Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = friction reduction mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1884 KiB  
Article
Ag/ZrO2 Hybrid Coating for Tribological and Corrosion Protection of Ti45Nb Alloy in Biomedical Environments
by Mevra Aslan Çakir
Metals 2025, 15(8), 831; https://doi.org/10.3390/met15080831 - 24 Jul 2025
Viewed by 149
Abstract
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The [...] Read more.
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The hybrid solution was prepared using zirconium propoxide and silver nitrate and stabilized through a low-temperature two-stage annealing protocol. The crystal structure of the coating was determined by XRD, and the presence of dense tetragonal ZrO2 phase and crystalline Ag phases was confirmed. SEM-EDS analyses revealed a compact coating structure of approximately 1.8 µm thickness with homogeneously distributed Ag nanoparticles on the surface. As a result of the electrochemical corrosion tests, it was determined that the open circuit potential shifted to more noble values, the corrosion current density decreased, and the corrosion rate decreased by more than 70% on the surfaces where the Ag/ZrO2 coating was applied. In the tribological tests, a decrease in the coefficient of friction, narrowing of wear marks, and significant reduction in surface damage were observed in dry and physiological (HBSS) environments. The findings revealed that the Ag/ZrO2 hybrid coating significantly improved the surface performance of the Ti45Nb alloy both mechanically and electrochemically and offers high potential for biomedical implant applications. Full article
(This article belongs to the Special Issue Corrosion Behavior and Surface Engineering of Metallic Materials)
Show Figures

Figure 1

18 pages, 6673 KiB  
Article
Tribological Properties of MoN/TiN Multilayer Coatings Prepared via High-Power Impulse Magnetron Sputtering
by Jiaming Xu, Ping Zhang, Jianjian Yu, Puyou Ying, Tao Yang, Jianbo Wu, Tianle Wang, Nikolai Myshkin and Vladimir Levchenko
Lubricants 2025, 13(8), 319; https://doi.org/10.3390/lubricants13080319 - 22 Jul 2025
Viewed by 238
Abstract
To address the limitations of single-layer nitride coatings, such as poor load adaptability and low long-term durability, MoN/TiN multilayer coatings were prepared via high-power impulse magnetron sputtering (HiPIMS). HiPIMS produces highly ionized plasmas that enable intense ion bombardment, yielding nitride films with enhanced [...] Read more.
To address the limitations of single-layer nitride coatings, such as poor load adaptability and low long-term durability, MoN/TiN multilayer coatings were prepared via high-power impulse magnetron sputtering (HiPIMS). HiPIMS produces highly ionized plasmas that enable intense ion bombardment, yielding nitride films with enhanced mechanical strength, durability, and thermal stability versus conventional methods. The multilayer coating demonstrated a low coefficient of friction (COF, ~0.4) and wear rate (1.31 × 10−7 mm3/[N·m]). In contrast, both TiN and MoN coatings failed at 5 N and 10 N loads, respectively. Under increasing loads, the multilayer coating maintained stable wear rates (1.84–3.06 × 10−7 mm3/[N·m]) below 20 N, and ultimately failed at 25 N. Furthermore, the MoN layer contributes to COF reduction. Grazing-incidence X-ray diffraction analysis confirmed the enhanced crystallographic stability of the multilayer coating, thereby revealing a dominant (111) orientation. The multilayer architecture suppresses crack propagation while effectively balancing hardness and toughness, offering a promising design for extreme-load applications. Full article
Show Figures

Figure 1

22 pages, 6390 KiB  
Article
Exploring the Tribological Potential of Y2BaCuO5 Precursor Powders as a Novel Lubricant Additive
by Shuo Cheng, Longgui He and Jimin Xu
Lubricants 2025, 13(7), 315; https://doi.org/10.3390/lubricants13070315 - 19 Jul 2025
Viewed by 223
Abstract
Friction leads to substantial energy losses and wear in mechanical systems. This study explores the tribological potential of the high-temperature superconductor precursor Y2BaCuO5 (Y211), synthesized via chemical co-precipitation, as a novel additive to PAO6 base oil. A 0.3 wt.% Y211/PAO6 [...] Read more.
Friction leads to substantial energy losses and wear in mechanical systems. This study explores the tribological potential of the high-temperature superconductor precursor Y2BaCuO5 (Y211), synthesized via chemical co-precipitation, as a novel additive to PAO6 base oil. A 0.3 wt.% Y211/PAO6 lubricant (CD) was formulated using ultrasonic dispersion. Tribological performance was evaluated using a custom end-face tribometer (steel-on-iron) under varying loads (100–500 N) and speeds (300–500 rpm), comparing CD to neat PAO6. The results indicate that the Y211 additive consistently reduced the coefficient of friction (COF) relative to neat PAO6, maintaining a stable value around ~0.1. However, its effectiveness was strongly load-dependent: a significant friction reduction was observed at 100 N, while the benefit diminished at higher loads (>200 N), with the COF peaking around 200 N. Rotational speed exerted minimal influence. Compared with neat PAO6, the inclusion of 0.3 wt.% Y211 resulted in a reduction in the coefficient of friction by approximately 50% under low-load conditions (100 N), with COF values decreasing from 0.1 to 0.045. Wear depth measurements also revealed a reduction of over 30%, supporting the additive’s anti-wear efficacy. Y211 demonstrates potential as a friction-reducing additive, particularly under low loads, but its high-load performance limitations warrant further optimization and mechanistic studies. This highlights a novel tribological application for Y211. The objective of this study is to evaluate the tribological effectiveness of Y2BaCuO5 (Y211) as a lubricant additive, investigate its load-dependent friction behavior, and explore its feasibility as a multifunctional additive leveraging its superconductive precursor structure. Full article
(This article belongs to the Special Issue Novel Lubricant Additives in 2025)
Show Figures

Figure 1

13 pages, 5908 KiB  
Article
Experimental Study on the Strength Characteristics of Modified Guilin Red Clay
by Wenwu Chen, Zhigao Xie, Jiguang Chen, Mengyao Hong, Xiaobo Wang, Haofeng Zhou and Bai Yang
Buildings 2025, 15(14), 2533; https://doi.org/10.3390/buildings15142533 - 18 Jul 2025
Viewed by 196
Abstract
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to [...] Read more.
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to evaluate the strength characteristics and microstructural changes in modified clay specimens with varying dosages. The results demonstrate distinct strengthening mechanisms: Lignin exhibits an optimal dosage (6%), significantly increasing cohesion and internal friction angle through physical reinforcement (“soil fiber” formation), but higher dosages (8%) lead to particle separation and strength reduction. In contrast, lime provides continuous and substantial strength enhancement with increasing dosage (up to 8%), primarily through chemical reactions producing cementitious compounds (e.g., C-S-H, C-A-H) that densify the structure. Consequently, lime-modified clay shows significantly higher cohesion and internal friction angle compared to lignin-modified clay at equivalent or higher dosages, with corresponding stress–strain curves shifting from enhanced (strain-hardening) to softening behavior. These findings provide practical insights into red clay improvement in geotechnical engineering applications. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

33 pages, 5578 KiB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 439
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

25 pages, 6536 KiB  
Article
Ni20/PTFE Composite Coating Material and the Synergistic Friction Reduction and Wear Resistance Mechanism Under Multiple Working Conditions
by Xiyao Liu, Ye Wang, Zengfei Guo, Xuliang Liu, Lejia Qin and Zhiwei Lu
Coatings 2025, 15(7), 830; https://doi.org/10.3390/coatings15070830 - 16 Jul 2025
Viewed by 183
Abstract
The design of friction materials with integrated friction reduction and wear resistance functions has been a research challenge for many researchers and scholars, based on this problem, this paper proposes a nickel-based hard-soft composite coating structure. With 20CrMo steel as the matrix material, [...] Read more.
The design of friction materials with integrated friction reduction and wear resistance functions has been a research challenge for many researchers and scholars, based on this problem, this paper proposes a nickel-based hard-soft composite coating structure. With 20CrMo steel as the matrix material, Ni20 powder doped with reinforced phase WC as hard coating material, using laser melting technology to prepare nickel-based hard coating on the surface of 20CrMo. PTFE emulsion and MoS2 as a soft coating are prepared on the hard coating, and the nickel-based hard-soft composite coating is formed. At 6N-0.3 m/s, the new interface structure obtains the optimum tribological performance, and compared to 20CrMo, the friction coefficient and wear amount are reduced by 83% and 93% respectively. The new friction interface can obtain stable and prominent tribological properties at wide load and low to high speed, which can provide the guidance on the structural design of friction reduction and wear resistance materials. Full article
Show Figures

Figure 1

53 pages, 7445 KiB  
Review
Research on the Application of Nano-Additives in Gel-like Lubricants
by Han Peng, Zihao Meng, Linjian Shangguan, Lei Liu, Can Yang and Lingxi Guo
Gels 2025, 11(7), 546; https://doi.org/10.3390/gels11070546 - 14 Jul 2025
Viewed by 312
Abstract
In the field of mechanical motion, friction loss and material wear are common problems. As one of the essential components for enhancing the lubricating performance of gel-like lubricants, nano-additives leverage their unique physical and chemical properties to form an efficient protective film on [...] Read more.
In the field of mechanical motion, friction loss and material wear are common problems. As one of the essential components for enhancing the lubricating performance of gel-like lubricants, nano-additives leverage their unique physical and chemical properties to form an efficient protective film on friction surfaces. This effectively reduces friction resistance and inhibits wear progression, thereby playing a significant role in promoting energy conservation, emissions reduction, and the implementation of green development principles. This study first introduces the physical and chemical preparation processes of gel-like lubricant nanoadditives. It then classifies them (mainly based on metal bases, metal oxides, nanocarbon materials, and other nanoadditives). Then, the performance of gel-like lubricant nano-additives is evaluated (mainly in terms of anti-wear, friction reduction, oxidation resistance, and load carrying capacity), and the surface analysis technology used is described. Finally, we summarize the application scenarios of gel-like lubricant nano-additives, identify the challenges faced, and discuss future prospects. This study provides new insights and directions for the design and synthesis of novel gel-like lubricants with significant lubricating and anti-wear properties in the future. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (3rd Edition))
Show Figures

Figure 1

44 pages, 14734 KiB  
Article
Influence of Zn Content on the Corrosion and Mechanical Properties of Cast and Friction Stir-Welded Al-Si-Mg-Fe-Zn Alloys
by Xiaomi Chen, Kun Liu, Quan Liu, Jing Kong, Valentino A. M. Cristino, Kin-Ho Lo, Zhengchao Xie, Zhi Wang, Dongfu Song and Chi-Tat Kwok
Materials 2025, 18(14), 3306; https://doi.org/10.3390/ma18143306 - 14 Jul 2025
Viewed by 372
Abstract
With the ongoing development of lightweight automobiles, research on new aluminum alloys and welding technology has gained significant attention. Friction stir welding (FSW) is a solid-state joining technique for welding aluminum alloys without melting. In this study, novel squeeze-cast Al-Si-Mg-Fe-Zn alloys with different [...] Read more.
With the ongoing development of lightweight automobiles, research on new aluminum alloys and welding technology has gained significant attention. Friction stir welding (FSW) is a solid-state joining technique for welding aluminum alloys without melting. In this study, novel squeeze-cast Al-Si-Mg-Fe-Zn alloys with different Zn contents (0, 3.4, 6.5, and 8.3 wt%) were friction stir welded (FSWed) at a translational speed of 200 mm/min and a rotational speed of 800 rpm. These parameters were chosen based on the observations of visually sound welds, defect-free and fine-grained microstructures, homogeneous secondary phase distribution, and low roughness. Zn can affect the microstructure of Al-Si-Mg-Fe-Zn alloys, including the grain size and the content of secondary phases, leading to different mechanical and corrosion behavior. Adding different Zn contents with Mg forms the various amount of MgZn2, which has a significant strengthening effect on the alloys. Softening observed in the weld zones of the alloys with 0, 3.4, and 6.5 wt% Zn is primarily attributed to the reduction in Kernel Average Misorientation (KAM) and a decrease in the Si phase and MgZn2. Consequently, the mechanical strengths of the FSWed joints are lower as compared to the base material. Conversely, the FSWed alloy with 8.3 wt% Zn exhibited enhanced mechanical properties, with hardness of 116.3 HV0.2, yield strength (YS) of 184.4 MPa, ultimate tensile strength (UTS) of 226.9 MP, percent elongation (EL%) of 1.78%, and a strength coefficient exceeding 100%, indicating that the joint retains the strength of the as-cast one, due to refined grains and more uniformly dispersed secondary phases. The highest corrosion resistance of the FSWed alloy with 6.5%Zn is due to the smallest grain size and KAM, without MgZn2 and the highest percentage of {111} texture (24.8%). Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Graphical abstract

25 pages, 17922 KiB  
Article
Application of Food Waste in Biodegradable Composites: An Ecological Alternative in Tribology
by Łukasz Wojciechowski, Zuzanna Sydow, Karol Bula and Tomasz Runka
Materials 2025, 18(14), 3216; https://doi.org/10.3390/ma18143216 - 8 Jul 2025
Viewed by 329
Abstract
Biodegradable composite materials enhanced with food waste for tribological applications are proposed in this article. Polymer materials used as matrices included polypropylene and polylactic acid, which, according to the manufacturers’ claims, were made entirely or partially from biodegradable raw materials. Additionally, the matrices [...] Read more.
Biodegradable composite materials enhanced with food waste for tribological applications are proposed in this article. Polymer materials used as matrices included polypropylene and polylactic acid, which, according to the manufacturers’ claims, were made entirely or partially from biodegradable raw materials. Additionally, the matrices were enhanced with three types of waste materials: powders derived from cherry and plum stones, and pomace extracted from flax seeds. The composites differed in the percentage content of filler (15 or 25 wt.%) and particle size (d < 400 µm or d > 400 µm). Thirty-minute block-on-ring friction tests were performed to determine frictional behaviour (when pairing with steel), and the wear mechanisms were analysed using optical microscopy and scanning electron microscopy, supplemented with Raman spectroscopy. A notable effect of cherry and plum stone fillers was observed as a reduction in motion resistance, as measured by the friction coefficient. This reduction was evident across all material configurations in polypropylene-based composites and was significant at the lowest concentrations and granulation in polylactic acid composites. The effect of flaxseed pomace filler was ambiguous for both composite bases. Full article
(This article belongs to the Special Issue Advances in Wear Behaviour and Tribological Properties of Materials)
Show Figures

Figure 1

18 pages, 3954 KiB  
Article
Remolding Water Content Effect on the Behavior of Frozen Clay Soils Subjected to Monotonic Triaxial Loading
by Shuai Qi, Jinhui Liu, Wei Ma, Jing Wang, Houwang Bai and Shaojian Wang
Appl. Sci. 2025, 15(13), 7590; https://doi.org/10.3390/app15137590 - 7 Jul 2025
Viewed by 206
Abstract
Understanding the mechanical behavior of frozen clay subgrade soils was essential for ensuring the safe and stable operation of transportation lines. However, the influence of remolding water content w on this behavior remained unclear. To address this gap, this study examined the effect [...] Read more.
Understanding the mechanical behavior of frozen clay subgrade soils was essential for ensuring the safe and stable operation of transportation lines. However, the influence of remolding water content w on this behavior remained unclear. To address this gap, this study examined the effect of w through monotonic triaxial testing. Three typical remolding water contents (w = 19%, 27.5% and 35%) and three confining pressures (σ3 = 200 kPa, 700 kPa and 1200 kPa) were considered. Results showed that the mechanical behavior of frozen clay soils displayed a clear dependence on w, which was controlled by microstructural evolution. As w increased, the shear strength qmax, resilient modulus E0 and cohesion c increased, which resulted from the progressive development of ice bonding within the shear plane. A threshold w value was found at wopt = 27.5%, marking a structural transition and separating the variations of qmax, E0 and c into two regimes. When w ≤ 27.5%, the soil fabric was controlled by clay aggregates. As w increased, the growth in ice cementation was confined within these aggregates, leading to limited increase in qmax, E0 and c. However, as w exceeded 27.5%, the soil fabric transitioned into a homogeneous matrix of dispersed clay particles. In this case, increasing w greatly promoted the development of an interconnected ice cementation network, thus significantly facilitating the increase in qmax, E0 and c. The friction angle φ decreased with w increasing, primarily due to the lubrication effect caused by the growing ice. In addition, the enhanced lubrication effect in the clay particle-dominated fabric (w > 27.5%) resulted in a larger reduction rate of φ. Regarding Poisson’s ratio v and dilation angle ψ, the w increase led to growth in both parameters. This phenomenon could be explained by the increased involvement of solid ice into the soil structure. Full article
Show Figures

Figure 1

27 pages, 6478 KiB  
Article
Mechanism of Friction Reduction in Surface Micro-Textured Mandrels During Hole Cold Expansion
by Guangming Lv, Zhiyuan Wang, Ligang Qu, Jing Li and Chang Liu
Coatings 2025, 15(7), 789; https://doi.org/10.3390/coatings15070789 - 4 Jul 2025
Viewed by 338
Abstract
Aiming at the engineering problems of the severe wear and limited service life of mandrels during the hole extrusion strengthening of critical aerospace components, this study proposes a surface modification strategy for mandrels based on the anti-friction mechanism of micro-textures. Based on the [...] Read more.
Aiming at the engineering problems of the severe wear and limited service life of mandrels during the hole extrusion strengthening of critical aerospace components, this study proposes a surface modification strategy for mandrels based on the anti-friction mechanism of micro-textures. Based on the Lame stress equation and the Mises yield criterion, a plastic strengthening stress distribution model of the hole wall was developed. Integrating Bowden’s adhesive friction theory, a parameterized numerical model was constructed to investigate the influence of micro-texture morphology on interfacial friction and wear behavior. An elastic–plastic contact model for micro-textured mandrels during hole extrusion strengthening was established using ANSYS. The effects of key parameters such as the micro-texture depth and area ratio on the contact pressure field, friction stress distribution, and strengthening performance were quantitatively analyzed. The results show that a circular micro-texture with a depth of 50 μm and an area ratio of 20% can reduce the fluctuation and peak value of the contact pressure by 41.0% and 29.7%, respectively, and decrease the average friction stress by 8.1%. The interfacial wear resistance and the uniformity of the residual compressive stress distribution on the hole wall are significantly enhanced, providing tribological insight and surface optimization guidance for improving the anti-wear performance and extending the service life of mandrels. Full article
(This article belongs to the Section Tribology)
Show Figures

Figure 1

19 pages, 6342 KiB  
Article
Innovative Use of UHPC and Topology Optimization in Permeable Interlocking Pavers: Advancing Sustainable Pavement Solutions
by Fernanda Gadler, José Augusto Ferreira Sales de Mesquita, Francisco Helio Alencar Oliveira, Liedi Legi Bariani Bernucci, Rafael Giuliano Pileggi, Emilio Carlos Nelli Silva and Diego Silva Prado
Sustainability 2025, 17(13), 6039; https://doi.org/10.3390/su17136039 - 1 Jul 2025
Viewed by 359
Abstract
The rapid expansion of urban areas has increased the prevalence of impermeable surfaces, intensifying flooding risks by disrupting natural water infiltration. Permeable pavements have emerged as a sustainable alternative, capable of reducing stormwater runoff, improving surface friction, and mitigating urban heat island effects. [...] Read more.
The rapid expansion of urban areas has increased the prevalence of impermeable surfaces, intensifying flooding risks by disrupting natural water infiltration. Permeable pavements have emerged as a sustainable alternative, capable of reducing stormwater runoff, improving surface friction, and mitigating urban heat island effects. Nevertheless, their broader implementation is often hindered by issues such as clogging and limited mechanical strength resulting from high porosity. This study examines the design of interlocking permeable blocks utilizing ultra-high-performance concrete (UHPC) to strike a balance between enhanced drainage capacity and high structural performance. A topology optimization (TO) strategy was applied to numerically model the ideal block geometry, incorporating 105 drainage channels with a diameter of 6 mm—chosen to ensure manufacturability and structural integrity. The UHPC formulation was developed using particle packing optimization with ordinary Portland cement (OPC), silica fume, and limestone filler to reduce binder content while achieving superior strength and workability, guided by rheological assessments. Experimental tests revealed that the perforated UHPC blocks reached compressive strengths of 87.8 MPa at 7 days and 101.0 MPa at 28 days, whereas the solid UHPC blocks achieved compressive strengths of 125.8 MPa and 146.2 MPa, respectively. In contrast, commercial permeable concrete blocks reached only 28.9 MPa at 28 days. Despite a reduction of approximately 30.9% in strength due to perforations, the UHPC-105holes blocks still far exceed the 41 MPa threshold required for certain structural applications. These results highlight the mechanical superiority of the UHPC blocks and confirm their viability for structural use even with enhanced permeability features. The present research emphasizes mechanical and structural performance, while future work will address hydraulic conductivity and anticlogging behavior. Overall, the findings support the use of topology-optimized UHPC permeable blocks as a resilient solution for sustainable urban drainage systems, combining durability, strength, and environmental performance. Full article
(This article belongs to the Special Issue Green Infrastructure and Sustainable Stormwater Management)
Show Figures

Figure 1

20 pages, 20845 KiB  
Article
Research on Active Disturbance Rejection Control of Rigid–Flexible Coupled Constant Force Actuator
by Chuanxing Jiang, Zhijun Yang, Jun Zheng, Bangshang Fu and Youdun Bai
Actuators 2025, 14(7), 325; https://doi.org/10.3390/act14070325 - 30 Jun 2025
Viewed by 269
Abstract
This study introduces a rigid–flexible coupled constant force actuator integrated with Active Disturbance Rejection Control (ADRC) to tackle the rigidity–compliance trade-off in precision force-sensitive applications. The actuator utilizes compliant hinges to decrease contact stiffness by three orders of magnitude ( [...] Read more.
This study introduces a rigid–flexible coupled constant force actuator integrated with Active Disturbance Rejection Control (ADRC) to tackle the rigidity–compliance trade-off in precision force-sensitive applications. The actuator utilizes compliant hinges to decrease contact stiffness by three orders of magnitude (106103 N/m), facilitating effective force management through millimeter-scale placement (0.1∼1 mm) and inherently mitigating high-frequency disturbances. The ADRC framework, augmented by an Extended State Observer (ESO), dynamically assesses and compensates for internal nonlinearities (such as friction hysteresis) and external disturbances without necessitating accurate system models. Experimental results indicate enhanced performance compared to PID control: under dynamic disturbances, force deviations are limited to ±0.2 N with a 98.5% reduction in mean absolute error, a 96.3% increase in settling speed, and 99% suppression of oscillations. The co-design of mechanical compliance with model-free control addresses the constraints of traditional high-stiffness systems, providing a scalable solution for industrial robots, compliant material processing, and medical device operations. Validation of the prototype under sinusoidal perturbations demonstrates reliable force regulation (settling time <0.56 s, errors <0.5 N), underscoring its relevance in dynamic situations. This study integrates theoretical innovation with experimental precision, enhancing intelligent manufacturing systems via adaptive control and structural synergy. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

13 pages, 1534 KiB  
Article
Numerical Investigation of Offshore CCUS in Deep Saline Aquifers Using Multi-Layer Injection Method: A Case Study of the Enping 15-1 Oilfield CO2 Storage Project, China
by Jiayi Shen, Futao Mo, Zhongyi Tao, Yi Hong, Bo Gao and Tao Xuan
J. Mar. Sci. Eng. 2025, 13(7), 1247; https://doi.org/10.3390/jmse13071247 - 28 Jun 2025
Viewed by 280
Abstract
Geological storage of CO2 in offshore deep saline aquifers is widely recognized as an effective strategy for large-scale carbon emission reduction. This study aims to assess the mechanical integrity and storage efficiency of reservoirs using a multi-layer CO2 injection method in [...] Read more.
Geological storage of CO2 in offshore deep saline aquifers is widely recognized as an effective strategy for large-scale carbon emission reduction. This study aims to assess the mechanical integrity and storage efficiency of reservoirs using a multi-layer CO2 injection method in the Enping 15-1 Oilfield CO2 storage project which is the China’s first offshore carbon capture, utilization, and storage (CCUS) demonstration. A coupled Hydro–Mechanical (H–M) model is constructed using the TOUGH-FLAC simulator to simulate a 10-year CO2 injection scenario, incorporating six vertically distributed reservoir layers. A sensitivity analysis of 14 key geological and geomechanical parameters is performed to identify the dominant factors influencing injection safety and storage capacity. The results show that a total injection rate of 30 kg/s can be sustained over a 10-year period without exceeding mechanical failure thresholds. Reservoirs 3 and 4 exhibit the greatest lateral CO2 migration distances over the 10-year injection period, indicating that they are the most suitable target layers for CO2 storage. The sensitivity analysis further reveals that the permeability of the reservoirs and the friction angle of the reservoirs and caprocks are the most critical parameters governing injection performance and mechanical stability. Full article
(This article belongs to the Special Issue Advanced Studies in Offshore Geotechnics)
Show Figures

Figure 1

18 pages, 2421 KiB  
Review
Frictional Experiments on Granitic Faults: New Insights into Continental Earthquakes and Micromechanical Mechanisms
by Huiru Lei, Shimin Liu and Wenhao Dai
Appl. Sci. 2025, 15(13), 7207; https://doi.org/10.3390/app15137207 - 26 Jun 2025
Viewed by 284
Abstract
Granitic faults within the crystalline upper-to-middle continental crust play a critical role in accommodating tectonic deformation and controlling earthquake nucleation. To better understand their frictional behavior, we review experimental studies conducted under both dry and hydrothermal conditions using velocity-stepping (VS), constant-velocity (CV), and [...] Read more.
Granitic faults within the crystalline upper-to-middle continental crust play a critical role in accommodating tectonic deformation and controlling earthquake nucleation. To better understand their frictional behavior, we review experimental studies conducted under both dry and hydrothermal conditions using velocity-stepping (VS), constant-velocity (CV), and slide-hold-slide (SHS) tests. These approaches allow the quantification of frictional strength, velocity dependence, and healing behavior across a range of conditions. Our synthesis highlights that the friction coefficient of granite gouges decreases with increasing temperature and pore fluid pressure, decreasing slip velocity, and increasing slip displacement. The velocity-weakening regime shifts to higher temperatures with increasing slip velocity or decreasing pore fluid pressure. Temperature, normal stress, pore fluid pressure, and slip velocity interact to modulate frictional stability. In particular, microstructural observations reveal that grain size reduction, pressure solution creep, and fluid-assisted chemical processes are key mechanisms governing transitions between velocity-weakening and velocity-strengthening regimes. These insights support the growing application of microphysical-based models, which integrate micromechanical processes and offer improved extrapolation from the laboratory to natural fault systems compared to classical rate-and-state friction laws. The collective evidence underscores the importance of considering fault rheology in a temperature- and fluid-sensitive context, with implications for interpreting seismic cycle behavior in continental regions. Full article
Show Figures

Figure 1

Back to TopTop