Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (789)

Search Parameters:
Keywords = gas–solid flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3376 KB  
Article
Perfluorocarbon Nanoemulsions for Simultaneous Delivery of Oxygen and Antioxidants During Machine Perfusion Supported Organ Preservation
by Smith Patel, Paromita Paul Pinky, Amit Chandra Das, Joshua S. Copus, Chip Aardema, Caitlin Crelli, Anneliese Troidle, Eric Lambert, Rebecca McCallin, Vidya Surti, Carrie DiMarzio, Varun Kopparthy and Jelena M. Janjic
Pharmaceutics 2026, 18(2), 143; https://doi.org/10.3390/pharmaceutics18020143 - 23 Jan 2026
Viewed by 100
Abstract
Background: Solid organ transplantation (SOT) is a life-saving treatment for patients with end-stage diseases and/or organ failure. However, access to healthy organs is often limited by challenges in organ preservation. Furthermore, upon transplantation, ischemia–reperfusion injury (IRI) can lead to increased organ rejection or [...] Read more.
Background: Solid organ transplantation (SOT) is a life-saving treatment for patients with end-stage diseases and/or organ failure. However, access to healthy organs is often limited by challenges in organ preservation. Furthermore, upon transplantation, ischemia–reperfusion injury (IRI) can lead to increased organ rejection or graft failures. The work presented aims to address both challenges using an innovative nanomedicine platform for simultaneous drug and oxygen delivery. In recent studies, resveratrol (RSV), a natural antioxidant, anti-inflammatory, and reactive oxygen species (ROS) scavenging agent, has been reported to protect against IRI by inhibiting ferroptosis. Here, we report the design, development, and scalable manufacturing of the first-in-class dual-function perfluorocarbon-nanoemulsion (PFC-NE) perfusate for simultaneous oxygen and antioxidant delivery, equipped with a near-infrared fluorescence (NIRF) reporter, longitudinal, non-invasive NIRF imaging of perfusate flow through organs/tissues during machine perfusion. Methods: A Quality-by-Design (QbD)-guided optimization was used to formulate a triphasic PFC-NE with 30% w/v perfluorooctyl bromide (PFOB). Drug-free perfluorocarbon nanoemulsions (DF-NEs) and RSV-loaded nanoemulsions (RSV-NEs) were produced at 250–1000 mL scales using M110S, LM20, and M110P microfluidizers. Colloidal attributes, fluorescence stability, drug loading, and RSV release were evaluated using DLS, NIRF imaging, and HPLC, respectively. PFC-NE oxygen loading and release kinetics were evaluated during perfusion through the BMI OrganBank® machine with the MEDOS HILITE® oxygenator and by controlled flow of oxygen. The in vitro antioxidant activity of RSV-NE was measured using the oxygen radical scavenging antioxidant capacity (ORAC) assay. The cytotoxicity and ferroptosis inhibition of RSV-NE were evaluated in RAW 264.7 macrophages. Results: PFC-NE batches maintained a consistent droplet size (90–110 nm) and low polydispersity index (<0.3) across all scales, with high reproducibility and >80% PFOB loading. Both DF-NE and RSV-NE maintained colloidal and fluorescence stability under centrifugation, serum exposure at body temperature, filtration, 3-month storage, and oxygenation. Furthermore, RSV-NE showed high drug loading and sustained release (63.37 ± 2.48% at day 5) compared with the rapid release observed in free RSV solution. In perfusion studies, the oxygenation capacity of PFC-NE consistently exceeded that of University of Wisconsin (UW) solution and demonstrated stable, linear gas responsiveness across flow rates and FiO2 (fraction of inspired oxygen) inputs. RSV-NE displayed strong antioxidant activity and concentration-dependent inhibition of free radicals. RSV-NE maintained higher cell viability and prevented RAS-selective lethal compound 3 (RSL3)-induced ferroptosis in murine macrophages (macrophage cell line RAW 264.7), compared to the free RSV solution. Morphological and functional protection against RSL3-induced ferroptosis was confirmed microscopically. Conclusions: This study establishes a robust and scalable PFC-NE platform integrating antioxidant and oxygen delivery, along with NIRF-based non-invasive live monitoring of organ perfusion during machine-supported preservation. These combined features position PFC-NE as a promising next-generation acellular perfusate for preventing IRI and improving graft viability during ex vivo machine perfusion. Full article
(This article belongs to the Special Issue Methods of Potentially Improving Drug Permeation and Bioavailability)
Show Figures

Graphical abstract

24 pages, 6607 KB  
Article
Energy Transfer Characteristics of Surface Vortex Heat Flow Under Non-Isothermal Conditions Based on the Lattice Boltzmann Method
by Qing Yan, Lin Li and Yunfeng Tan
Processes 2026, 14(2), 378; https://doi.org/10.3390/pr14020378 - 21 Jan 2026
Viewed by 58
Abstract
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to [...] Read more.
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to deterioration of downstream product quality and abnormal equipment operation. The vortex evolution process exhibits notable three-dimensional unsteadiness, multi-scale turbulence, and dynamic gas–liquid interfacial changes, accompanied by strong coupling effects between temperature gradients and flow field structures. Traditional macroscopic numerical models show clear limitations in accurately capturing these complex physical mechanisms. To address these challenges, this study developed a mesoscopic numerical model for gas-liquid two-phase vortex flow based on the lattice Boltzmann method. The model systematically reveals the dynamic behavior during vortex evolution and the multi-field coupling mechanism with the temperature field while providing an in-depth analysis of how initial perturbation velocity regulates vortex intensity and stability. The results indicate that vortex evolution begins near the bottom drain outlet, with the tangential velocity distribution conforming to the theoretical Rankine vortex model. The vortex core velocity during the critical penetration stage is significantly higher than that during the initial depression stage. An increase in the initial perturbation velocity not only enhances vortex intensity and induces low-frequency oscillations of the vortex core but also markedly promotes the global convective heat transfer process. With regard to the temperature field, an increase in fluid temperature reduces the viscosity coefficient, thereby weakening viscous dissipation effects, which accelerates vortex development and prolongs drainage time. Meanwhile, the vortex structure—through the induction of Taylor vortices and a spiral pumping effect—drives shear mixing and radial thermal diffusion between fluid regions at different temperatures, leading to dynamic reconstruction and homogenization of the temperature field. The outcomes of this study not only provide a solid theoretical foundation for understanding the generation, evolution, and heat transfer mechanisms of vortices under industrial thermal conditions, but also offer clear engineering guidance for practical production-enabling optimized operational parameters to suppress vortices and enhance drainage efficiency. Full article
(This article belongs to the Section Energy Systems)
26 pages, 7863 KB  
Article
Numerical Simulation and Structural Optimization of Flow and Heat Transfer of Flue Gas from Ascharite Ore Roasting in a CFB Desulfurization Reactor
by Mingjie Feng, Dedong Li, Shiwei Yu and Zhuo Wang
Energies 2026, 19(2), 485; https://doi.org/10.3390/en19020485 - 19 Jan 2026
Viewed by 92
Abstract
This study employs numerical simulation methods to systematically analyze the multiphase flow and heat transfer characteristics in a circulating fluidized bed flue gas desulfurization (CFB-FGD) reactor handling ascharite ore roasting flue gas. Based on the simulation results, key structural optimization strategies are proposed. [...] Read more.
This study employs numerical simulation methods to systematically analyze the multiphase flow and heat transfer characteristics in a circulating fluidized bed flue gas desulfurization (CFB-FGD) reactor handling ascharite ore roasting flue gas. Based on the simulation results, key structural optimization strategies are proposed. A three-dimensional mathematical model was developed based on the Fluent 19.1 platform, and the multiphase flow process was simulated using the Eulerian-Lagrangian method. The study examined the effects of venturi tube structure, atomized water nozzle installation height, and gas injection disruptor configuration on reactor performance. Optimization strategies for key structural components were systematically evaluated. The results show that the conventional inlet structure leads to significant non-uniformity in the velocity field. Targeted adjustments to the dimensions of venturi tubes at different positions markedly improve the velocity distribution uniformity. Reducing the atomized water nozzle installation height from 1.50 m to 0.75 m increased the temperature distribution uniformity index in the middle part of the straight pipe section by 5.5%. Moreover, a gas injection disruptor was installed in the upper part of the straight pipe section of the CFB-FGD reactor. Increasing the gas injection velocity from 15 m/s to 30 m/s increased the average residence time of desulfurization sorbents by 17.0%. This increase effectively enhances gas–solid mixing within the CFB-FGD reactor. The optimization strategies described above significantly reduced the extent of flow dead zones and low-temperature regions in the CFB-FGD reactor and improved flow conditions. This study provides important theoretical and technical support for the optimization and industrial application of CFB-FGD technology for ascharite ore roasting flue gas. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

15 pages, 3462 KB  
Article
Multiphysics Simulation for Efficient and Reliable Systems for Low-Temperature Plasma Treatment of Metals
by Nina Yankova Penkova, Boncho Edward Varhoshkov, Valery Todorov, Hristo Antchev, Kalin Krumov and Vesselin Iliev
Materials 2026, 19(2), 382; https://doi.org/10.3390/ma19020382 - 17 Jan 2026
Viewed by 198
Abstract
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the [...] Read more.
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the coupled electromagnetic, fluid flow, and thermal processes in vacuum chambers for the low-temperature plasma treatment of metal parts have been developed. They were solved numerically via ANSYS/CFX software for a discretized solid and gas space of a plasma nitriding chamber. The specific electrical conductivity of the gas mixture, containing plasma, has been calibrated on the basis of an electrical model of the chamber and in situ measurements. The three-dimensional fields of pressure, temperature, velocity, turbulent characteristics, electric current density, and voltage in the chamber have been simulated and analysed. Methods for further development and application of the models and for technological and constructive enhancement of the plasma treatment technologies are discussed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

20 pages, 3079 KB  
Review
Comparative Numerical Study on Flow Characteristics of 4 × 1 kW SOFC Stacks with U-Type and Z-Type Connection Configurations
by Xiaotian Duan, Haoyuan Yin, Youngjin Kim, Kunwoo Yi, Hyeonjin Kim, Kyongsik Yun and Jihaeng Yu
Batteries 2026, 12(1), 28; https://doi.org/10.3390/batteries12010028 - 14 Jan 2026
Viewed by 303
Abstract
In this study, a high-fidelity, full-scale three-dimensional Computational Fluid Dynamics (CFD) model was developed to analyze the effects of U-type and Z-type interconnection configurations on flow and distribution uniformity within a 4 × 1 kW planar solid oxide fuel cell (SOFC) stack composed [...] Read more.
In this study, a high-fidelity, full-scale three-dimensional Computational Fluid Dynamics (CFD) model was developed to analyze the effects of U-type and Z-type interconnection configurations on flow and distribution uniformity within a 4 × 1 kW planar solid oxide fuel cell (SOFC) stack composed of 40 unit cells. Mesh independence was verified using the Richardson extrapolation method. The results reveal that on the anode (fuel inlet) side, the Z-type configuration exhibits significantly better flow and pressure uniformity than the U-type configuration and shows low sensitivity to variations in fuel utilization (Uf = 0.3–0.8), maintaining stable flow distribution under different conditions. On the cathode (air inlet) side, however, the U-type configuration demonstrates superior flow stability at an air utilization rate of 0.3. Therefore, it is recommended to employ the Z-type configuration for the anode and the U-type configuration for the cathode to achieve more uniform gas distribution and enhanced operational stability. These findings provide valuable insights for optimizing the design and operation of solid oxide fuel cells (SOFCs) and offer guidance for the development of more efficient fuel cell systems. Full article
(This article belongs to the Special Issue Solid Oxide Fuel Cells (SOFCs))
Show Figures

Figure 1

29 pages, 5114 KB  
Article
Model Simulations and Experimental Study of Acetic Acid Adsorption on Ice Surfaces with Coupled Ice-Bulk Diffusion at Temperatures Around 200 K
by Atanas Terziyski, Peter Behr, Nikolay Kochev, Peer Scheiff and Reinhard Zellner
Physchem 2026, 6(1), 3; https://doi.org/10.3390/physchem6010003 - 9 Jan 2026
Viewed by 184
Abstract
A kinetic and thermodynamic multi-phase model has been developed to describe the adsorption of gases on ice surfaces and their subsequent diffusional loss into the bulk ice phase. This model comprises a gas phase, a solid surface, a sub-surface layer, and the ice [...] Read more.
A kinetic and thermodynamic multi-phase model has been developed to describe the adsorption of gases on ice surfaces and their subsequent diffusional loss into the bulk ice phase. This model comprises a gas phase, a solid surface, a sub-surface layer, and the ice bulk. The processes represented include gas adsorption on the surface, solvation into the sub-surface layer, and diffusion in the ice bulk. It is assumed that the gases dissolve according to Henry’s law, while the surface concentration follows the Langmuir adsorption equilibrium. The flux of molecules from the sub-surface layer into the ice bulk is treated according to Fick’s second law. Kinetic and thermodynamic quantities as applicable to the uptake of small carbonyl compounds on ice surfaces at temperatures around 200 K have been used to perform model calculations and corresponding sensitivity tests. The primary application in this study is acetic acid. The model simulations are applied by fitting the experimental data obtained from coated-wall flow-systems (CWFT) measurements, with the best curve-fit solutions providing reliable estimations of kinetic parameters. Over the temperature range from 190 to 220 K, the estimated desorption coefficient, kdes, varies from 0.02 to 1.35 s−1, while adsorption rate coefficient, kads, ranges from 3.92 and 4.17 × 10−13 cm3 s−1, and the estimated diffusion coefficient, D, changes by more than two orders of magnitude, increasing from 0.03 to 13.0 × 10−8 cm2 s−1. Sensitivity analyses confirm that this parameter estimation approach is robust and consistent with underlying physicochemical processes. It is shown that for shorter exposure times the loss of molecules from the gas phase is caused exclusively by adsorption onto the surface and solvation into the sub-surface layer. Diffusional loss into the bulk, on the other hand, is only important at longer exposure times. The model is a useful tool for elucidating surface and bulk process kinetic parameters, such as adsorption and desorption rate constants, solution and segregation rates, and diffusion coefficients, as well as the estimation of thermodynamic quantities, such as Langmuir and Henry constants and the ice film thickness. Full article
(This article belongs to the Section Kinetics and Thermodynamics)
Show Figures

Figure 1

31 pages, 7927 KB  
Review
Research Progress of High-Entropy Ceramic Films via Arc Ion Plating
by Haoran Chen, Baosen Mi, Jingjing Wang, Tianju Chen, Xun Ma, Ping Liu and Wei Li
Coatings 2026, 16(1), 82; https://doi.org/10.3390/coatings16010082 - 9 Jan 2026
Viewed by 388
Abstract
High-entropy ceramic (HEC) thin films generally refer to multi-component solid solutions composed of multiple metallic and non-metallic elements, existing in forms such as carbides, nitrides, and borides. Benefiting from the high-entropy effect, lattice distortion, sluggish diffusion, and cocktail effect of high-entropy systems, HEC [...] Read more.
High-entropy ceramic (HEC) thin films generally refer to multi-component solid solutions composed of multiple metallic and non-metallic elements, existing in forms such as carbides, nitrides, and borides. Benefiting from the high-entropy effect, lattice distortion, sluggish diffusion, and cocktail effect of high-entropy systems, HEC thin films form simple amorphous or nanocrystalline structures while exhibiting high hardness/elastic modulus, excellent tribological properties, and thermal stability. Although the mixing entropy increases with the number of elements in the system, a higher number of elements does not guarantee improved performance. In addition to system configuration, the regulation of preparation methods and processes is also a key factor in enhancing performance. Arc ion plating (AIP) has emerged as one of the mainstream techniques for fabricating high-entropy ceramic (HEC) thin films, which is attributed to its high ionization efficiency, flexible multi-target configuration, precise control over process parameters, and high deposition rate. Through rational design of the compositional system and optimization of key process parameters—such as the substrate bias voltage, gas flow rates, and arc current—HEC thin films with high hardness/toughness, wear resistance, high-temperature oxidation resistance, and electrochemical performance can be fabricated, and several of these properties can even be simultaneously achieved. Against the backdrop of AIP deposition, this review focuses on discussions grounded in the thermodynamic principles of high-entropy systems. It systematically discusses how process parameters influence the microstructure and, consequently, the mechanical, tribological, electrochemical, and high-temperature oxidation behaviors of HEC thin films under various complex service conditions. Finally, the review outlines prospective research directions for advancing the AIP-based synthesis of high-entropy ceramic coatings. Full article
Show Figures

Figure 1

19 pages, 3988 KB  
Article
Fuel Cell Micro-CHP: Analysis of Hydrogen Solid Storage and Artificial Photosynthesis Hydrogen Production
by Saad Fahim, Taoufiq Kaoutari, Guillaume Foin and Hasna Louahlia
Hydrogen 2026, 7(1), 5; https://doi.org/10.3390/hydrogen7010005 - 2 Jan 2026
Viewed by 266
Abstract
This paper investigates three distinct hydrogen-related subsystems: production, storage, and the use. An analysis of the micro-combined heat and power production (mCHP) behavior using natural gas is conducted to understand how the system operates under different conditions and to evaluate its yearly performance. [...] Read more.
This paper investigates three distinct hydrogen-related subsystems: production, storage, and the use. An analysis of the micro-combined heat and power production (mCHP) behavior using natural gas is conducted to understand how the system operates under different conditions and to evaluate its yearly performance. To reduce CO2 emissions, hydrogen fuel consumption is proposed, and an emission analysis under different fuel-supply configurations is performed. The results show that hydrogen produced by artificial photosynthesis has the lowest CO2 impact. Therefore, the paper examines this process and its main characteristics. An engineering model is proposed to rapidly estimate the mean volumetric hydrogen production rate. To ensure safe coupling between hydrogen production and mCHP demand, the study then focuses on solid-state hydrogen storage. Subsequently, in this framework, the state of charge (SOC) is defined as the central control variable linking storage thermodynamics to hydrogen delivery. Accurate SOC estimation ensures that the storage unit can supply the required hydrogen flow without causing starvation, pressure drops, or thermal drift during CHP operation. The proposed SOC estimation method is based on an analytical approach and experimentally validated while relying solely on external measurements. The overall objective is to enable a coherent, low-carbon, and safely controllable hydrogen-based mCHP system. Full article
(This article belongs to the Topic Advances in Hydrogen Energy)
Show Figures

Graphical abstract

20 pages, 14815 KB  
Article
CFD-DEM Simulation of Erosion in Glass Fiber-Reinforced Epoxy Resin Elbow
by Lei Xu, Yujie Shen, Xingchen Chen, Shiyi Bao, Xiaoteng Zheng, Xiyong Du and Yongzhi Zhao
Processes 2026, 14(1), 94; https://doi.org/10.3390/pr14010094 - 26 Dec 2025
Viewed by 255
Abstract
Erosion wear represents a significant issue in piping systems across energy and chemical industries, particularly in elbows. This study develops a prediction model for erosion wear based on tangential and normal impact energy for elbow tubes fabricated from zinc oxide-modified bidirectional E-glass fiber-reinforced [...] Read more.
Erosion wear represents a significant issue in piping systems across energy and chemical industries, particularly in elbows. This study develops a prediction model for erosion wear based on tangential and normal impact energy for elbow tubes fabricated from zinc oxide-modified bidirectional E-glass fiber-reinforced epoxy resin composites (ZnO-BE-GFRP). Using a combined CFD-DEM approach, the wear characteristics under gas–solid two-phase flow conditions were systematically investigated. The model quantifies the contributions of tangential and normal impact energy to material removal through the specific energy for cutting wear (et) and the specific energy for deformation wear (en), with key parameters calibrated against experimental data from ZnO-BE-GFRP. This study shows that the increase in gas velocity significantly intensifies wear, and the wear area extends towards the middle of the elbow as the gas velocity increases. The 40–45° area of the elbow is a high-risk wear zone due to the concentration of particle kinetic energy and high-frequency collisions. The particle size distribution has a significant impact on wear: as the degree of particle dispersion increases, the wear on the elbow extrados decreases. Full article
(This article belongs to the Special Issue Discrete Element Method (DEM) and Its Engineering Applications)
Show Figures

Figure 1

24 pages, 8605 KB  
Article
Design and Experimental Validation of a Gas-Flow-Optimised Reactor for the Hydrogen Reduction of Tellurium Oxide
by Hanwen Chung, Yi Heng Sin, Moritz Eickhoff, Semiramis Friedrich and Bernd Friedrich
Processes 2026, 14(1), 33; https://doi.org/10.3390/pr14010033 - 21 Dec 2025
Viewed by 364
Abstract
This study presents the development and evaluation of a novel solid–gas reactor designed to enhance the hydrogen reduction kinetics of tellurium oxide (TeO2) under atmospheric pressure. Such gas–solid reactions can be processed in several types of reactors, including but not limited [...] Read more.
This study presents the development and evaluation of a novel solid–gas reactor designed to enhance the hydrogen reduction kinetics of tellurium oxide (TeO2) under atmospheric pressure. Such gas–solid reactions can be processed in several types of reactors, including but not limited to fixed-bed reactors, moving-bed reactors, and fluidised-bed reactors. A combination of computational fluid dynamics (CFD) and experimental validation was employed to design and optimise a reactor’s geometry and gas-flow distribution. Single-phase CFD simulations were performed using the k–ω SST turbulence model to examine gas-flow behaviour, temperature uniformity, and gas-flow dead zones for two lance designs. The modified lance produced a stable swirling flow that improved gas distribution and eliminated stagnation regions. Experimental trials confirmed the simulation outcome in optimised gas-flow: the redesigned reactor achieved up to 65% conversion after 1 h and 70% after 2 h, a marked improvement over the rotary kiln, which required 5–6 h to reach similar levels. However, excessive gas flow led to cooling effects that reduced conversion efficiency. These results demonstrate the effectiveness of integrated CFD-guided reactor design for accelerating hydrogen-based oxide reduction and advancing sustainable metallurgical processes. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

19 pages, 2084 KB  
Article
Quantifying Influencing Factors of Dioxin Removal in Fly Ash Pyrolysis Through Meta-Analysis and Structural Equation Modeling
by Tao He, Shihan Tan, Qi Su, Feifei Chen, Chenlei Xie, Yuchi Zhong, Shuai Zhang and Jiafeng Ding
Toxics 2025, 13(12), 1072; https://doi.org/10.3390/toxics13121072 - 12 Dec 2025
Viewed by 490
Abstract
The treatment of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDD/Fs) in incineration fly ash presents a significant challenge in solid hazardous waste management. This study systematically analyzed the influence mechanisms of multiple factors on the removal efficiency of PCDD/Fs during fly ash pyrolysis. It [...] Read more.
The treatment of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDD/Fs) in incineration fly ash presents a significant challenge in solid hazardous waste management. This study systematically analyzed the influence mechanisms of multiple factors on the removal efficiency of PCDD/Fs during fly ash pyrolysis. It integrated 4068 datasets conducted between 2010 and 2025 through meta-analysis. Results show that Al2O3, CaO, SiO2, and Cl in fly ash components enhance the removal efficiency by 14.0%, while Fe2O3 (Content greater than 5.7%) exhibits inhibitory effects. Cd and Cr demonstrate a bimodal response pattern: low/high concentrations promote removal, while medium concentrations inhibit it. Process optimization identified the optimal parameter combination as pyrolysis temperatures of 500–900 °C, residence time of 50–90 min, and a gas flow rate greater than or equal to 400 mL/min. A significant negative correlation was observed between the initial dioxin concentration and removal efficiency. This study established a structural equation modeling (SEM) model to describe how metallic and nonmetallic components, fly ash components, and pyrolysis conditions determine removal efficiency. Fly ash composition was confirmed as the most influential factor (total effect = 0.3194), with fixed carbon and ash content being the most reliable indicators. Among pyrolysis conditions, gas conditions (flow rate, gas type) also significantly affected removal efficiency (total effect = 0.2357). Conversely, nonmetallic components and excessively prolonged pyrolysis time (beyond the window) consistently reduced removal efficiency. These findings provide theoretical support for upgrading fly ash pyrolysis processes toward low-carbon and resource-efficient operations. Full article
Show Figures

Graphical abstract

24 pages, 4686 KB  
Article
Parameter Calibration and Experimentation of the Discrete Element Model for Mixed Seeds of Vetch (Vicia villosa) and Oat (Avena sativa) in a Pneumatic Seed Drilling System
by Yu Fu, Dewei Wang, Xufeng Wang, Long Wang, Jianliang Hu, Xingguang Chi and Mao Ji
Appl. Sci. 2025, 15(24), 13048; https://doi.org/10.3390/app152413048 - 11 Dec 2025
Viewed by 232
Abstract
This paper focuses on mixed seeds of Vicia villosa and Avena sativa, with their discrete element model and contact parameters being systematically calibrated and validated to provide reliable theoretical support for the structural design and parameter optimization of the air-assisted seed delivery [...] Read more.
This paper focuses on mixed seeds of Vicia villosa and Avena sativa, with their discrete element model and contact parameters being systematically calibrated and validated to provide reliable theoretical support for the structural design and parameter optimization of the air-assisted seed delivery system. The physical properties of both seed types, including triaxial dimensions, density, moisture content, Poisson’s ratio, and shear modulus, were first measured. The Hertz–Mindlin (no slip) contact model and the multi-sphere aggregation method were employed to construct the discrete element models of Vicia villosa and Avena sativa, with preliminary calibration of the intrinsic model parameters. Poisson’s ratio, elastic modulus, collision restitution coefficient, static friction coefficient, and rolling friction coefficient between the seeds and PLA plastic plate were determined through uniaxial compression, free fall, inclined sliding, and inclined rolling tests. Each test was repeated five times, and the calibration criterion for contact parameters was based on minimizing the relative error between simulation and experimental results. Based on this, experiments on the packing angle of mixed seeds, steepest slope, and a three-factor quadratic rotational orthogonal combination were conducted. The inter-seed collision restitution coefficient, static friction coefficient, and rolling friction coefficient were set as the experimental factors. A total of 23 treatments were designed with repetitions at the center point, and a regression model was established for the relative error of the packing angle with respect to each factor. Based on the measured packing angle of 28.01° for the mixed seeds, the optimal contact parameter combination for the mixed seed pile was determined to be: inter-seed collision restitution coefficient of 0.312, static friction coefficient of 0.328, and rolling friction coefficient of 0.032. The relative error between the simulated packing angle and the measured value was 1.32%. The calibrated inter-seed contact parameters were further coupled into the EDEM–Fluent gas–solid two-phase flow model. Simulations and bench verification tests were carried out under nine treatment combinations, corresponding to three fan speeds (20, 25, and 30 m·s−1) and three total transport efficiencies (12.5, 17.5, and 22.5 g·s−1), with the consistency coefficient of seed distribution in each row being the main evaluation variable. The results showed that the deviation in the consistency coefficient of seed distribution between the simulation and experimental measurements ranged from 1.24% to 3.94%. This indicates that the calibrated discrete element model for mixed seeds and the EDEM–Fluent coupled simulation can effectively reproduce the air-assisted seed delivery process under the conditions of Vicia villosa and Avena sativa mixed sowing, providing reliable parameters and methodological support for the structural design of seeders and DEM-CFD coupled simulations in legume–grass mixed sowing systems. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

16 pages, 2014 KB  
Article
Flow Mechanisms and Parameter Influence in Drill Pipe Pullback Gravel Packing: A Numerical Study on Horizontal Wells
by Haoxian Shi, Mengjia Cai, Jiudong Shi, Jiaxin Sun, Hang Zhou, Fanfan Qin, Wenwei Xie, Zhichao Liu, Lixia Li, Yanjiang Yu and Fulong Ning
J. Mar. Sci. Eng. 2025, 13(12), 2349; https://doi.org/10.3390/jmse13122349 - 10 Dec 2025
Viewed by 261
Abstract
Drill pipe pullback gravel packing is a novel sand control method for marine natural gas hydrate reservoirs, enabling rapid and uniform filling by synchronizing fluid injection with pipe retraction. However, the complex liquid–solid two-phase flow mechanisms and parameter sensitivities in this dynamic process [...] Read more.
Drill pipe pullback gravel packing is a novel sand control method for marine natural gas hydrate reservoirs, enabling rapid and uniform filling by synchronizing fluid injection with pipe retraction. However, the complex liquid–solid two-phase flow mechanisms and parameter sensitivities in this dynamic process remain unclear. To address this gap, a coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM) approach is adopted in accordance with the trial production requirements in the South China Sea. This investigation systematically analyzes the relative contributions of injection rate (0.8–2.2 m3/min) and sand-carrying ratio (30–60%) to the packing effectiveness. Additionally, the effects of carrier fluid viscosity and drill pipe pullback speed are explored. Results show that injection rate and sand-carrying ratio positively affect performance, with sand-carrying ratio as the decisive factor, exhibiting an impact approximately 73 times greater than that of the injection rate. Optimal parameters in this study are injection rate of 2.2 m3/min and sand-carrying ratio of 60%, which yield the highest gravel volume fraction and stable bed height. Furthermore, it is also found that while increasing carrier fluid viscosity improves bed height, excessive viscosity hinders particle settling and compaction. Similarly, a trade-off exists for the pullback speed to balance packing density and pipe burial risks. These findings provide a theoretical basis for optimizing sand control operations in hydrate trial productions. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

20 pages, 7201 KB  
Article
Effects of Rectangular Trench and Inclined Hole Geometry on Film Cooling Flow and Heat Transfer Characteristics
by Liang Xu, Yifan Wan, Lei Xi, Yunlong Li and Jianmin Gao
Energies 2025, 18(24), 6441; https://doi.org/10.3390/en18246441 - 9 Dec 2025
Viewed by 286
Abstract
Regarding the cooling structure of gas turbine combustors, this paper employs numerical simulation methods to analyze the influence of structural parameters of a rectangular trench with inclined holes on flow and heat transfer characteristics at a coolant-side Reynolds number of 100,000. The results [...] Read more.
Regarding the cooling structure of gas turbine combustors, this paper employs numerical simulation methods to analyze the influence of structural parameters of a rectangular trench with inclined holes on flow and heat transfer characteristics at a coolant-side Reynolds number of 100,000. The results indicate that with a decrease in the width of the rectangular trench and an increase in the diameter of the inclined holes, the coolant-side friction factor gradually decreases. The coolant-side friction factor at a streamwise distance of Y/D = 30 is lower than that at Y/D = 20 and 40. With an increase in the diameter of the inclined holes, the average coolant-side Nusselt number exhibits a greater increase, indicating significantly enhanced heat transfer effectiveness. The average coolant-side Nusselt number at a streamwise distance of Y/D = 40 is higher than that at Y/D = 20 and 30. Furthermore, with an increase in the diameter of the inclined holes and a decrease in the streamwise distance, the average temperature of the solid wall on the hot-gas side gradually decreases, leading to a progressive improvement in cooling efficiency. Full article
(This article belongs to the Special Issue Advanced Research in Heat and Mass Transfer)
Show Figures

Figure 1

23 pages, 5725 KB  
Article
CPFD Modeling of an Industrial Oxy-Fuel Cement Calciner: Hydrodynamics, Temperature Distribution, and CO2 Enrichment
by Changhua Chen, Minyan Lin, Zhouzheng Jin, Xueping Peng and Chenghang Zheng
Energies 2025, 18(24), 6419; https://doi.org/10.3390/en18246419 - 8 Dec 2025
Viewed by 461
Abstract
Oxy-fuel combustion technology is a critical pathway for carbon capture in the cement industry. However, the high-concentration CO2 atmosphere significantly alters multiphysics coupling in the calciner and systematic studies on its comprehensive effects remain limited. To address this, a Computational Particle Fluid [...] Read more.
Oxy-fuel combustion technology is a critical pathway for carbon capture in the cement industry. However, the high-concentration CO2 atmosphere significantly alters multiphysics coupling in the calciner and systematic studies on its comprehensive effects remain limited. To address this, a Computational Particle Fluid Dynamics (CPFD) model using the MP-PIC method was implemented using the commercial software Barracuda Virtual Reactor 22.1.2 to simulate an industrial-scale oxy-fuel cement calciner and validated against industrial data. Under oxy-fuel combustion with 50% oxygen concentration in the tertiary air, simulations showed a 38.4% increase in the solid–gas mass ratio compared to conventional air combustion, resulting in a corresponding 37.7% increase in total pressure drop. Flow resistance was concentrated primarily in the constriction structures. Local temperatures exceeded 1200 °C in high-oxygen regions. The study reveals a competition between the inhibitory effect of high CO2 partial pressure on limestone decomposition and the promoting effect of elevated overall temperature. Although the CO2-rich atmosphere thermodynamically suppresses calcination, the higher operating temperature under oxy-fuel combustion effectively compensates, achieving a raw meal decomposition rate of 92.7%, which meets kiln feed requirements. This research elucidates the complex coupling mechanisms among flow, temperature, and reactions in a full-scale oxy-fuel calciner, providing valuable insights for technology design and optimization. Full article
Show Figures

Figure 1

Back to TopTop