Abstract
The moldic pore-vuggy reservoirs of the Ma54-Ma51 sub-member in the Majiagou Formation, central Ordos Basin, are key targets for deep natural gas exploration, yet the alteration mechanisms and controlling factors of burial-stage pressure-released water karstification remain unclear. Herein, an integrated methodology encompassing core observation, thin-section analysis, and geochemical testing was adopted to systematically clarify the development characteristics and multi-factor coupling control mechanisms of this karst process. Results show that burial-stage pressure-released water karst is dominated by overprinting on pre-existing syndepositional and supergene pore networks, forming complex reservoir spaces via synergistic selective dissolution. The development of preferential dissolution zones is jointly controlled by differential compaction of the weathering crust, permeability heterogeneity of the overlying strata and weathered crust, and diagenetic fluid properties. After the supergene diagenetic stage, differential tectonic deformation and burial compaction induced overpressure in pore fluids, which drove acidic pressure-released water to migrate along high-permeability pathways such as the “sandstone windows” overlying the Ordovician weathering crust. These fluids preferentially dissolved high-permeability moldic pore-vuggy dolomites in paleo-karst platforms and steep slope zones, whereas tight micritic dolomites served as effective barriers. The acidic environment sustained by organic acids and H2S in pressure-released water promoted carbonate dissolution, and carbon-oxygen isotopes as well as pyrite δ34S values verify that the fluids were derived from mudstone compaction. This study reveals that the distribution of high-quality reservoirs is jointly determined by the synergistic preservation of moldic pore-vuggy systems in paleo-karst platforms and steep slopes and directional alteration of pressure-released water along preferential pathways, providing crucial geological guidance for the evaluation of deep carbonate reservoirs.