Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (576)

Search Parameters:
Keywords = fruit load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1554 KB  
Article
Effects of Fruiting Load on Endogenous Hormones in the Aril of Longan Fruit and Leaflet of Fruiting Branches at the Mature Stage
by Junbin Wei, Shilian Huang, Jingyi Li, Dongmei Han, Tao Luo, Jianguang Li, Zhenxian Wu, Dongliang Guo, Xinmin Lv and Yanan Tian
Plants 2026, 15(3), 353; https://doi.org/10.3390/plants15030353 - 23 Jan 2026
Viewed by 85
Abstract
Longan (Dimocarpus longan Lour.) exhibits vigorous vegetative growth and strong fruit setting ability but suffers from alternate bearing. The role of endogenous hormones in mediating the effects of fruiting load remains unclear. This study investigated how the initial fruiting branch rate (IFBR) [...] Read more.
Longan (Dimocarpus longan Lour.) exhibits vigorous vegetative growth and strong fruit setting ability but suffers from alternate bearing. The role of endogenous hormones in mediating the effects of fruiting load remains unclear. This study investigated how the initial fruiting branch rate (IFBR) and initial fruit number per cluster (INFC) regulate endogenous hormones in the aril and leaflets of mature ‘Shixia’ longan. Key findings reveal the aril as the hormonal sink, accumulating auxin (IAA) and abscisic acid (ABA), while leaves retain IAA precursors (TRP) and conjugates. Higher IFBR and INFC increased the demand for IAA in the aril to support expansion but simultaneously elevated ABA levels in leaves. Notably, IFBR exerted a stronger influence than INFC. These hormonal changes were significantly correlated with the fruit shedding rate and soluble solid content. Overall, the endogenous hormone profile was optimized by maintaining a moderate IFBR of approximately 60% and an INFC within the range of 60 to 80, achieving balance between fruit expansion, leaf vitality, and yield. The results provide a hormonal basis for precise crop load management in longan cultivation. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

22 pages, 2864 KB  
Article
Chitosan-Loaded Vanillin Nanoformulation as an Edible Coating for Post-Harvest Preservation of Indian Gooseberry (Amla)
by Monisha Soni, Archana Kumari, Aarohi Singh, Sangeeta Kumari, Umakant Banjare, Nawal Kishore Dubey and Abhishek Kumar Dwivedy
Foods 2026, 15(2), 395; https://doi.org/10.3390/foods15020395 - 22 Jan 2026
Viewed by 61
Abstract
This is the first investigation that attempts to synthesize chitosan-loaded vanillin nanoformulation (vanillin-Nf) as a novel edible coating agent to prolong the storage life of Indian gooseberry (amla). Different concentrations of vanillin were encapsulated into chitosan via ionic gelation approach using sodium tripolyphosphate [...] Read more.
This is the first investigation that attempts to synthesize chitosan-loaded vanillin nanoformulation (vanillin-Nf) as a novel edible coating agent to prolong the storage life of Indian gooseberry (amla). Different concentrations of vanillin were encapsulated into chitosan via ionic gelation approach using sodium tripolyphosphate as a cross-linker. Vanillin-Nf 1:1 (w/v) exhibited maximum loading capacity (2.502 ± 0.008%) and encapsulation efficiency (54.483 ± 1.165%). The physico-chemical characterization of vanillin-Nf through SEM, DLS, FT-IR, and XRD techniques confirmed effective incorporation of vanillin into the chitosan biomatrix and formation of spherical nanocapsules, with a mean particle size of 232.83 nm, zeta potential +69.66 mV, and polydispersity index 0.296. The in vitro release profile of vanillin exhibited a biphasic and regulated release pattern. The application of vanillin-Nf as an edible coating solution on amla (Phyllanthus emblica L.) fruits was highly effective in reducing decay incidence up to 42.84% and extended their shelf-life to 15 days at 25 ± 2 °C. The vanillin-Nf coating significantly reduced weight loss in amla fruits (24.39 ± 1.02%) in comparison to control. In addition, vanillin-Nf coating also helped in preserving the key quality parameters, including pH, chlorophyll content, total soluble solids, total phenols, and antioxidant capacity of Indian gooseberries to a substantial extent at the end of storage. Collectively, our findings indicate that vanillin-Nf coating is an effective post-harvest approach for controlling decay, prolonging shelf-life, and maintaining the nutritional attributes of Indian gooseberries, highlighting its potential for commercial application in the food and agriculture industry. Full article
Show Figures

Graphical abstract

16 pages, 726 KB  
Article
A Holistic Picture of the Relationships Between Dietary Intake and Physical and Behavioral Health in Youth with Type 1 Diabetes Mellitus: A Pilot Study
by Megan Beardmore and Michelle M. Perfect
Diabetology 2026, 7(1), 21; https://doi.org/10.3390/diabetology7010021 - 21 Jan 2026
Viewed by 90
Abstract
Background/Objectives: Youth with type 1 diabetes (T1DM) face unique challenges in balancing dietary choices, physical health outcomes, and social–emotional well-being in school settings. This cross-sectional exploratory pilot study examined the associations of diet with physical health and teacher-reported social–emotional functioning in students with [...] Read more.
Background/Objectives: Youth with type 1 diabetes (T1DM) face unique challenges in balancing dietary choices, physical health outcomes, and social–emotional well-being in school settings. This cross-sectional exploratory pilot study examined the associations of diet with physical health and teacher-reported social–emotional functioning in students with T1DM. Methods: Students with T1DM (mean age = 13.42; 47 female, 50 male; 50% White, Non-Hispanic, 50% minority) self-reported their nutritional habits using the KBlock Dietary Screener for Children when school was in session. Teacher-rated school-related behaviors were assessed through the Behavior Assessment Scale for Children-2nd Edition (BASC-2). Canonical correlation analysis was conducted to determine whether the variable sets (diet with physical health and school-related behavioral health) shared a significant multivariate relationship. Results: Youth with lower glycemic loads and consuming more sugar, dairy, and meat/poultry/fish but fewer legumes, fruit, and less saturated fat exhibited fewer externalizing symptoms and higher BMI. Diet uniquely accounted for modest variance in combined social–emotional and physical health, controlling for demographics and T1DM duration. Findings support increasing the availability of whole, nutrient-rich foods, integrating comprehensive nutrition education into curricula, and ensuring access for all students, regardless of socioeconomic status. Conclusions: Comprehensive dietary assessments and school-based randomized control trials are needed to enact more evidence-based dietary recommendations or interventions for youth, aiming for a balanced approach that addresses both mental and physical health outcomes. Full article
Show Figures

Figure 1

22 pages, 18817 KB  
Article
Integration of X-Ray CT, Sensor Fusion, and Machine Learning for Advanced Modeling of Preharvest Apple Growth Dynamics
by Weiqun Wang, Dario Mengoli, Shangpeng Sun and Luigi Manfrini
Sensors 2026, 26(2), 623; https://doi.org/10.3390/s26020623 - 16 Jan 2026
Viewed by 205
Abstract
Understanding the complex interplay between environmental factors and fruit quality development requires sophisticated analytical approaches linking cellular architecture to environmental conditions. This study introduces a novel application of dual-resolution X-ray computed tomography (CT) for the non-destructive characterization of apple internal tissue architecture in [...] Read more.
Understanding the complex interplay between environmental factors and fruit quality development requires sophisticated analytical approaches linking cellular architecture to environmental conditions. This study introduces a novel application of dual-resolution X-ray computed tomography (CT) for the non-destructive characterization of apple internal tissue architecture in relation to fruit growth, thereby advancing beyond traditional methods that are primarily focused on postharvest analysis. By extracting detailed three-dimensional structural parameters, we reveal tissue porosity and heterogeneity influenced by crop load, maturity timing and canopy position, offering insights into internal quality attributes. Employing correlation analysis, Principal Component Analysis, Canonical Correlation Analysis, and Structural Equation Modeling, we identify temperature as the primary environmental driver, particularly during early developmental stages (45 Days After Full Bloom, DAFB), and uncover nonlinear, hierarchical effects of preharvest environmental factors such as vapor pressure deficit, relative humidity, and light on quality traits. Machine learning models (Multiple Linear Regression, Random Forest, XGBoost) achieve high predictive accuracy (R2 > 0.99 for Multiple Linear Regression), with temperature as the key predictor. These baseline results represent findings from a single growing season and require validation across multiple seasons and cultivars before operational application. Temporal analysis highlights the importance of early-stage environmental conditions. Integrating structural and environmental data through innovative visualization tools, such as anatomy-based radar charts, facilitates comprehensive interpretation of complex interactions. This multidisciplinary framework enhances predictive precision and provides a baseline methodology to support precision orchard management under typical agricultural variability. Full article
(This article belongs to the Special Issue Feature Papers in Sensing and Imaging 2025&2026)
Show Figures

Figure 1

17 pages, 11104 KB  
Article
Lightweight Improvements to the Pomelo Image Segmentation Method for Yolov8n-seg
by Zhen Li, Baiwei Cao, Zhengwei Yu, Qingting Jin, Shilei Lyu, Xiaoyi Chen and Danting Mao
Agriculture 2026, 16(2), 186; https://doi.org/10.3390/agriculture16020186 - 12 Jan 2026
Viewed by 291
Abstract
Instance segmentation in agricultural robotics requires a balance between real-time performance and accuracy. This study proposes a lightweight pomelo image segmentation method based on the YOLOv8n-seg model integrated with the RepGhost module. A pomelo dataset consisting of 5076 samples was constructed through systematic [...] Read more.
Instance segmentation in agricultural robotics requires a balance between real-time performance and accuracy. This study proposes a lightweight pomelo image segmentation method based on the YOLOv8n-seg model integrated with the RepGhost module. A pomelo dataset consisting of 5076 samples was constructed through systematic image acquisition, annotation, and data augmentation. The RepGhost architecture was incorporated into the C2f module of the YOLOv8-seg backbone network to enhance feature reuse capabilities while reducing computational complexity. Experimental results demonstrate that the YOLOv8-seg-RepGhost model enhances efficiency without compromising accuracy: parameter count is reduced by 16.5% (from 3.41 M to 2.84 M), computational load decreases by 14.8% (from 12.8 GFLOPs to 10.9 GFLOPs), and inference time is shortened by 6.3% (to 15 ms). The model maintains excellent detection performance with bounding box mAP50 at 97.75% and mask mAP50 at 97.51%. The research achieves both high segmentation efficiency and detection accuracy, offering core support for developing visual systems in harvesting robots and providing an effective solution for deep learning-based fruit target recognition and automated harvesting applications. Full article
(This article belongs to the Special Issue Advances in Precision Agriculture in Orchard)
Show Figures

Figure 1

20 pages, 5307 KB  
Article
Chitosan-Based Aerogel Cushioning Packaging for Improving Postharvest Quality of Wax Apples
by Yujie Hou, Sitong Zhou, Shiqi Liu, Peng Jin, Yonghua Zheng and Zhengguo Wu
Foods 2026, 15(2), 192; https://doi.org/10.3390/foods15020192 - 6 Jan 2026
Viewed by 264
Abstract
Mechanical damage and microbial contamination are major challenges in the postharvest logistics of perishable fruit. In this study, two types of functionally modified chitosan-based aerogel pads were developed to enhance cushioning and preservation of wax apples. A chitosan/polyvinyl alcohol (CP) aerogel was first [...] Read more.
Mechanical damage and microbial contamination are major challenges in the postharvest logistics of perishable fruit. In this study, two types of functionally modified chitosan-based aerogel pads were developed to enhance cushioning and preservation of wax apples. A chitosan/polyvinyl alcohol (CP) aerogel was first optimized by adjusting solid content, CS:PVA ratio, and crosslinker concentration. The optimal formulation (2% solids, 1:1 CS: PVA, 3% glutaraldehyde) exhibited a uniform porous structure and improved compressive strength. A chitosan/montmorillonite (CM) aerogel with 5% montmorillonite (MMT) showed high porosity, low density, and excellent cyclic stability. Incorporating 10% copper nanoparticle-loaded antibacterial fibers (CuNPs-TNF) into CM aerogels yielded CM-Cu aerogels with enhanced cushioning and antimicrobial properties. Under simulated transport and cold storage conditions, all aerogel-packaged groups reduced mechanical damage and decay of wax apples. Compared to the control, the CM-Cu group showed 66% lower decay, 5% less weight loss, 6 N greater firmness, 7% less juice yield, and a 13% reduction in relative electrical conductivity. Additionally, it better preserved fruit color and total soluble solids, extending shelf life by 4 d at 20 °C. These results demonstrate the potential of chitosan-based aerogels as multifunctional packaging materials that combine mechanical protection with antimicrobial activity for perishable fruit preservation. Full article
(This article belongs to the Special Issue Application and Safety of Edible Films in Food Packaging)
Show Figures

Figure 1

14 pages, 1665 KB  
Article
Reproductive Investment Across Native and Invasive Regions in Pittosporum undulatum Vent., a Range Expanding Gynodioecious Tree
by Ben O’Leary, Martin Burd, Susanna Venn and Roslyn M. Gleadow
Forests 2026, 17(1), 72; https://doi.org/10.3390/f17010072 - 5 Jan 2026
Viewed by 340
Abstract
The success of invasive species relies heavily on the production, dispersal and genetic composition of propagules. For range expanding species, breeding strategy and level of reproductive investment will strongly influence their capacity to establish and invade new areas. A hermaphroditic lifestyle provides the [...] Read more.
The success of invasive species relies heavily on the production, dispersal and genetic composition of propagules. For range expanding species, breeding strategy and level of reproductive investment will strongly influence their capacity to establish and invade new areas. A hermaphroditic lifestyle provides the advantage of increasing the number of seed bearing individuals within a population while a dioecious habit may enable more rapid adaptation to new environments, improve resource use efficiency, fecundity and dispersal. Pittosporum undulatum, a tree native to coastal areas of southeastern Australia, has many characteristics of an invasive species within and beyond its native range. A previous study detected a male bias within invasive populations, with a high proportion of fruit deriving from female-only trees, leading to recommendations for the removal of ‘matriarch’ trees as a simple management technique. We expanded that study and investigated breeding systems of different populations of P. undulatum by assessing tree density, gender, resource availability and fruit load of 871 individuals in seven native and seven invasive populations. All populations comprised either females (47%) or hermaphrodites. No male-only trees were observed within the study. More females produced more fruit than hermaphrodites, especially in the native site. This could not be attributed to environmental differences between sites. These data support the current management practices of targeting the removal of females as a simple method for containing invasions given the benefits of reducing the workload and spreading limited management resource. Our work highlights the value in understanding the breeding strategy employed by focal invasive species as a means of developing improved and more targeted control methods. Full article
Show Figures

Figure 1

17 pages, 3864 KB  
Article
Physiological, Biochemical, and Transcriptome Analyses Reveal the Potential Role of ABA in Dufulin-Induced Tomato Resistance to Tomato Brown Rugose Fruit Virus (ToBRFV)
by Jinfeng Wang, Shijun Xing, Tao Li, Peiyan Zhao, Jian-Wei Guo, Yuqi Xia, Yating Liu and Shibo Wu
Horticulturae 2026, 12(1), 60; https://doi.org/10.3390/horticulturae12010060 - 4 Jan 2026
Viewed by 385
Abstract
As an important plant immune inducer, Dufulin has long been thought to enhance plant resistance to multiple plant viruses through activating the salicylic acid (SA) pathway. However, whether this immune inducer responds to tomato brown rugose fruit virus (ToBRFV) infection in the same [...] Read more.
As an important plant immune inducer, Dufulin has long been thought to enhance plant resistance to multiple plant viruses through activating the salicylic acid (SA) pathway. However, whether this immune inducer responds to tomato brown rugose fruit virus (ToBRFV) infection in the same way remains uncertain. In this study, we systematically analyzed the multiple effects of Dufulin treatment on the physiological, biochemical and gene expression patterns in tomato under ToBRFV infection. The results showed that the application of Dufulin could significantly increase the chlorophyll content; elevate the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); reduce the ToBRFV viral load; and enhance plant growth. Moreover, we found that Dufulin treatment could increase both SA and abscisic acid (ABA) contents. However, SA-related genes were not strongly activated as the genes involved in ABA biosynthesis and signal transduction pathways. This suggested that ABA likely plays an unrecognized role in the formation of this induced resistance. Through weighted gene co-expression network analysis (WGCNA) and cis-element analysis of the target gene promoters, we identified that SlABI5-like and SlWRKY4 might be the key potential transcription factor genes for Dufulin-induced tomato resistance to ToBRFV, and constructed their molecular regulatory network. We also conducted qRT-PCR assay to verify the gene expression patterns involved in this study. These findings potentially provide new insights into the mechanism of Dufulin-induced antiviral resistance, and enlarge important molecular targets for ToBRFV prevention and control. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Figure 1

33 pages, 1059 KB  
Article
Physiological and Agronomic Responses of Adult Citrus Trees to Oxyfertigation Under Semi-Arid Drip-Irrigated Conditions
by Juan M. Robles, Francisco Miguel Hernández-Ballester, Josefa M. Navarro, Elisa I. Morote, Pablo Botía and Juan G. Pérez-Pérez
Agriculture 2026, 16(1), 75; https://doi.org/10.3390/agriculture16010075 - 29 Dec 2025
Viewed by 313
Abstract
Oxyfertigation with hydrogen peroxide (H2O2) has been successfully applied in several crops and production systems, but its use in mature citrus orchards under no-tillage conditions and semi-arid Mediterranean environments remains scarcely studied. This study aimed to evaluate the physiological [...] Read more.
Oxyfertigation with hydrogen peroxide (H2O2) has been successfully applied in several crops and production systems, but its use in mature citrus orchards under no-tillage conditions and semi-arid Mediterranean environments remains scarcely studied. This study aimed to evaluate the physiological responses of adult citrus trees and the agronomic performance of a mature citrus orchard subjected to chemical oxyfertigation based on the application of H2O2 in irrigation water as an oxygen source for the root zone. The experiment was conducted over four consecutive seasons (2018–2021) on adult ‘Ortanique’ hybrid mandarin trees grown in an orchard located in Torre Pacheco (Murcia, Spain). Two treatments were established: a ‘Control’ (0 mg L−1 of H2O2) and an ‘OXY’ treatment (50–100 mg L−1 of H2O2 applied throughout the growing season). Oxyfertigation significantly increased the dissolved oxygen in irrigation water and soil oxygen diffusion rate, with treatment and treatment × time effects showing greater oxygenation under conditions favoring transient root-zone hypoxia. Soil CO2 and H2O vapor fluxes exhibited marked seasonal dynamics but no consistent treatment effect, and soil salinity and macro- and micronutrient contents were not significantly altered. At the plant level, oxyfertigation episodically enhanced leaf gas exchange and transiently improved the water status, but did not produce a sustained increase in leaf-level water use efficiency. In contrast, OXY trees showed greater pruning biomass, more fruits (+18%), higher cumulative yield (+13%), and significantly higher crop water use efficiency (YWUE) while the mean fruit weight and most quality attributes were governed by interannual climatic variability. In summary, oxyfertigation acted as a complementary and safe agronomic practice that improved rhizosphere oxygenation and supported modest gains in fruit load and YWUE in mature citrus orchards. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

14 pages, 5312 KB  
Article
Heavy Fruit Load Inhibits the Development of Citrus Summer Shoots Primarily Through Competing for Carbohydrates
by Yin Luo, Yu-Jia Li, Yong-Zhong Liu, Yan-Mei Xiao, Hui-Fen Li and Shariq Mahmood Alam
Horticulturae 2026, 12(1), 14; https://doi.org/10.3390/horticulturae12010014 - 24 Dec 2025
Viewed by 332
Abstract
The excessive and random production of summer shoots poses significant challenges to pest and disease management and the improvement of fruit quality in citrus orchards. Although heavy fruit load has been observed to reduce summer shoot numbers, the mechanism is not well understood. [...] Read more.
The excessive and random production of summer shoots poses significant challenges to pest and disease management and the improvement of fruit quality in citrus orchards. Although heavy fruit load has been observed to reduce summer shoot numbers, the mechanism is not well understood. This study combined a field investigation with a de-fruiting experiment to demonstrate that significant negative correlation exists between fruit load and summer shoot numbers in citrus orchard. Metabolomic analysis further indicated that fruits at the cell expansion stage function as dominant carbohydrate sinks, attracting more soluble sugars. De-fruiting significantly elevated sugar content and upregulated the transcript levels of sink strength-related genes (Sucrose synthase, CsSUS4/5/6) by more than 3.0-fold in the axillary buds. Additionally, exogenous application of sugar-related DAMs (differentially accumulated metabolites), such as sucrose, significantly promoted axillary bud outgrowth. Taken together, our findings confirm that heavy fruit load suppresses shoot branching, primarily through competing for soluble sugars. This provides a physiological basis for managing summer shoots by regulating fruit load, offering a practical strategy to enhance citrus orchard management and the effectiveness of pest and disease control programs. Full article
Show Figures

Figure 1

28 pages, 5880 KB  
Article
Load Dynamic Characteristics and Energy Consumption Model of Manipulator Joints for Picking Robots Based on Bond Graphs: Taking Joints V and VI as Examples
by Jinzhi Xie, Yunfeng Zhang, Changpin Chun, Congbo Li, Gang Xu and Li Li
Agriculture 2026, 16(1), 14; https://doi.org/10.3390/agriculture16010014 - 20 Dec 2025
Viewed by 385
Abstract
The manipulator is a key component for harvesting citrus and other fruit crops. A study of the dynamic characteristics and energy consumption modelling of its joints is the foundation for optimising the manipulator’s load parameters and achieving efficient operation. To address the issues [...] Read more.
The manipulator is a key component for harvesting citrus and other fruit crops. A study of the dynamic characteristics and energy consumption modelling of its joints is the foundation for optimising the manipulator’s load parameters and achieving efficient operation. To address the issues of the 6-DOF citrus-picking manipulator’s high degrees of freedom and complex structure, which lead to complex dynamic characteristics and an unclear energy transfer and consumption mechanism, the electromechanical coupling dynamics and energy consumption of the joint system are systematically studied using bond graphs. Firstly, the bond graph model is constructed by combining it with the joint system’s physical structure. On this basis, the corresponding dynamic characteristic state equation and energy consumption model are established. Secondly, the dynamic response and energy consumption characteristics of the joint system are analysed, revealing the system’s energy consumption and dynamic characteristics under different working conditions. Finally, the effectiveness and precision of the proposed model in describing the dynamic behaviour of the joint system and energy consumption are verified through experiments. The model provides a theoretical basis and a new research perspective for optimizing joint parameters, load solutions, and energy efficiency of the harvesting manipulator. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 12295 KB  
Article
A Support End-Effector for Banana Bunches Based on Contact Mechanics Constraints
by Bowei Xie, Xinxiao Wu, Guohui Lu, Ziping Wan, Mingliang Wu, Jieli Duan and Lewei Tang
Agronomy 2025, 15(12), 2907; https://doi.org/10.3390/agronomy15122907 - 17 Dec 2025
Viewed by 423
Abstract
Banana harvesting relies heavily on manual labor, which is labor-intensive and prone to fruit damage due to insufficient control of contact forces. This paper presents a systematic methodology for the design and optimization of adaptive flexible end-effectors for banana bunch harvesting, focusing on [...] Read more.
Banana harvesting relies heavily on manual labor, which is labor-intensive and prone to fruit damage due to insufficient control of contact forces. This paper presents a systematic methodology for the design and optimization of adaptive flexible end-effectors for banana bunch harvesting, focusing on contact behavior and mechanical constraints. By integrating response surface methodology (RSM) with multi-objective genetic algorithm (MOGA) optimization, the relationships between finger geometry parameters and key performance metrics—contact area, contact stress, and radial stiffness—were quantified, and Pareto-optimal structural configurations were identified. Experimental and simulation results demonstrate that the optimized flexible fingers effectively improve handling performance: contact area increased by 13–28%, contact stress reduced by 45–56%, and radial stiffness enhanced by 193%, while the maximum shear stress on the fruit stalk decreased by 90%, ensuring harvesting stability during dynamic loading. The optimization effectively distributes contact pressure, minimizes fruit damage, and enhances grasping reliability. The proposed contact-behavior-constrained design framework enables passive adaptation to fruit morphology without complex sensors, offering a generalizable solution for soft robotic handling of fragile and irregular agricultural products. This work bridges the gap between bio-inspired gripper design and practical agricultural application, providing both theoretical insights and engineering guidance for automated, low-damage fruit harvesting systems. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture—2nd Edition)
Show Figures

Figure 1

17 pages, 14464 KB  
Article
Solvent-Free Catalytic Synthesis of Ethyl Butyrate Using Immobilized Lipase Based on Hydrophobically Functionalized Dendritic Fibrous Nano-Silica
by Mengqi Wang, Yi Zhang, Yunqi Gao, Huanyu Zheng and Mingming Zheng
Foods 2025, 14(24), 4272; https://doi.org/10.3390/foods14244272 - 11 Dec 2025
Viewed by 463
Abstract
Ethyl butyrate is a typical flavor ester with pineapple-banana scents, but the poor yield from natural fruits limits its feasibility in food and fragrance industries. In this study, dendritic fibrous nano-silica (DFNS) was hydrophobically modified with octyl groups (DFNS-C8) to immobilize [...] Read more.
Ethyl butyrate is a typical flavor ester with pineapple-banana scents, but the poor yield from natural fruits limits its feasibility in food and fragrance industries. In this study, dendritic fibrous nano-silica (DFNS) was hydrophobically modified with octyl groups (DFNS-C8) to immobilize Candida antarctica lipase B (CALB) for solvent-free esterification of ethyl butyrate. The immobilized lipase CALB@DFNS-C8, with the enzyme loading of 354.6 mg/g and the enzyme activity of 0.064 U/mg protein, achieved 96.0% ethyl butyrate conversion under the optimum reaction conditions where the molar ratio of butyric acid to ethanol was 1:3, with a reaction temperature and time of 40 °C and 4 h. Under the solvent-free catalytic reactions, CALB@DFNS-C8 presented the maximum catalytic efficiency of 35.1 mmol/g/h and retained 89% initial activity after ten reuse cycles. In addition, the immobilized lipase can efficiently catalyze the synthesis of various flavor esters (such as butyl acetate, hexyl acetate, butyl butyrate, etc.) and exhibits excellent thermostability and solvent tolerance. A molecular docking simulation reveals that the hydrophobic cavity around the catalytic triad stabilizes the acyl intermediate and ensures the precise orientation of both acid and alcohol substrates. This work provides new insights into the sustainable production of flavor esters using highly active and recyclable immobilized lipases through rational carrier hydrophobization and structural confinement design. Full article
Show Figures

Figure 1

50 pages, 8798 KB  
Article
Dynamic Task Scheduling Optimisation Method for Hilly Orchard Rail Transport Systems
by Yihua Jiang, Min Zhou, Zhiqiang He, Zhaoji Xu and Fang Yang
Agriculture 2025, 15(24), 2549; https://doi.org/10.3390/agriculture15242549 - 9 Dec 2025
Viewed by 398
Abstract
Efficient scheduling of automated rail transportation in hilly orchards is critical for maintaining fruit freshness and ensuring timely market delivery. This study develops a dynamic scheduling method for multi-transporter orchard rail systems through mathematical modeling, reinforcement learning algorithms, and field validation. We formulated [...] Read more.
Efficient scheduling of automated rail transportation in hilly orchards is critical for maintaining fruit freshness and ensuring timely market delivery. This study develops a dynamic scheduling method for multi-transporter orchard rail systems through mathematical modeling, reinforcement learning algorithms, and field validation. We formulated a comprehensive scheduling model and designed four distinct frameworks to address randomly arriving tasks. In the optimal framework (Framework 3, which was chosen due to its hybrid strategy combining periodic global planning and local task point adjustment), we compared six rule-based heuristic algorithms against three reinforcement learning approaches: centralized SAC, decentralized MARL-DQN, and conventional DQN. Additionally, two emergency response strategies were developed and evaluated. Simulation experiments demonstrated that Framework 3 maintained high load factors while reducing task completion times. The centralized SAC algorithm outperformed other methods, achieving 1533.71 ± 50.09 reward points compared to 863.67 ± 30.54 for rule-based heuristics, a 77.6% improvement. For emergency tasks, Strategy 2 achieved faster response times with minimal disruption to routine operations. Field trials on a 153 m physical track with four autonomous transporters validated the DQN algorithm, confirming good sim-to-real consistency. This research provides a practical solution for dynamic scheduling challenges in hilly orchards, offering measurable efficiency improvements over traditional methods. Full article
(This article belongs to the Special Issue Agricultural Machinery and Technology for Fruit Orchard Management)
Show Figures

Figure 1

19 pages, 1375 KB  
Review
Recent Developments in Electroadhesion Grippers for Automated Fruit Grasping
by Turac I. Ozcelik, Enrico Masi, Seyyed Masoud Kargar, Chiara Scagliarini, Adyan Fatima, Rocco Vertechy and Giovanni Berselli
Machines 2025, 13(12), 1128; https://doi.org/10.3390/machines13121128 - 8 Dec 2025
Viewed by 754
Abstract
As global food demand rises and agricultural labor shortages intensify, robotic automation has become essential for sustainable fruit grasping. Among emerging technologies, ElectroAdhesion (EA) grippers offer a promising alternative to traditional mechanical end-effectors, enabling gentle, low-pressure handling through electrostatically induced adhesion. This paper [...] Read more.
As global food demand rises and agricultural labor shortages intensify, robotic automation has become essential for sustainable fruit grasping. Among emerging technologies, ElectroAdhesion (EA) grippers offer a promising alternative to traditional mechanical end-effectors, enabling gentle, low-pressure handling through electrostatically induced adhesion. This paper presents a methodical review of EA grippers applied to fruit grasping, focusing on their advantages, limitations, and key design considerations. A targeted literature search identified ten EA-based and hybrid EA gripping systems tested on fruit manipulation, though none has yet been tested in real-world environments such as fields or greenhouses. Despite a significant variability in experimental setups, materials, and grasp types, qualitative insights are drawn from our analysis demonstrating the potentialities of EA technologies. The EA grippers found in the targeted review are effective on diverse fruits, shapes, and surface textures; they can hold load capacities ranging from 10 g (~0.1 N) to 600 g (~6 N) and provide minimal compressive stress at high electrostatic shear forces. Along with custom EA grippers designed accordingly to specific use cases, field and greenhouse testing will be crucial for advancing the technology readiness level of EA grippers and unlocking their full potential in automated crop harvesting. Full article
Show Figures

Figure 1

Back to TopTop