Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = fragrance compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2971 KiB  
Article
Dissecting Organ-Specific Aroma-Active Volatile Profiles in Two Endemic Phoebe Species by Integrated GC-MS Metabolomics
by Ming Xu, Yu Chen and Guoming Wang
Metabolites 2025, 15(8), 526; https://doi.org/10.3390/metabo15080526 - 3 Aug 2025
Viewed by 121
Abstract
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics [...] Read more.
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics approach combined with a relative odor activity value (rOAV) analysis to comprehensively profile and compare the volatile metabolite landscape in the seeds and leaves of both species. Results: In total, 1666 volatile compounds were putatively identified, of which 540 were inferred as key aroma-active contributors based on the rOAV analysis. A multivariate statistical analysis revealed clear tissue-related separation: the seeds were enriched in sweet, floral, and fruity volatiles, whereas the leaves contained higher levels of green leaf volatiles and terpenoids associated with ecological defense. KEGG pathway enrichment indicated that terpenoid backbone and phenylpropanoid biosynthesis pathways played major roles in shaping these divergent profiles. A Venn diagram analysis further uncovered core and unique volatiles underlying species and tissue specificity. Conclusions: These insights provide an integrated reference for understanding tissue-divergent volatile profiles in Phoebe species and offer a basis for fragrance-oriented selection, ecological trait evaluation, and the sustainable utilization of organ-related metabolic characteristics in breeding and conservation programs. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

31 pages, 1981 KiB  
Review
Volatile Organic Compounds in Teas: Identification, Extraction, Analysis, and Application of Tea Aroma
by Qin Zeng, Huifeng Wang, Jiaojiao Tuo, Yumeng Ding, Hongli Cao and Chuan Yue
Foods 2025, 14(15), 2574; https://doi.org/10.3390/foods14152574 - 23 Jul 2025
Viewed by 461
Abstract
Volatile organic compounds (VOCs) are important for teas’ quality and act as a critical evaluative criterion in teas. The distinctive aromatic profile of tea not only facilitates tea classification but also has potential applications in aroma-driven product innovation. In this review, we summarized [...] Read more.
Volatile organic compounds (VOCs) are important for teas’ quality and act as a critical evaluative criterion in teas. The distinctive aromatic profile of tea not only facilitates tea classification but also has potential applications in aroma-driven product innovation. In this review, we summarized the tea aroma from tea classification, VOCs extraction methodologies, and VOCs detection techniques. Moreover, the potential utilization of tea aroma in the future, such as applications in essential oil refinement, food flavor enhancement, and functional fragrance for personal health care, was proposed. Our review will provide a solid foundation for further investigations in tea aroma and offer significant insights into the development and application of tea fragrance. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

14 pages, 586 KiB  
Article
NaDES-Based Extracts by Microwave Activation from Laurus nobilis L. Leaves: Sustainable Multifunctional Ingredients for Potential Cosmetic and Pharmaceutical Applications
by Debora Caviglia, Eleonora Russo, Anna Maria Schito, Francesco Saverio Robustelli della Cuna, Elena Grignani, Nicola Lionetti and Carla Villa
Molecules 2025, 30(14), 3006; https://doi.org/10.3390/molecules30143006 - 17 Jul 2025
Viewed by 354
Abstract
Laurus nobilis L. is a widely cultivated plant, used for ornamental purposes, as a high-value spice crop, and in the flavor and fragrance industry. In natural medicine, it is well-known for its many beneficial properties (due to a broad spectrum of biologically active [...] Read more.
Laurus nobilis L. is a widely cultivated plant, used for ornamental purposes, as a high-value spice crop, and in the flavor and fragrance industry. In natural medicine, it is well-known for its many beneficial properties (due to a broad spectrum of biologically active compounds) and used for the treatment of different disorders. In this study, natural deep eutectic solvents (NaDESs), coupled with microwave activation, were studied and applied for a green extraction of L. nobilis leaves. The main objective was to obtain a sustainable and multifunctional cosmetic and pharmaceutical ingredient (the NaDES-based extract itself), exploiting both the intrinsic cosmetic functionalities of NaDES components and the biological properties of laurel bioactive compounds. The most promising candidate was obtained from a eutectic system containing betaine, glycerol, and lactic acid. The evaluation of this NaDES-based complex reveals a considerable number of phenolic compounds (around 11.57 mg of gallic acid equivalents for a gram of fresh leaves) and a notable antioxidant activity (80.1% with respect to Trolox), with values quite constant over a period of six months. The complex exhibits effective antimicrobial activity against different Gram-positive (S. aureus and S. epidermidis) and Gram-negative (E. coli and P. aeruginosa) bacterial strains, with concentrations ranging from 3.8 to 7.5 mg/mL. Furthermore, the extract presents a pleasant fragrance, attributable to the selective extraction of different volatile aromatic compounds, as confirmed by GC-MS analysis. Full article
Show Figures

Graphical abstract

16 pages, 926 KiB  
Article
Valorizing Brazilian Propolis Residue: Comprehensive Characterization for Sustainable Reutilization Strategies
by Agnese Santanatoglia, Laura Acquaticci, Maria Cristina Marcucci, Filippo Maggi, Carlos Rocha Oliveira and Giovanni Caprioli
Plants 2025, 14(13), 1989; https://doi.org/10.3390/plants14131989 - 29 Jun 2025
Viewed by 415
Abstract
This study presents the first comprehensive characterization of Brazilian propolis residue, revealing its rich content of bioactive compounds, essential nutrients, and volatile substances, showcasing its potential for sustainable utilization. The term “residue” refers to the solid by-product remaining after ethanolic extraction of raw [...] Read more.
This study presents the first comprehensive characterization of Brazilian propolis residue, revealing its rich content of bioactive compounds, essential nutrients, and volatile substances, showcasing its potential for sustainable utilization. The term “residue” refers to the solid by-product remaining after ethanolic extraction of raw propolis, which is typically discarded, despite retaining significant nutritional value. HPLC-ESI-MS/MS analysis identified significant concentrations of p-coumaric acid (637.80 mg/kg), chlorogenic acid (497.93 mg/kg), kaempferol (295.82 mg/kg), and caffeic acid (115.11 mg/kg); while HPLC-DAD revealed also artepillin-C (56.56 mg/kg), illustrating strong antioxidant properties. Nutritional analyses showed high moisture content (37.08%), protein (12.56%) and dietary fiber (24.2%). Additionally, the mineral profile highlighted potassium (9800 mg/kg), phosphorus (2520 mg/kg), and calcium (2100 mg/kg). Volatile compounds analysis via HS-SPME-GC-MS identified a diverse class of components, predominantly terpenoids such as α-pinene (20.09%) and caryophyllene (9.76%), suggesting potential applications in fragrance and flavor industries. The multifunctional nature of propolis residue aligns with circular economy principles and highlights its value as a resource for diverse applications. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

13 pages, 1211 KiB  
Article
Collection, Evaluation, and New Cultivar Breeding of Actinidia chinensis var. chinensis in Wudang Mountains, China
by Tao Xiao, Tianjiao Jia, Wei Wu, Jiaqing Peng, Liang Pan, Xianbo Zhu, Tao Liu, Junhuan Cheng, Hualing Wang, Lili Xiao, Hailei Huang, Guangming Hu and Shuaiyu Zou
Horticulturae 2025, 11(7), 739; https://doi.org/10.3390/horticulturae11070739 - 26 Jun 2025
Viewed by 412
Abstract
To develop new kiwifruit cultivars (Actinidia chinensis var. chinensis) with desirable traits, we conducted wild resource surveys in the Wudang Mountains region of China. Seven promising accessions were identified through preliminary screening, exhibiting fruit weights ranging from 50.46 g to 75.06 [...] Read more.
To develop new kiwifruit cultivars (Actinidia chinensis var. chinensis) with desirable traits, we conducted wild resource surveys in the Wudang Mountains region of China. Seven promising accessions were identified through preliminary screening, exhibiting fruit weights ranging from 50.46 g to 75.06 g and a soluble solids content (SSC) between 14.33% and 16.32%. The accession ‘WD-03-1’ stood out by meeting the dual selection criteria of fruit weight exceeding 70 g and a SSC above 15%. After a decade-long evaluation, this elite genotype was officially certified as a superior cultivar by the Hubei Provincial Variety Committee for Forestry in 2016, receiving the registered name ‘Wudang 1’. Distinguished as a rare green-fleshed variety in the A. chinensis var. chinensis, ‘Wudang 1’ produces uniform elliptical fruits (shape index of 1.34) with an average weight of 83.22 g. Its flesh combines sweet and tart flavors with exceptional nutritional parameters: 16.33% SSC, 15.28% dry matter, 12.10% soluble sugars, 1.24% titratable acidity, 132.10 mg/100 g vitamin C, and 7.77 mg/g amino acids. Comparative analysis with established cultivars ‘Jinnong’ and ‘Cuiyu’ revealed that ‘Wudang 1’ matures earlier and demonstrates superior performance in three key quality metrics (SSC, dry matter, and vitamin C). Further analysis of aromatic profiles during the prime consumption stage identified 41 volatile compounds, predominantly comprising aldehydes, esters, alcohols, and ketones, which collectively contribute to its distinctive fragrance. Full article
(This article belongs to the Special Issue New Insights into Breeding and Genetic Improvement of Fruit Crops)
Show Figures

Figure 1

21 pages, 3937 KiB  
Article
Identification, Cloning, and Functional Characterization of Carotenoid Cleavage Dioxygenase (CCD) from Olea europaea and Ipomoea nil
by Kaixuan Ke, Yufeng Zhang, Xinyi Wang, Zhaoyan Luo, Yangyang Chen, Xianying Fang and Linguo Zhao
Biology 2025, 14(7), 752; https://doi.org/10.3390/biology14070752 - 24 Jun 2025
Viewed by 390
Abstract
The aromatic C13 apocarotenoid β-ionone is a high-value natural-flavor and -fragrance compound derived from the oxidative cleavage of carotenoids. Carotenoid cleavage dioxygenases (CCDs) play a pivotal role in the biosynthesis of volatile apocarotenoids, particularly β-ionone. In this study, we report the identification, [...] Read more.
The aromatic C13 apocarotenoid β-ionone is a high-value natural-flavor and -fragrance compound derived from the oxidative cleavage of carotenoids. Carotenoid cleavage dioxygenases (CCDs) play a pivotal role in the biosynthesis of volatile apocarotenoids, particularly β-ionone. In this study, we report the identification, cloning, and functional characterization of two CCD1 homologs: OeCCD1 from Olea europaea and InCCD1 from Ipomoea nil. These two species, which, respectively, represent a woody perennial and a herbaceous annual, were selected to explore the potential functional divergence of CCD1 enzymes across different plant growth forms. These CCD1 genes were synthesized using codon optimization for Escherichia coli expression, followed by heterologous expression and purification using a GST-fusion system. In vitro assays confirmed that both enzymes cleave β-carotene at the 9,10 (9′,10′) double bond to yield β-ionone, but only OeCCD1 exhibits detectable activity on zeaxanthin; InCCD1 shows no in vitro cleavage of zeaxanthin. Kinetic characterization using β-apo-8′-carotenal as substrate revealed, for OeCCD1, a Km of 0.82 mM, Vmax of 2.30 U/mg (kcat = 3.35 s−1), and kcat/Km of 4.09 mM−1·s−1, whereas InCCD1 displayed Km = 0.69 mM, Vmax = 1.22 U/mg (kcat = 1.82 s−1), and kcat/Km = 2.64 mM−1·s−1. The optimization of expression parameters, as well as the systematic evaluation of temperature, pH, solvent, and metal ion effects, provided further insights into the stability and functional diversity within the plant CCD1 family. Overall, these findings offer promising enzymatic tools for the sustainable production of β-ionone and related apocarotenoids in engineered microbial cell factories. Full article
(This article belongs to the Section Biotechnology)
Show Figures

Graphical abstract

19 pages, 645 KiB  
Article
Agave amica (Medik.) Thiede & Govaerts (Asparagaceae)—Insights into Its Valuable Phenolic Profile and In Vitro Antimicrobial, Antibiofilm, Antioxidative, and Antiproliferative Properties
by Mihaela Niculae, Daniela Hanganu, Ilioara Oniga, Sergiu-Alexandru Burcă, Brîndușa Tiperciuc, Irina Ielciu, Emoke Pall, Timea Bab, Ramona Flavia Burtescu, Mihaela Andreea Sava and Daniela Benedec
Antibiotics 2025, 14(7), 638; https://doi.org/10.3390/antibiotics14070638 - 23 Jun 2025
Viewed by 469
Abstract
Background/Objectives: Agave amica (Medik.) Thiede & Govaerts (Asparagaceae family) is an ornamental bulbous species, widely used for its fragrance but less studied as a medicinal species. This study is aimed at assessing the phenolic profile and selected biological properties of ethanolic extracts [...] Read more.
Background/Objectives: Agave amica (Medik.) Thiede & Govaerts (Asparagaceae family) is an ornamental bulbous species, widely used for its fragrance but less studied as a medicinal species. This study is aimed at assessing the phenolic profile and selected biological properties of ethanolic extracts obtained from the aerial parts and bulbs of A. amica cultivated in Romania. Methods: The phenolic composition was characterized by spectrophotometric methods and LC/MS analysis. The antioxidant activity was evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity) and FRAP (Ferric reducing antioxidant power) tests, while the in vitro antimicrobial capacity was investigated by the agar-well diffusion, the broth microdilution, and the antibiofilm assays. Cytotoxicity was tested on a colorectal adenocarcinoma cell line (DLD-1) by a CCK-8 assay. Results: Both ethanolic extracts showed important polyphenol content and caffeic acid as their main compound. Significantly higher amounts of total polyphenols (44.25 ± 1.08 mg/g), tannins (12.55 ± 0.34 mg/g), flavonoids (9.20 ± 0.19 mg/g), caffeic acid derivatives (19.95 ± 0.05 mg/g), and also antioxidant activity (IC50 = 0.82 ± 0.02 mg/mL, and 79.75 ± 1.80 µM TE/g, respectively) were found for the aerial parts extract compared to the bulbs one (p < 0.001). Notable anti-Candida albicans activity and moderate efficacy against Listeria monocytogenes and Staphylococcus aureus were displayed by both extracts against planktonic cells and biofilm. A dose-dependent cytotoxicity towards the colorectal adenocarcinoma cell line was recorded as well. Conclusions: This study brings novelty to the scientific literature by characterizing the phenolic profile and in vitro antimicrobial, antibiofilm, antioxidant, and antiproliferative activities of the ethanolic extracts obtained from A. amica, thus highlighting this herbal species’s medicinal potential. Full article
Show Figures

Figure 1

14 pages, 3488 KiB  
Article
Enhanced Encapsulation of Linalyl Acetate in Cyclodextrin-Based Metal–Organic Frameworks for Improved Stability
by Cheng Zhang, Lirong Zhang, Meiting Zhao, Ning Shao, Shuo Song and Xiaolan Zhu
Molecules 2025, 30(13), 2698; https://doi.org/10.3390/molecules30132698 - 23 Jun 2025
Viewed by 503
Abstract
Linalyl acetate (LA), a key volatile component in essential oils, is extensively utilized in fragrance, food, and cosmetic industries. Nevertheless, its practical applications are constrained by rapid evaporation and physicochemical instability. This study developed novel cyclodextrin–metal–organic frameworks (CD-MOFs) crystallized from β-cyclodextrin (β-CD) and [...] Read more.
Linalyl acetate (LA), a key volatile component in essential oils, is extensively utilized in fragrance, food, and cosmetic industries. Nevertheless, its practical applications are constrained by rapid evaporation and physicochemical instability. This study developed novel cyclodextrin–metal–organic frameworks (CD-MOFs) crystallized from β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) with potassium hydroxide, demonstrating superior structural properties for LA encapsulation. Through comparative analysis with native CDs, the synthesized CD-MOFs exhibited highly ordered crystalline architectures and uniform morphological characteristics. The LA encapsulation capacity of the γ-CD-MOF was systematically evaluated under different conditions using a three-level factorial design via RSM. Optimization revealed maximum encapsulation efficiency (25.9%) under ideal conditions—an LA:γ-CD-MOF mass ratio of 3.8:1, 60.9 °C incubation temperature, and 49.3 min processing time—representing a 2.39-fold enhancement over conventional CD encapsulation. Thermal stability analysis demonstrated remarkable improvement, with LA-γ-CD-MOF complexes showing an onset decomposition temperature of 215 °C, 135 °C higher than that of free LA. Compared with LA-γ-CD, LA coated with γ-CD-MOFs still retained 55.7% at 80 °C for 75 min, with the release rate reduced by about 45.3%. These findings establish the potential of γ-CD-MOFs as effective carriers for thermolabile and volatile compounds in functional food and cosmetic industries. Full article
Show Figures

Figure 1

17 pages, 2523 KiB  
Article
CRISPRa-Mediated Triple-Gene Activation of ARO10, ARO80, and ADH2 for Enhancing 2-Phenylethanol Biosynthesis via the Ehrlich Pathway in Saccharomyces cerevisiae
by Zijing Zhu, Shuaihu Fang, Pingping Huang, Dianqiang Luo and Xiaobao Qi
Fermentation 2025, 11(6), 345; https://doi.org/10.3390/fermentation11060345 - 12 Jun 2025
Viewed by 600
Abstract
2-phenylethanol (2-PE), a rose-like fragrance compound, is widely used in the food industry. Conventional chemical synthesis of 2-PE faces significant challenges due to environmental concerns and consumer preferences; thus, using Saccharomyces cerevisiae (S. cerevisiae) for 2-PE biosynthesis has become a preferable [...] Read more.
2-phenylethanol (2-PE), a rose-like fragrance compound, is widely used in the food industry. Conventional chemical synthesis of 2-PE faces significant challenges due to environmental concerns and consumer preferences; thus, using Saccharomyces cerevisiae (S. cerevisiae) for 2-PE biosynthesis has become a preferable option. This study aimed to develop a CRISPR activation (CRISPRa)-mediated S. cerevisiae engineered strain for efficient 2-PE biosynthesis by activating Ehrlich pathway key genes ARO10, ARO80, and ADH2. Three guide sequences (GSs) were designed for each gene ARO10, ARO80, and ADH2, and nine single-gene CRISPRa strains were constructed. Gene expression levels, 2-PE concentrations, and cell density were quantified using quantitative real-time PCR (qPCR), high-performance liquid chromatography (HPLC), and OD600 measurement, respectively. The optimal GSs of ARO10, ARO80, and ADH2 were selected based on 2-PE concentrations of corresponding strains. The triple-gene CRISPRa strain INVScI-ARO10-ARO80-ADH2 achieved a 214.04 mg/L 2-PE titer after 48 h, representing a 77.62% increase over the control with no significant effect on cell growth. These findings demonstrate that CRISPRa-mediated multi-gene activation constitutes a robust strategy for engineering high-performance 2-PE production systems in S. cerevisiae. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

15 pages, 1354 KiB  
Article
Profiling of Volatile Organic Compounds, Including Halogenated Substances, in Okinawan Red Alga Portieria hornemannii
by Kazuki Tani, Yu Sasaki, Takahiro Ishii and Yonathan Asikin
Molecules 2025, 30(12), 2534; https://doi.org/10.3390/molecules30122534 - 10 Jun 2025
Viewed by 503
Abstract
The exploitation of underutilised resources is critical for achieving a sustainable society, and non-edible seaweeds are promising candidates. This study focused on the red alga Portieria hornemannii from Okinawa, Japan, a seaweed with a distinctive aroma, and determined its volatile organic compounds (VOCs) [...] Read more.
The exploitation of underutilised resources is critical for achieving a sustainable society, and non-edible seaweeds are promising candidates. This study focused on the red alga Portieria hornemannii from Okinawa, Japan, a seaweed with a distinctive aroma, and determined its volatile organic compounds (VOCs) and halogenated secondary metabolites using headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS) at various extraction temperatures. HS-SPME-GC-MS analysis revealed 52 VOCs in Okinawan P. hornemannii, including predominant compounds α-pinenyl bromide (IUPAC name: 2-bromomethyl-6,6-dimethylbicyclo [3.1.1]hept-2-ene; halogenated monoterpene), myrcene disulfide (3-(6-methyl-2-methylidenehept-5-enylidene)dithiirane), and 5,6-dimethyl-1H-benzimidazole, the content of which in the extract increased with increasing extraction temperature from 30 to 60 °C. On the other hand, the β-myrcene (7-methyl-3-methyleneocta-1,6-diene) content, which likely contributes majorly to the distinct fresh odour of the algae, declined as the temperature increased. Furthermore, the proportion of β-myrcene obtained using SPME was significantly higher than that extracted using solvent liquid extraction (SLE) (7.20% in SPME at 30 °C vs. 0.09%, respectively). However, SLE-GC-MS provided a different P. hornemannii volatile profile, allowing for the acquisition of more furan-, alcohol-, ester-, and carboxylic acid-containing compounds. These data provide valuable information, such as a systematic analytical framework for volatiles profiling in the marine macroalgae P. hornemannii, with potential applicability in the development of food and fragrance products. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

36 pages, 2458 KiB  
Review
Limonene Detection in the Exhaled Human Breath Providing an Early Diagnosis Method of Liver Diseases
by Erich Kny, Christoph Kleber and Wiktor Luczak
Chemosensors 2025, 13(6), 204; https://doi.org/10.3390/chemosensors13060204 - 3 Jun 2025
Viewed by 2116
Abstract
This review aims to summarize possible methods for the detection of limonene in the gas phase at low to very low concentrations. Limonene has historically been of interest as a fragrance in cosmetics, the food industry, pharmaceutics, and the production of solvents. The [...] Read more.
This review aims to summarize possible methods for the detection of limonene in the gas phase at low to very low concentrations. Limonene has historically been of interest as a fragrance in cosmetics, the food industry, pharmaceutics, and the production of solvents. The development of analytical methods for limonene was initially driven by its use in relevant industries such as chemical, pharmaceutics, cosmetics, food, agriculture, and forestry. More recently, it has been recognized as a potent biomarker for human metabolic conditions, such as liver disease and certain cancers. The interest in improved limonene detection in exhaled human breath has increased, particularly from the medical field, which demands high reliability, very low detection limits in the parts per billion (ppb) and even parts per trillion (ppt) range, and excellent selectivity against other exhaled volatile organic compounds (VOC). In addition, the detection methods should be portable and affordable to facilitate potential mass screening. This review paper aims to explore all possible detection methods by evaluating their proven analytical capabilities for limonene or discussing their potential usefulness, benefits, and applicability for limonene detection. Full article
Show Figures

Figure 1

19 pages, 2796 KiB  
Article
Terpene Synthase (TPS) Family Member Identification and Expression Pattern Analysis in Flowers of Dendrobium chrysotoxum
by Yanni Yang, Jianying Gong, Rongrong Nong, Qiao Liu, Ke Xia, Shuo Qiu and Zaihua Wang
Horticulturae 2025, 11(6), 566; https://doi.org/10.3390/horticulturae11060566 - 22 May 2025
Viewed by 653
Abstract
Flower fragrance is a crucial ornamental and economic trait of Dendrobium chrysotoxum, and the most abundant and diverse aroma-active compounds are terpenes. Terpene synthase (TPS) is the ultimate enzyme for the biosynthesis of various types of terpenes, and TPS genes were identified [...] Read more.
Flower fragrance is a crucial ornamental and economic trait of Dendrobium chrysotoxum, and the most abundant and diverse aroma-active compounds are terpenes. Terpene synthase (TPS) is the ultimate enzyme for the biosynthesis of various types of terpenes, and TPS genes were identified as the key regulators governing the spatiotemporal release of volatile terpene compounds. Until recently, the TPS gene family in D. chrysotoxum has remained largely unexplored. Our study characterizes the TPS genes in D. chrysotoxum and identifies 37 DcTPS gene family members. It helped identify the DcTPS genes, gene characteristics, the phylogeny relationship, conserved motif location, gene exon/intron structure, cis-elements in the promoter regions, protein–protein interaction (PPI) network, tissue specific expression and verification of the expression across different flowering stages and floral organs. Three highly expressed DcTPS genes were cloned, and their functions were verified using a transient expressed in tobacco leaves. Further functional verification showed that the proteins encoded by these genes were enzymes involved in monoterpene synthesis, and they were all involved in the synthesis of linalool. This study comprehensively expatiates on the TPS gene family members in D. chrysotoxum for the first time. These data will help us gain a deeper understanding of both the molecular mechanisms and the effects of the TPS genes. Furthermore, the discovery that three TPS-b genes (DcTPS 02, 10, 32) specifically drive linalool-based scent in D. chrysotoxum, will provide new insights for expanding the TPS-b subfamily in orchids and identifying the linalool synthases contributing to orchid fragrance. Full article
Show Figures

Figure 1

16 pages, 2101 KiB  
Article
Simultaneous Determination and Quantification of NineNitrosamine Impurities in Semi-Solid Forms Using a GC–MS/MS Method
by Namjin Lee, Hyejin Go and Young-joon Park
Separations 2025, 12(5), 120; https://doi.org/10.3390/separations12050120 - 11 May 2025
Viewed by 707
Abstract
Many studies are being conducted on the detection of nitrosamine impurities in solid formulations. However, research on semi-solid formulations such as gels, ointments and creams is not common. In particular, excipients used to increase viscosity and add fragrance can significantly impact the sample [...] Read more.
Many studies are being conducted on the detection of nitrosamine impurities in solid formulations. However, research on semi-solid formulations such as gels, ointments and creams is not common. In particular, excipients used to increase viscosity and add fragrance can significantly impact the sample preparation. Volatile compounds derived from natural fragrances are composed of a wide variety of complex components, making them very difficult to handle and completely separate from the analytes. Due to the complex composition of these formulations, an analytical method was developed to accurately separate and analyze nine nitrosamine impurities (NDMA, NDEA, NMEA, NDPA, NDBA, NPIP, NMOR, DIPNA and EIPNA) simultaneously. To overcome challenges in the sample preparation of excipients with physical and chemical properties, the sample was prepared using solvents such as methanol, hexane, water and dichloromethane. The target analytes were extracted with dichloromethane for the final preparation for GC–MS/MS and the optimal conditions were established. While multiple GC columns were tested, peak overlapping interferences were observed, leading to the use of a 60m-long column to overcome peak overlap. The GC–MS/MS condition was set for optimal performance and ionization energy, with parameters adjusted for each analyte. The developed method was validated in accordance with guidelines to ensure its reliability and suitability. As a result, all nine nitrosamine impurities were simultaneously analyzed, confirming excellent performance. The sample preparation method and procedure, column specification and GC–MS/MS conditions have the potential to be adapted not only for semi-solid formulations of pharmaceuticals and cosmetics but also for other formulations such as solid and liquid samples, rendering them suitable for the analysis of nitrosamine impurities. Full article
Show Figures

Figure 1

14 pages, 2960 KiB  
Article
Overview of Active Ingredients Used in Deodorants and Antiperspirants Available on EU Market
by Urszula Kalinowska-Lis
Appl. Sci. 2025, 15(9), 5068; https://doi.org/10.3390/app15095068 - 2 May 2025
Viewed by 4270
Abstract
Deodorants and antiperspirants available on the market are designed to reduce the discomfort associated with sweating. This study examined the types of active substances contained in deodorants and antiperspirants from international cosmetic brands available in Poland (part of the EU market) and the [...] Read more.
Deodorants and antiperspirants available on the market are designed to reduce the discomfort associated with sweating. This study examined the types of active substances contained in deodorants and antiperspirants from international cosmetic brands available in Poland (part of the EU market) and the frequency of their use. Product compositions were analysed based on INCI (International Nomenclature of Cosmetic Ingredients) product labels. The investigation included the following 170 cosmetic products: 50 spray deodorants (from 50 different brands); 50 roll-on deodorants (from 50 brands); 20 stick deodorants (from 20 brands); 40 roll-on antiperspirants (from 40 brands); and 10 stick antiperspirants (from 10 brands). The most popular active components were Triethyl Citrate (51/120 formulations; 42.5%), followed by Alcohol (25.8%), Ethylhexylglycerin (25.0%), Caprylyl Glycol (12.5%), and Potassium Alum (10.0%). Antiperspirant products were dominated by aluminium-based compounds, with the most frequently used being the following aluminium-based salts: Aluminium Chlorohydrate (67.5%), Aluminium Sesquichlorohydrate (25.0%), and Aluminium Chloride (12.5%). In contrast, aluminium–zirconium complexes, such as Aluminum Zirconium Tri-, Penta-, and Octachlorohydrex Gly, were rarely used by cosmetic manufacturers. Additionally, composition complexity, i.e., the number of deodorizing and anti-sweating ingredients per single formulation, was examined for roll-on deodorants, stick deodorants, and roll-on antiperspirants. All tested antiperspirants and most deodorants contained fragrance-imparting ingredients; the most popular were Parfum/Fragrance, Limonene, Linalool, Citronellol, Citral, Benzyl Salicylate, Hexyl Cinnamal, and Geraniol. Full article
(This article belongs to the Special Issue Cosmetics Ingredients Research - 2nd Edition)
Show Figures

Figure 1

22 pages, 4508 KiB  
Article
Discrimination and Characterization of the Aroma Profile in Four Strawberry Varieties Cultivated Under Substrates
by Su Xu, Dajuan Shi, Fengwei Ma, Guangcan Tao, Jieling Xu, Lingshuai Meng, Haijiang Chen, Sen Cao, Dong Lin, Qiang Fei, Yi Liu and Siyao Wu
Foods 2025, 14(9), 1464; https://doi.org/10.3390/foods14091464 - 23 Apr 2025
Viewed by 574
Abstract
The strawberry is renowned for its distinctive fragrance and is regarded as one of the most popular fruits globally. This research analyzed the volatile compounds in four strawberry types grown in substrate systems, utilizing HS-GC-IMS, HS-SPME-GC-MS, and E-nose techniques. The results revealed a [...] Read more.
The strawberry is renowned for its distinctive fragrance and is regarded as one of the most popular fruits globally. This research analyzed the volatile compounds in four strawberry types grown in substrate systems, utilizing HS-GC-IMS, HS-SPME-GC-MS, and E-nose techniques. The results revealed a notable increase in the relative concentrations of alcohols, esters, and aldehydes in the strawberries. The E-nose was able to differentiate between the various strawberry varieties, but it was unable to fully identify specific aroma compounds. In contrast, the HS-GC-IMS and HS-SPME-GC-MS techniques demonstrated effectiveness in distinguishing and characterizing the different strawberry types, with OPLS-DA employed for further evaluation. By applying the variable importance in projection (VIP) method, six and seven aroma components were identified as potential biomarkers by GC-MS and GC-IMS, respectively. This study lays a scientific foundation for identifying key aromatic components in strawberries grown via substrate cultivation and offers comprehensive insights into their aromatic properties. Full article
Show Figures

Figure 1

Back to TopTop