Ferulic acid-coupled chitosan: Thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydr. Polym. 2015, 115, 744–751. [Google Scholar] [CrossRef]
- Kaczmarek-Szczepańska, B.; Zasada, L.; Grabska-Zielińska, S. The Physicochemical, Antioxidant, and Color Properties of Thin Films Based on Chitosan Modified by Different Phenolic Acids. Coatings 2022, 12, 126. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Li, H.; Wang, Y. Nanocomplexes film composed of gallic acid loaded ovalbumin/chitosan nanoparticles and pectin with excellent antibacterial activity: Preparation, characterization and application in coating preservation of salmon fillets. Int. J. Biol. Macromol. 2024, 259, 128934. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, J.; Jiang, W. Effect of different cation in situ cross-linking on the properties of pectin-thymol active film. Food Hydrocoll. 2022, 128, 107594. [Google Scholar] [CrossRef]
- Yang, J.; Cai, W.; Rizwan Khan, M.; Ahmad, N.; Zhang, Z.; Meng, L.; Zhang, W. Application of Tannic Acid and Fe3+ Crosslinking-Enhanced Pectin Films for Passion Fruit Preservation. Foods 2023, 12, 3336. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.; Pišonić, P.; Ščetar, M.; Janči, T.; Čanak, I.; Vidaček Filipec, S.; Benbettaieb, N.; Debeaufort, F.; Galić, K. Edible Coatings for Fish Preservation: Literature Data on Storage Temperature, Product Requirements, Antioxidant Activity, and Coating Performance—A Review. Antioxidants 2024, 13, 1417. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Mandal, S. Antibacterial activity of caffeic acid from plant sources: A review based on in silico, in vitro and in vivo approaches. Microbe 2025, 8, 100541. [Google Scholar] [CrossRef]
- Mandal, M.K.; Domb, A.J. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024, 16, 718. [Google Scholar] [CrossRef]
- Higgins, C.L.; Filip, S.V.; Afsar, A.; Colquhoun, H.M.; Hayes, W. From Food to Mobility: Investigating a Screening Assay for New Automotive Antioxidants Using the Stable Radical DPPH. ChemistrySelect 2021, 6, 9179–9184. [Google Scholar] [CrossRef]
- Akar, Z.; Küçük, M.; Doğan, H. A new colorimetric DPPH(•) scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J. Enzyme Inhib. Med. Chem. 2017, 32, 640–647. [Google Scholar] [CrossRef]
- Bhanja Dey, T.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar] [CrossRef]
- Nićiforović, N.; Abramovič, H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Tanner, C.; Cayot, P.; Karbowiak, T.; Debeaufort, F. Impact of functional properties and release kinetics on antioxidant activity of biopolymer active films and coatings. Food Chem. 2018, 242, 369–377. [Google Scholar] [CrossRef]
- Arslan, D.; Tontul, İ.; Polak, T.; Ulrih, N.P. Use of Sinapic Acid Alkyl Esters as Antioxidants in Microencapsulated Flaxseed Oil. Food Bioprocess Technol. 2025, 18, 449–459. [Google Scholar] [CrossRef]



| Film | L* | a* | b* | E |
|---|---|---|---|---|
| AP | 85.65 ± 0.70 e | −1.33 ± 0.10 a | 20.68 ± 2.26 bc | - |
| AP_CFA | 82.02 ± 0.87 b | −0.49 ± 0.20 c | 26.22 ± 2.94 de | 4.94 ± 1.94 ab |
| AP_CMA | 83.74 ± 1.02 c | −1.02 ± 0.20 b | 25.13 ± 2.78 de | 3.29 ± 1.93 bc |
| AP_FRA | 80.65 ± 0.66 a | 0.77 ± 0.33 d | 27.21 ± 1.18 e | 6.24 ± 1.38 a |
| AP_GLA | 84.94 ± 0.44 de | −1.49 ± 0.05 a | 18.23 ± 1.37 ab | 4.94 ± 1.44 ab |
| AP_PCA | 84.96 ± 0.83 de | −0.95 ± 0.09 b | 17.43 ± 1.58 a | 5.78 ± 1.66 a |
| AP_SNA | 84.36 ± 0.70 cd | −0.77 ± 0.16 b | 23.19 ± 2.11 cd | 2.08 ± 1.13 c |
| Film | Gloss (°) | Opacity (a.u./mm) | ||
|---|---|---|---|---|
| 20 | 60 | 85 | ||
| AP | 73.50 ± 2.47 e | 100.48 ± 1.69 d | 76.60 ± 0.50 c | 2.15 ± 0.17 ab |
| AP_CFA | 25.38 ± 1.38 a | 45.45 ± 1.40 a | 27.12 ± 0.80 a | 2.53 ± 0.15 b |
| AP_CMA | 39.81 ± 4.40 c | 64.56 ± 4.42 c | 35.53 ± 2.07 b | 1.78 ± 0.16 a |
| AP_FRA | 26.69 ± 2.67 a | 48.66 ± 2.87 a | 27.67 ± 1.64 a | 2.17 ± 0.27 ab |
| AP_GLA | 67.96 ± 3.02 d | 97.34 ± 1.50 d | 75.02 ± 1.63 c | 2.35 ± 0.51 b |
| AP_PCA | 70.42 ± 4.00 de | 100.22 ± 1.42 d | 76.66 ± 0.52 c | 1.78 ± 0.25 a |
| AP_SNA | 35.15 ± 2.00 b | 55.02 ± 1.79 b | 27.90 ± 1.64 a | 3.03 ± 0.46 c |
| Film | O2P (×10−16 g/m·s·Pa) | CO2P (×10−16 g/m·s·Pa) |
|---|---|---|
| AP | 0.84 ± 0.02 a | 1.15 ± 0.07 a |
| AP_CFA | 0.46 ± 0.03 a | 0.70 ± 0.01 a |
| AP_CMA | 0.89 ± 0.06 a | 1.33 ± 0.09 a |
| AP_FRA | 0.92 ± 0.12 a | 1.26 ± 0.17 b |
| AP_GLA | 0.88 ± 0.00 a | 1.46 ± 0.09 a |
| AP_PCA | 0.45 ± 0.08 b | 0.60 ± 0.09 b |
| AP_SNA | 1.65 ± 0.10 c | 2.33 ± 0.12 c |
| Film | 30–100 °C | 100–280 °C | 280–600 °C | |||
|---|---|---|---|---|---|---|
| °C | % | °C | % | °C | % | |
| AP | 63.59 | 4.27 | 178.92 226.27 | 48.95 | 331.92 | 19.06 |
| AP_CFA | 60.44 | 4.45 | 182.01 220.00 | 52.16 | 349.44 | 16.32 |
| AP_CMA | 58.75 | 5.00 | 183.13 219.74 | 53.23 | 351.57 | 16.64 |
| AP_FRA | 56.19 | 6.95 | 179.02 221.59 | 50.19 | 349.03 | 17.29 |
| AP_GLA | 61.55 | 5.68 | 180.53 214.77 | 52.78 | 345.23 | 16.03 |
| AP_PCA | 54.88 | 4.37 | 188.28 220.07 | 52.41 | 354.28 | 16.94 |
| AP_SNA | 58.52 | 4.94 | 187.55 220.74 | 54.79 | 309.54 | 15.45 |
| Film | TS (MPa) | E (%) | YM (MPa) |
|---|---|---|---|
| AP | 2.78 ± 0.40 a | 9.71 ± 1.16 a | 3.48 ± 0.73 a |
| AP_CFA | 4.09 ± 0.91 bc | 12.51 ± 1.83 b | 5.52 ± 0.68 b |
| AP_CMA | 3.37 ± 0.63 ab | 9.55 ± 1.62 a | 5.33 ± 0.63 b |
| AP_FRA | 3.61 ± 0.52 abc | 15.07 ± 1.74 c | 5.82 ± 0.69 b |
| AP_GLA | 3.32 ± 0.65 ab | 9.71 ± 1.45 a | 5.28 ± 0.94 b |
| AP_PCA | 4.45 ± 0.66 c | 12.51 ± 1.67 b | 5.47 ± 0.58 b |
| AP_SNA | 2.92 ± 0.40 a | 9.38 ± 1.80 a | 5.98 ± 0.58 b |
| Film | ABTS (mg TE/g d.m.) | DPPH (mg TE/g d.m.) |
|---|---|---|
| AP | 0.36 ± 0.12 a | 0.83 ± 0.02 a |
| AP_CFA | 10.13 ± 0.45 b | 12.65 ± 0.36 a |
| AP_CMA | 18.60 ± 0.91 c | 62.66 ± 3.51 c |
| AP_FRA | 38.08 ± 0.69 f | 131.48 ± 7.57 e |
| AP_GLA | 17.38 ± 0.23 c | 39.84 ± 0.84 b |
| AP_PCA | 23.13 ± 0.23 d | 57.99 ± 0.04 c |
| AP_SNA | 32.64 ± 0.42 e | 93.47 ± 5.69 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mikus, M.; Galus, S. The Effect of Selected Phenolic Acids on the Functional Properties of Pectin-Based Packaging Films. Appl. Sci. 2026, 16, 797. https://doi.org/10.3390/app16020797
Mikus M, Galus S. The Effect of Selected Phenolic Acids on the Functional Properties of Pectin-Based Packaging Films. Applied Sciences. 2026; 16(2):797. https://doi.org/10.3390/app16020797
Chicago/Turabian StyleMikus, Magdalena, and Sabina Galus. 2026. "The Effect of Selected Phenolic Acids on the Functional Properties of Pectin-Based Packaging Films" Applied Sciences 16, no. 2: 797. https://doi.org/10.3390/app16020797
APA StyleMikus, M., & Galus, S. (2026). The Effect of Selected Phenolic Acids on the Functional Properties of Pectin-Based Packaging Films. Applied Sciences, 16(2), 797. https://doi.org/10.3390/app16020797

