Performance Evaluation of Robotic Harvester with Integrated Real-Time Perception and Path Planning for Dwarf Hedge-Planted Apple Orchard
Abstract
1. Introduction
2. Materials and Methods
2.1. Orchard Environment
2.2. Robotic System Design
2.2.1. Hardware System
2.2.2. Software System
2.3. Apple Perception
2.3.1. Dataset and Model Training
2.3.2. YOLO Improvement Strategy
2.4. Apple Picking Path Planning
2.4.1. BiTRRT Algorithm
Algorithm 1: Pseudocode of the BiTRRT algorithm |
Input: Configuration space C, cost function c: C → ℝ+, initial configurations qinit, goal configurations qgoal. Output: Path from qinit to qgoal, or failure if no valid path exists. 1: T1 ← Init tree (qinit), T2 ←Init tree(qgoal) 2: Temp ← Init temperature 3: Cost threshold ← Constant value 4: While not converged: 5: qrand ← Sample random configuration(C) 6: ← Find the nearest node (T1, qrand) 7: If refinement control (T1, , and qrand): 8: qnew ← Extend (, qrand) 9: If qnew ≠ null: 10: If ≤ cost threshold: 11: Add node and edge (T1, , and qnew) 12: ← Find the nearest node (T2, qnew) 13: Attempt link (T1, qnew, T2, and ) 14: Swap (T1, T2) 15: Return success if trees connect; otherwise, failure |
2.4.2. BiTRRT Improvement Strategy
Algorithm 2: Pseudocode of the DSA-BiTRRT algorithm |
Input: Configuration space C, cost function c: C → ℝ+, initial configurations qinit, goal configurations qgoal. Output: Path from qinit to qgoal, or failure if no valid path exists. 1: T1 ← Init tree (qinit), T2 ←Init tree(qgoal) 2: Temp ← Init temperature, 3: Best cost ← ∞, worst cost ← 0 4: While not converged: 5: qrand ← Sample random configuration(C) 6: ← Find the nearest node (T1, qrand) 7: If refinement control (T1, , and qrand): 8: qnew ← Extend (, qrand) 9: If qnew ≠ null: 10: Update the best cost and worst cost based on c (qnew) 11: Cost threshold ← best cost + α ·(worst cost − best cost) 12: If c (qnew) ≤ Cost threshold: 13: Add node and edge (T1, , and qnew) 14: ← Find the nearest node (T2, qnew) 15: Attempt link (T1, qnew, T2, and ) 16: Swap (T1, T2) 17: Return success if trees connect; otherwise, failure |
- (1) Dynamic temperature adjustment: Fixed temperature settings in the original BiTRRT fail to adapt to fluctuating path costs in dynamic environments, resulting in inefficient exploration and suboptimal paths. The temperature parameter Temp is continuously adjusted based on the best and worst observed path costs, as defined in Equation (3).
- (2) Simplified linear transition probability: The original BiTRRT employs an exponential model for balancing exploration and exploitation; however, its high computational costs, particularly in high-dimensional spaces, limit real-time efficiency. To address this, a simplified linear model replaces the exponential approach, significantly reducing computational complexity while preserving path optimization. The transition probability P is now defined by the simplified linear equation in Equation (4), enhancing real-time performance.
- (3) Adaptive cost threshold: The original BiTRRT relies on a fixed cost threshold to filter high-cost paths, which can either overly restrict exploration or allow inefficient paths, limiting efficiency and adaptability in dynamic environments. To address this, the cost threshold is dynamically updated based on the best and worst observed path costs. This adaptive approach refines exploration, directing the algorithm toward promising regions while reducing computational overhead. The adaptive cost threshold is defined in Equation (5).
2.5. Apple Picking Control
Algorithm 3: Pseudocode for the apple picking control |
1: Initialize system: 2: Movej (home position) → Reset robotic arm to initial position. 3: Activate the detection model. 4: Gripper state = open. 5: While true do: 6: Detect target: 7: Capture apple positions with a camera. 8: Identify the last apple in the workspace. 9: Publish the 3D coordinates of the apple to ROS2. 10: Motion planning and execution: 11: Subscribe to the target position. 12: Movej (pre-grasp position) → Move plan trajectory near the target. 13: Movel (grasp position) → Linearly approach the target. 14: If work state = true (grasping phase): 15: Gripper state = closed. 16: Else (placing phase): 17: Movel (placement position) → Move plan trajectory to placement. 18: Adjust posture during motion. 19: Gripper state = open. 20: Logging and preparation: 21: Record timing data for detection, grasp, and cycle duration. 22: Movej (home position) → Return robotic arm to initial position. 23: Reactivate the detection model. 24: End loop if no valid target. |
2.6. Experiment Setup
3. Results and Discussion
3.1. Performance of Different Perception Algorithms
3.2. Performance of Different Path Planning Algorithms in the Laboratory
3.3. The Performance of the Adaptive Soft Gripper in the Field
3.4. The Integration and Field Harvesting Evaluation of the Autonomous Robotic Arm
3.5. Failure Case Analysis
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DSA-BiTRRT | Dynamic Temperature Simplified Transition Adaptive Cost Bidirectional Transition-Based Rapidly Exploring Random Tree |
YOLO | You Only Look Once |
IoU | Intersection Over Union |
mAP | Mean Average Precision |
RRT | Rapidly Exploring Random Tree |
DOF | Degree of Freedom |
BiTRRT | Bidirectional Transition-Based Rapidly Exploring Random Tree |
UGV | Unmanned Ground Vehicle |
ROS | Robot Operating System |
KDL | Kinematics and Dynamics Library |
FLOPs | Floating-Point Operations |
RRTConnect | Rapidly Exploring Random Tree Connect |
TRRT | Transition-Based Rapidly Exploring Random Tree |
References
- Shah, Z.A.; Dar, M.A.; Dar, E.A.; Obianefo, C.A.; Bhat, A.H.; Ali, M.T.; Alatawi, H.A.; Ghamry, H.I.; Shukry, M.; Sayed, S. A multinomial approach to sustainable and improved agricultural technologies vis-a-vis socio-personal determinants in apple (Malus domestica) cultivation. J. King Saud. Univ.-Sci. 2022, 34, 102286. [Google Scholar] [CrossRef]
- Li, T.; Xie, F.; Zhao, Z.; Zhao, H.; Guo, X.; Feng, Q. A multi-arm robot system for efficient apple harvesting: Perception, task plan and control. Comput. Electron. Agric. 2023, 211, 107979. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Au, W.; Kang, H.; Chen, C. Intelligent robots for fruit harvesting: Recent developments and future challenges. Precis. Agric. 2022, 23, 1856–1907. [Google Scholar] [CrossRef]
- Zhang, Z.; Igathinathane, C.; Li, J.; Cen, H.; Lu, Y.; Flores, P. Technology progress in mechanical harvest of fresh market apples. Comput. Electron. Agric. 2020, 175, 105606. [Google Scholar] [CrossRef]
- Silwal, A.; Davidson, J.R.; Karkee, M.; Mo, C.; Zhang, Q.; Lewis, K. Design, integration, and field evaluation of a robotic apple harvester. J. Field Robot. 2017, 34, 1140–1159. [Google Scholar] [CrossRef]
- Bonora, E.; Stefanelli, D.; Costa, G. Nectarine fruit ripening and quality assessed using the index of absorbance difference (IAD). Int. J. Agron. 2013, 2013, 242461. [Google Scholar] [CrossRef]
- Tustin, D.S.; Breen, K.C.; Van Hooijdonk, B.M. Light utilisation, leaf canopy properties and fruiting responses of narrow-row, planar cordon apple orchard planting systems—A study of the productivity of apple. Sci. Hortic. 2022, 294, 110778. [Google Scholar] [CrossRef]
- Bishop, G.A.; Fijen, T.P.M.; Desposato, B.N.; Scheper, J.; Kleijn, D. Hedgerows have contrasting effects on pollinators and natural enemies and limited spillover effects on apple production. Agric. Ecosyst. Environ. 2023, 346, 108364. [Google Scholar] [CrossRef]
- Bargoti, S.; Underwood, J. Deep fruit detection in orchards. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3626–3633. [Google Scholar] [CrossRef]
- Lapušinskij, A.; Suzdalev, I.; Goranin, N.; Janulevičius, J.; Ramanauskaitė, S.; Stankūnavičius, G. The application of hough transform and canny edge detector methods for the visual detection of cumuliform clouds. Sensors 2021, 21, 5821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Tian, Y.; Yin, W.; Zheng, C. An apple detection and localization method for automated harvesting under adverse light conditions. Agriculture 2024, 14, 485. [Google Scholar] [CrossRef]
- Rathore, D.; Divyanth, L.G.; Reddy, K.L.S.; Chawla, Y.; Buragohain, M.; Soni, P.; Machavaram, R.; Hussain, S.Z.; Ray, H.; Ghosh, A. A two-stage deep-learning model for detection and occlusion-based classification of kashmiri orchard apples for robotic harvesting. J. Biosyst. Eng. 2023, 48, 242–256. [Google Scholar] [CrossRef]
- Wang, M.; Li, F. Real-Time Accurate Apple Detection Based on Improved YOLOv8n in Complex Natural Environments. Plants 2025, 14, 365. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Luo, W.; Tang, R.; Liu, Y.; Zhao, J.; Li, X.; Yuan, L. Research on Apple Detection and Tracking Count in Complex Scenes Based on the Improved YOLOv7-Tiny-PDE. Agriculture 2025, 15, 483. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, D.; Olaniyi, E.; Huang, Y. Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review. Comput. Electron. Agric. 2022, 200, 107208. [Google Scholar] [CrossRef]
- Tang, Y.; Qiu, J.; Zhang, Y.; Wu, D.; Cao, Y.; Zhao, K.; Zhu, L. Optimization strategies of fruit detection to overcome the challenge of unstructured background in field orchard environment: A review. Precis. Agric. 2023, 24, 1183–1219. [Google Scholar] [CrossRef]
- Kang, M.; Chen, Q.; Fan, Z.; Yu, C.; Wang, Y.; Yu, X. A RRT based path planning scheme for multi-DOF robots in unstructured environments. Comput. Electron. Agric. 2024, 218, 108707. [Google Scholar] [CrossRef]
- Yan, B.; Quan, J.; Yan, W. Three-dimensional obstacle avoidance harvesting path planning method for apple-harvesting robot based on improved ant colony algorithm. Agriculture 2024, 14, 1336. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, J.; Zhang, J.; Zhang, S.; Shao, M.; Chai, Z.; Liu, Y.; Wu, J.; Wu, Z.; Zhang, J. Enhancing grasping diversity with a pinch-suction and soft-rigid hybrid multimodal gripper. IEEE Trans. Robot. 2025, 41, 3890–3907. [Google Scholar] [CrossRef]
- Au, W.; Zhou, H.; Liu, T.; Kok, E.; Wang, X.; Wang, M.; Chen, C. The Monash Apple Retrieving System: A review on system intelligence and apple harvesting performance. Comput. Electron. Agric. 2023, 213, 108164. [Google Scholar] [CrossRef]
- Hu, G.; Chen, C.; Chen, J.; Sun, L.; Sugirbay, A.; Chen, Y.; Jin, H.; Zhang, S.; Bu, L. Simplified 4-DOF manipulator for rapid robotic apple harvesting. Comput. Electron. Agric. 2022, 199, 107177. [Google Scholar] [CrossRef]
- Wang, X.; Kang, H.; Zhou, H.; Au, W.; Wang, M.Y.; Chen, C. Development and evaluation of a robust soft robotic gripper for apple harvesting. Comput. Electron. Agric. 2023, 204, 107552. [Google Scholar] [CrossRef]
- Wang, C.; Pan, W.; Zou, T.; Li, C.; Han, Q.; Wang, H.; Yang, J.; Zou, X. A Review of Perception Technologies for Berry Fruit-Picking Robots: Advantages, Disadvantages, Challenges, and Prospects. Agriculture 2024, 14, 1346. [Google Scholar] [CrossRef]
- Velasquez, A.; Grimm, C.; Davidson, J.R. Dynamic evaluation of a suction based gripper for fruit picking using a physical twin. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Yokohama, Japan, 13–17 May 2024; pp. 11839–11845. [Google Scholar] [CrossRef]
- Jin, T.; Han, X.; Wang, P.; Zhang, Z.; Guo, J.; Ding, F. Enhanced deep learning model for apple detection, localization, and counting in complex orchards for robotic arm-based harvesting. Smart Agric. Technol. 2025, 10, 100784. [Google Scholar] [CrossRef]
- Song, C.; Wang, K.; Wang, C.; Tian, Y.; Wei, X.; Li, C.; An, Q.; Song, J. TDPPL-Net: A lightweight real-time tomato detection and picking point localization model for harvesting robots. IEEE Access 2023, 11, 37650–37664. [Google Scholar] [CrossRef]
- Yan, T.; Li, P.; Liu, Y.; Jia, T.; Yu, H.; Chen, G. Research on hand-eye calibration accuracy improvement method based on iterative closest point algorithm. Agriculture 2023, 13, 2026. [Google Scholar] [CrossRef]
- Santosh, B.; Manoj, K.; Qin, Z. Apple Dataset Benchmark from Orchard Environment Dataset. Available online: https://datasetninja.com/apple-dataset-benchmark-from-orchard-environment (accessed on 3 December 2019).
- Liu, J.; Zhao, G.; Liu, S.; Liu, Y.; Yang, H.; Sun, J.; Yan, Y.; Fan, G.; Wang, J.; Zhang, H. New progress in intelligent picking: Online detection of apple maturity and fruit diameter based on machine vision. Agronomy 2024, 14, 721. [Google Scholar] [CrossRef]
- Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A database and web-based tool for image annotation. Int. J. Comput. Vis. 2008, 77, 157–173. [Google Scholar] [CrossRef]
- Sun, H.; Ren, R.; Zhang, S.; Tan, C.; Jing, J. Maturity detection of ‘Huping’ jujube fruits in natural environment using YOLO-FHLD. Smart Agric. Technol. 2024, 9, 100670. [Google Scholar] [CrossRef]
- Abeyrathna, R.M.R.D.; Nakaguchi, V.M.; Minn, A.; Ahamed, T. Recognition and counting of apples in a dynamic state using a 3D camera and deep learning algorithms for robotic harvesting systems. Sensors 2023, 23, 3810. [Google Scholar] [CrossRef]
- Dhanya, V.G.; Subeesh, A.; Kushwaha, N.L.; Vishwakarma, D.K.; Nagesh Kumar, T.; Ritika, G.; Singh, A.N. Deep learning based computer vision approaches for smart agricultural applications. Artif. Intell. Agric. 2022, 6, 211–229. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, C.; Lv, E.; Yang, A.; Meng, F.; Luo, H. A lightweight model for automatic pig counting in intensive piggeries using a green inspection robot and image segmentation method. Smart Agric. Technol. 2025, 12, 101115. [Google Scholar] [CrossRef]
- Ma, B.; Hua, Z.; Wen, Y.; Deng, H.; Zhao, Y.; Pu, L.; Song, H. Using an improved lightweight YOLOv8 model for real-time detection of multi-stage apple fruit in complex orchard environments. Artif. Intell. Agric. 2024, 11, 70–82. [Google Scholar] [CrossRef]
- Wang, J.; Qi, Z.; Wang, Y.; Liu, Y. A lightweight weed detection model for cotton fields based on an improved YOLOv8n. Sci. Rep. 2025, 15, 457. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Hua, Z.; Shi, H.; Zhu, D.; Han, Z.; Wu, G.; Deng, L. A Soybean Pod Accuracy Detection and Counting Model Based on Improved YOLOv8. Agriculture 2025, 15, 617. [Google Scholar] [CrossRef]
- Qu, G.; Wu, Y.; Lv, Z.; Zhao, D.; Lu, Y.; Zhou, K.; Tang, J.; Zhang, Q.; Zhang, A. Road-MobileSeg: Lightweight and accurate road extraction model from remote sensing images for mobile devices. Sensors 2024, 24, 531. [Google Scholar] [CrossRef]
- Ma, N.; Wu, Y.; Bo, Y.; Yan, H. Chili pepper object detection method based on improved YOLOv8n. Plants 2024, 13, 2402. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, X.; Gao, J.; Lei, X. FasterLite-YOLO: A lightweight cattle face detection model. In Proceedings of the 2024 4th International Conference on Neural Networks, Information and Communication Engineering (NNICE), IEEE, Guangzhou, China, 19–21 January 2024; pp. 1730–1733. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, T.; Zheng, L.; Zhou, N.; Ge, H.; Hong, Z. YOLOv8-C2f-Faster-EMA: An improved underwater trash detection model based on YOLOv8. Sensors 2024, 24, 2483. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, A.; Kong, X.; Li, W.; Li, Z. FSD-YOLO: An Improved Method for Steel Surface Defect Detection Based on YOLOv5. In Proceedings of the 2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD), IEEE, Tianjin, China, 8–10 May 2024; pp. 2565–2570. [Google Scholar] [CrossRef]
- Xu, T. Recent advances in Rapidly-exploring random tree: A review. Heliyon 2024, 10, e32451. [Google Scholar] [CrossRef]
- Jaroukh, A.; Kolyubin, S. Toward faster parameter-tuning of sampling-based motion planners. In Proceedings of the 2021 IEEE International Conference on Nonlinearity, Information and Robotics (NIR), IEEE, Innopolis, Russia, 26–29 August 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Tan, Y.Z.; Lee, G.H.; Chew, C.M.; Pang, C.K. Object detection and motion planning for automated welding of tubular joints. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Daejeon, Republic of Korea, 9–14 October 2016; pp. 2610–2615. [Google Scholar] [CrossRef]
- Jun, J.-Y.; Saut, J.-P.; Benamar, F. Pose estimation-based path planning for a tracked mobile robot traversing uneven terrains. Robot. Auton. Syst. 2016, 75, 325–339. [Google Scholar] [CrossRef]
- Goulart, R.; Jarvis, D.; Walsh, K.B. Evaluation of End Effectors for Robotic Harvesting of Mango Fruit. Sustainability 2023, 15, 6769. [Google Scholar] [CrossRef]
- Zhang, K.; Lammers, K.; Chu, P.; Li, Z.; Lu, R. An automated apple harvesting robot—From system design to field evaluation. J. Field Robot. 2024, 41, 2384–2400. [Google Scholar] [CrossRef]
- Bu, L.; Chen, C.; Hu, G.; Sugirbay, A.; Sun, H.; Chen, J. Design and evaluation of a robotic apple harvester using optimized picking patterns. Comput. Electron. Agric. 2022, 198, 107092. [Google Scholar] [CrossRef]
Model | Precision (%) | Recall (%) | Parameters (M) | FLOPs (G) | Speed (ms/Image) |
---|---|---|---|---|---|
YOLOv3-tiny | 88.45 | 85.23 | 12.13 | 18.90 | 9.70 |
Yolov6n | 92.78 | 75.85 | 4.23 | 11.80 | 9.60 |
YOLOv8n | 93.06 | 74.72 | 3.01 | 8.10 | 9.20 |
YOLOv8n–C2f–Faster | 93.66 | 70.98 | 2.30 | 6.30 | 8.90 |
Path Planning Algorithm | Detaching Path Time (s) | Placing Path Time (s) | Average Planning Time (s) | Standard Error (s) |
---|---|---|---|---|
RRT | 0.329 | 0.470 | 0.399 | 0.024 |
RRTConnect | 0.297 | 0.360 | 0.328 | 0.007 |
TRRT | 0.373 | 0.608 | 0.490 | 0.012 |
BiTRRT | 0.194 | 0.294 | 0.244 | 0.003 |
DSA-BiTRRT | 0.189 | 0.284 | 0.237 | 0.003 |
Path Planning Algorithm | Detaching Path Length (m) | Placing Path Length (m) | Average Planning Length (m) | Standard Error (m) |
---|---|---|---|---|
RRT | 0.744 | 1.627 | 1.186 | 0.003 |
RRTConnect | 0.840 | 1.600 | 1.220 | 0.004 |
TRRT | 0.757 | 1.602 | 1.180 | 0.002 |
BiTRRT | 0.796 | 1.604 | 1.200 | 0.003 |
DSA-BiTRRT | 0.780 | 1.589 | 1.184 | 0.002 |
The Number of Apples | Torque (mN·m) | Detachment Method | Detachment Success Rate (%) | Placement Success Rate (%) |
---|---|---|---|---|
12 | 100 | Rotation-pull | 91.67% | 0% |
12 | 150 | Rotation-pull | 100% | 100% |
12 | 150 | Direct-pull | 100% | 100% |
Process | Indicator | Value |
---|---|---|
Detection | Number of apples detected | 80 |
Grasping | Number of apples grasped | 45 |
Grasping success rate (%) | 56.3% | |
Detachment | Number of apples detached | 42 |
Detachment success rate (%) | 52.5% | |
Detachment average time (s) | 7.7 | |
Placement | Number of apples placed | 38 |
Placement success rate (%) | 47.5% | |
Placement average time (s) | 14.8 | |
Overall harvesting | Number of apples harvested | 38 |
Harvesting success rate (%) | 47.5% | |
Harvesting average time (s) | 15.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, T.; Han, X.; Wang, P.; Lyu, Y.; Chang, E.; Jeong, H.; Xiang, L. Performance Evaluation of Robotic Harvester with Integrated Real-Time Perception and Path Planning for Dwarf Hedge-Planted Apple Orchard. Agriculture 2025, 15, 1593. https://doi.org/10.3390/agriculture15151593
Jin T, Han X, Wang P, Lyu Y, Chang E, Jeong H, Xiang L. Performance Evaluation of Robotic Harvester with Integrated Real-Time Perception and Path Planning for Dwarf Hedge-Planted Apple Orchard. Agriculture. 2025; 15(15):1593. https://doi.org/10.3390/agriculture15151593
Chicago/Turabian StyleJin, Tantan, Xiongzhe Han, Pingan Wang, Yang Lyu, Eunha Chang, Haetnim Jeong, and Lirong Xiang. 2025. "Performance Evaluation of Robotic Harvester with Integrated Real-Time Perception and Path Planning for Dwarf Hedge-Planted Apple Orchard" Agriculture 15, no. 15: 1593. https://doi.org/10.3390/agriculture15151593
APA StyleJin, T., Han, X., Wang, P., Lyu, Y., Chang, E., Jeong, H., & Xiang, L. (2025). Performance Evaluation of Robotic Harvester with Integrated Real-Time Perception and Path Planning for Dwarf Hedge-Planted Apple Orchard. Agriculture, 15(15), 1593. https://doi.org/10.3390/agriculture15151593