Limonene Detection in the Exhaled Human Breath Providing an Early Diagnosis Method of Liver Diseases
Abstract
1. Importance and Occurrence of Limonene
1.1. What Is Limonene and Its Natural Origins
1.2. Application of Limonene in Everyday Use
2. Detection of Limonene in the Exhaled Human Breath Enabling Early Diagnosis of Liver Diseases
2.1. Types and Occurrence of Liver Diseases
2.2. State-of-the-Art Early Diagnosis of Liver Diseases
2.3. Importance of Early Diagnosis
- Preventing complications: such as variceal bleeding, ascites, hepatic encephalopathy (HE), and HCC.
- Limiting the severity of disease with the help of lifestyle modifications: including alcohol cessation, weight management, and dietary changes.
- Managing the disease with medications and treatments: antiviral therapies for hepatitis, medications to manage complications, and potentially antifibrotic agents.
- Monitoring patient’s status and follow-up appointments: regular monitoring to manage disease progression and early detection of complications.
2.4. Correlation of Limonene Content in Breath with Liver Disease
3. Detection Methods of Limonene in the Exhaled Human Breath
3.1. Breath Analysis as a Diagnostic Tool
3.2. Comparison of Different Sampling Methods of VOCs Like Limonene
3.3. Mass Spectrometry Techniques for Breath Analysis
3.3.1. Gas Chromatography-Mass Spectrometry (GC-MS)
3.3.2. Proton Transfer Reaction-Mass Spectrometry (PTR-MS)
3.3.3. Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS)
3.3.4. Summary of Mass Spectrometry Methods for the Use of Limonene Detection
3.4. Devices Emulating Olfactory System—Electronic Nose (e-Nose)
3.4.1. Electrochemical Sensors (ECs)
3.4.2. Surface Acoustic Wave Sensors (SAW)
3.4.3. Quartz Crystal Microbalance Sensors (QCM)
3.4.4. Metal-Oxide Semiconductor Sensors (MOS)
3.5. Infrared Spectroscopy Sensors (IR)
3.6. Ion Mobility Spectrometry (IMS)
3.7. Colorimetric Sensors (CS) and Luminescence Sensors
3.8. Sensors Based on Electrospun Nanofibres (ESNs)
3.9. Aptamer-Based Sensors (APT)
3.10. Molecularly Imprinted Polymer-Based Sensors (MIP)
- High stability (thermal, chemical, and physical);
- Cost-effective and easy to produce;
- Robust and can be used in harsh conditions.
4. Advantages and Disadvantages of Specific Limonene Sensors for Breath Analysis
4.1. Advantages
- High sensitivity and specificity: Analysis techniques such as GC-MS, PTR-MS, and SIFT-MS offer high sensitivity and specificity, capable of detecting trace amounts of limonene, which is crucial for accurate breath analysis. GC-MS is generally considered to provide the highest sensitivity and specificity for detecting limonene, especially in complex mixtures. However, SAW, QCM, and IMS also offer high sensitivity and may be preferred in applications requiring real-time monitoring or specific environmental conditions.
- Non-invasiveness: Breath analysis is a non-invasive method, making it more comfortable and safer for patients compared to blood tests or biopsies. This can improve patient compliance and make frequent monitoring feasible.
- Rapid and real-time analysis: PTR-MS and e-Nose facilitate rapid and real-time analysis, enabling immediate results that are beneficial in clinical diagnostics and monitoring applications.
- Portability: Sensors such as MOS and e-Nose can be made portable, enabling point-of-care diagnostics and on-site analysis, a particularly advantageous feature in remote or field settings.
- Cost-effectiveness: Sensors like MOS and ESNs can be relatively inexpensive to produce and operate, making them accessible for widespread use.
- Potential for integration with wearable devices: The lightweight and flexible nature of ESNs renders them suitable for integration with wearable devices for continuous monitoring.
4.2. Disadvantages
- 7.
- Calibration and standardization: Many sensors require frequent calibration to maintain accuracy. The lack of standardized calibration protocols can lead to variability in results between different devices and studies.
- 8.
- Interference from other compounds: breath contains a complex mixture of VOCs, and certain sensors may suffer from cross-sensitivity or interference from other compounds, which can affect the accuracy of limonene detection.
- 9.
- Environmental conditions: sensors like MOS can be affected by environmental conditions such as humidity and temperature, which can impact their performance and reliability.
- 10.
- Complexity and cost of high-sensitivity techniques: Techniques like GC-MS and PTR-MS, while highly sensitive, are complex and expensive, requiring sophisticated equipment and skilled operators. This limits their use to specialized laboratories and reduces accessibility for routine screening.
- 11.
- Durability and longevity: Some sensors, particularly those using nanomaterials, may face issues with durability and longevity. Their performance can degrade over time, necessitating frequent replacement or maintenance.
- 12.
- Sample collection and handling: Proper sample collection and handling are critical for accurate results, especially for techniques requiring breath samples to be stored and transported (e.g., GC-MS analysis using Tedlar bags). Improper handling can lead to contamination or loss of analytes.
5. Limonene Sensors in Comparison
5.1. Sensitivity and Detection Limits
5.2. Selectivity and Specificity
5.3. Practical Applications
5.4. Summary
6. Conclusions, Challenges and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase |
AIH | Autoimmune hepatitis |
ALD | Alcohol-related liver disease |
APCI | Atmospheric pressure chemical ionization |
AUROC | Area under the receiver operating characteristic |
CNT | Carbon nanotube |
CRDS | Cavity ring-down spectroscopy |
CS | Colorimetric sensor |
CT | Computer tomography |
DB-SPME | Direct-breath solid-phase microextraction |
DILI | Drug-induced liver injury |
EC | Electrochemical sensor |
FAIMS | Field asymmetric ion mobility spectrometry |
FET | Field-effect transistor |
FGC-SAW | Fast gas chromatography surface acoustic wave |
GC | Gas chromatography |
GC-IMS | Gas chromatography ion mobility spectrometry |
GC-MS | Gas chromatography-mass spectrometry |
gFET | Graphene field-effect transistor |
HCC | Hepatocellular carcinoma |
HE | Hepatic encephalopathy |
IMS | Ion mobility spectrometry |
IMS-MS | Ion mobility spectrometry-mass spectrometry |
IoT | Internet of things |
IUPAC | International Union of Pure and Applied Chemistry |
LAS | Laser absorption spectroscopy |
LFT | Liver function test |
LoD | Limit of detection |
MEMS | Micro-electro-mechanical systems |
MIP | Molecularly imprinted polymer |
MIR | Mid-infrared |
MOF | Motel organic frameworks |
MOS | Metal-oxide semiconductor |
MRI | Magnetic resonance imaging |
MS | Mass spectrometry |
MQCM | Multichannel quartz crystal microbalance |
NAFLD | Non-alcoholic fatty liver disease |
NASH | Non-alcoholic steatohepatitis |
NIR-PAS | Near-infrared photoacoustic spectroscopy |
PAA | Polyacrylic acid |
PAS | Photoacoustic spectroscopy |
PBC | Primary biliary cholangitis |
PDMS | Polydimethylsiloxane |
PLC | Primary liver cancer |
ppb | Parts per billion |
ppt | Parts per trillion |
PTR-MS | Proton transfer reaction-mass spectrometry |
PVP | Polyvinylpyrrolidone |
RSD | Relative standard deviation |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SAW | Surface acoustic wave |
SELEX | Systemic evolution of ligands by exponential enrichment |
SIFT | Selected ion flow tube |
SIFT-MS | Selected ion flow tube-mass spectrometry |
SOF | Silica optical fibre |
SPME | Solid-phase microextraction |
TDLAS | Tuneable diode laser absorption spectroscopy |
QCM | Quartz crystal microbalance |
VOC | Volatile organic compound |
References
- Solomons, T.W.G.; Fryhle, C.B.; Snyder, S.A. Organic Chemistry, 12th ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Erasto, P.; Viljoen, A.M. Limonene—A Review: Biosynthetic, Ecological and Pharmacological Relevance. Nat. Prod. Commun. 2008, 3, 1193–1202. [Google Scholar] [CrossRef]
- Limonene Priority Existing Chemical Assessment Report; NICNAS: Sydney, Australia, 2002; p. 149.
- Malko, M.; Wróblewska, A. The Importance of R-(+)-Limonene as the Raw Material for Organic Syntheses and for Organic Industry. CHEMIK Nauka-Technika-Rynek 2016, 70, 198–202. [Google Scholar]
- Rowe, D. Practical Analysis of Flavor and Fragrance Materials; Goodner, K., Rouseff, R., Eds.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ravichandran, C.; Badgujar, P.C.; Gundev, P.; Upadhyay, A. Review of Toxicological Assessment of D-Limonene, a Food and Cosmetics Additive. Food Chem. Toxicol. 2018, 120, 668–680. [Google Scholar] [CrossRef]
- Matura, M.; Sköld, M.; Börje, A.; Andersen, K.E.; Bruze, M.; Frosch, P.; Goossens, A.; Johansen, J.D.; Svedman, C.; White, I.R.; et al. Not Only Oxidized R-(+)- but Also S-(−)-Limonene Is a Common Cause of Contact Allergy in Dermatitis Patients in Europe. Contact Dermat. 2006, 55, 274–279. [Google Scholar] [CrossRef]
- Sunil, V.R.; Laumbach, R.J.; Patel, K.J.; Turpin, B.J.; Lim, H.-J.; Kipen, H.M.; Laskin, J.D.; Laskin, D.L. Pulmonary Effects of Inhaled Limonene Ozone Reaction Products in Elderly Rats. Toxicol. Appl. Pharmacol. 2007, 222, 211–220. [Google Scholar] [CrossRef]
- Anderson, S.E.; Khurshid, S.S.; Meade, B.J.; Lukomska, E.; Wells, J.R. Toxicological Analysis of Limonene Reaction Products Using an in Vitro Exposure System. Toxicol. In Vitro 2013, 27, 721–730. [Google Scholar] [CrossRef]
- Dales, R.E.; Cakmak, S. Is Residential Ambient Air Limonene Associated with Asthma? Findings from the Canadian Health Measures Survey. Environ. Pollut. 2019, 244, 966–970. [Google Scholar] [CrossRef]
- Vigushin, D.M.; Poon, G.K.; Boddy, A.; English, J.; Halbert, G.W.; Pagonis, C.; Jarman, M.; Coombes, R.C. Phase I and Pharmacokinetic Study of D-Limonene in Patients with Advanced Cancer. Cancer Chemother. Pharmacol. 1998, 42, 111–117. [Google Scholar] [CrossRef]
- Igimi, H.; Hisatsugu, T.; Nishimura, M. The Use Ofd-Limonene Preparation as a Dissolving Agent of Gallstones. Am. J. Dig. Dis. 1976, 21, 926–939. [Google Scholar] [CrossRef]
- Sun, J. D-Limonene: Safety and Clinical Applications. Altern. Med. Rev. 2007, 12, 259–264. [Google Scholar]
- Crowell, P.L.; Gould, M.N. Chemoprevention and Therapy of Cancer by d-Limonene. Crit. Rev. Oncog. 1994, 5, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Santana, H.S.R.; de Carvalho, F.O.; Santos, D.M.D.; da Silva, E.A.P.; Silva, É.R.; Shanmugam, S.; Heimfarth, L.; Nunes, P.S.; de Oliveira e Silva, A.M.; de Souza Araújo, A.A.; et al. Inhaled D-Limonene Minimizes Acute Lung Injury and Reduces Oxidative Stress Induced by Smoke in Rats. Phytomed. Plus 2022, 2, 100308. [Google Scholar] [CrossRef]
- Zhu, T.; Li, Y.; Feng, T.; Yang, Y.; Zhang, K.; Gao, J.; Quan, X.; Qian, Y.; Yu, H.; Qian, B. d-Limonene Inhibits the Occurrence and Progression of Luad through Suppressing Lipid Droplet Accumulation Induced by Pm2.5 Exposure in Vivo and in Vitro. Respir. Res. 2022, 23, 338. [Google Scholar] [CrossRef] [PubMed]
- Eddin, L.B.; Jha, N.K.; Meeran, M.F.N.; Kesari, K.K.; Beiram, R.; Ojha, S. Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules 2021, 26, 4535. [Google Scholar] [CrossRef]
- Anandakumar, P.; Kamaraj, S.; Vanitha, M.K. D-Limonene: A Multifunctional Compound with Potent Therapeutic Effects. J. Food Biochem. 2021, 45, e13566. [Google Scholar] [CrossRef]
- Sarbach, C.; Vergès, S.; Coiffard, F.; Constancias, C.; Champigneulle, B.; Doutreleau, S.; Andreucci, P.; Duraffourg, L.; Postaire, E. Evidence of Limonene in Breath Samples in Men from the World’s Highest City. Med. Res. Arch. 2022, 10, 1–18. [Google Scholar] [CrossRef]
- Miyazawa, M.; Shindo, M.; Shimada, T. Metabolism of (+)- and (−)-Limonenes to Respective Carveols and Perillyl Alcohols by Cyp2c9 and Cyp2c19 in Human Liver Microsomes. Drug Metab. Dispos. 2002, 30, 602–607. [Google Scholar] [CrossRef]
- Xie, Z.; Sutaria, S.R.; Chen, J.Y.; Gao, H.; Conklin, D.J.; Keith, R.J.; Srivastava, S.; Lorkiewicz, P.; Bhatnagar, A. Evaluation of Urinary Limonene Metabolites as Biomarkers of Exposure to Greenness. Environ. Res. 2024, 245, 117991. [Google Scholar] [CrossRef]
- Schmidt, L.; Göen, T. R-Limonene Metabolism in Humans and Metabolite Kinetics after Oral Administration. Arch. Toxicol. 2017, 91, 1175–1185. [Google Scholar] [CrossRef]
- Stavropoulos, G.; van Munster, K.; Ferrandino, G.; Sauca, M.; Ponsioen, C.; van Schooten, F.-J.; Smolinska, A. Liver Impairment—The Potential Application of Volatile Organic Compounds in Hepatology. Metabolites 2021, 11, 618. [Google Scholar] [CrossRef]
- Sinha, R.; Lockman, K.A.; Homer, N.Z.M.; Bower, E.; Brinkman, P.; Knobel, H.H.; Fallowfield, J.A.; Jaap, A.J.; Hayes, P.C.; Plevris, J.N. Volatomic Analysis Identifies Compounds That Can Stratify Non-Alcoholic Fatty Liver Disease. JHEP Rep. 2020, 2, 100137. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.I.; Preti, G.; Deems, R.O.; Friedman, L.S.; Munoz, S.J.; Maddrey, W.C. Limonene in Expired Lung Air of Patients with Liver Disease. Dig. Dis. Sci. 1994, 39, 1672–1676. [Google Scholar] [CrossRef] [PubMed]
- Ferrandino, G.; Orf, I.; Smith, R.; Calcagno, M.; Thind, A.K.; Debiram-Beecham, I.; Williams, M.; Gandelman, O.; de Saedeleer, A.; Kibble, G.; et al. Breath Biopsy Assessment of Liver Disease Using an Exogenous Volatile Organic Compound—Toward Improved Detection of Liver Impairment. Clin. Transl. Gastroenterol. 2020, 11, e00239. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, M.E.; del Río, R.F.; Holt, A.; Pemberton, P.; Shah, T.; Whitehouse, T.; Mayhew, C.A. Limonene in Exhaled Breath Is Elevated in Hepatic Encephalopathy. J. Breath Res. 2016, 10, 046010. [Google Scholar] [CrossRef]
- Fernández del Río, R.; O’Hara, M.E.; Holt, A.; Pemberton, P.; Shah, T.; Whitehouse, T.; Mayhew, C.A. Volatile Biomarkers in Breath Associated with Liver Cirrhosis—Comparisons of Pre- and Post-Liver Transplant Breath Samples. EBioMedicine 2015, 2, 1243–1250. [Google Scholar] [CrossRef]
- Phillips, M.; Cataneo, R.N.; Saunders, C.; Hope, P.; Schmitt, P.; Wai, J. Volatile Biomarkers in the Breath of Women with Breast Cancer. J. Breath Res. 2010, 4, 026003. [Google Scholar] [CrossRef]
- Hakim, M.; Billan, S.; Tisch, U.; Peng, G.; Dvrokind, I.; Marom, O.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosis of Head-and-Neck Cancer from Exhaled Breath. Br. J. Cancer 2011, 104, 1649–1655. [Google Scholar] [CrossRef]
- Fedeli, U.; Amidei, C.B.; Casotto, V.; Grande, E.; Saia, M.; Zanetto, A.; Russo, F.P. Mortality from Chronic Liver Disease: Recent Trends and Impact of the Covid-19 Pandemic. World J. Gastroenterol. 2023, 29, 4166–4173. [Google Scholar] [CrossRef]
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global Burden of Liver Disease: 2023 Update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef]
- Huang, D.Q.; Terrault, N.A.; Tacke, F.; Gluud, L.L.; Arrese, M.; Bugianesi, E.; Loomba, R. Global Epidemiology of Cirrhosis—Aetiology, Trends and Predictions. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 388–398. [Google Scholar] [CrossRef]
- Younossi, Z.M. Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. J. Hepatol. 2019, 70, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Gerges, S.H.; Wahdan, S.A.; Elsherbiny, D.A.; El-Demerdash, E. Non-Alcoholic Fatty Liver Disease: An Overview of Risk Factors, Pathophysiological Mechanisms, Diagnostic Procedures, and Therapeutic Interventions. Life Sci. 2021, 271, 119220. [Google Scholar] [CrossRef] [PubMed]
- Juanola, O.; Martínez-López, S.; Francés, R.; Gómez-Hurtado, I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. Int. J. Environ. Res. Public Health 2021, 18, 5227. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Huang, D.Q.; Mathurin, P.; Cortez-Pinto, H.; Loomba, R. Global Epidemiology of Alcohol-Associated Cirrhosis and Hcc: Trends, Projections and Risk Factors. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 37–49. [Google Scholar] [CrossRef]
- Alcohol and the Human Body. National Institute on Alcohol Abuse and Alcoholism. Available online: https://www.niaaa.nih.gov/alcohols-effects-health/alcohol-topics-z/alcohol-facts-and-statistics/alcohol-and-human-body (accessed on 12 March 2025).
- Gazda, J.; Drazilova, S.; Janicko, M.; Jarcuska, P. The Epidemiology of Primary Biliary Cholangitis in European Countries: A Systematic Review and Meta-Analysis. Can. J. Gastroenterol. Hepatol. 2021, 2021, 9151525. [Google Scholar] [CrossRef]
- Olynyk, J.K.; Ramm, G.A. Hemochromatosis. N. Engl. J. Med. 2022, 387, 2159–2170. [Google Scholar] [CrossRef]
- Gao, J.; Brackley, S.; Mann, J.P. The Global Prevalence of Wilson Disease from Next-Generation Sequencing Data. Genet. Med. 2019, 21, 1155–1163. [Google Scholar] [CrossRef]
- Fregonese, L.; Stolk, J. Hereditary Alpha-1-Antitrypsin Deficiency and Its Clinical Consequences. Orphanet J. Rare Dis. 2008, 3, 16. [Google Scholar] [CrossRef]
- Li, X.; Tang, J.; Mao, Y. Incidence and Risk Factors of Drug-Induced Liver Injury. Liver Int. 2022, 42, 1999–2014. [Google Scholar] [CrossRef]
- Jagdish, R.K.; Maras, J.S.; Sarin, S.K. Albumin in Advanced Liver Diseases: The Good and Bad of a Drug! Hepatology 2021, 74, 2848–2862. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.F. The Misunderstood Coagulopathy of Liver Disease: A Review for the Acute Setting. West. J. Emerg. Med. 2018, 19, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, B.; Wright, G.; Gatt, A.; Riddell, A.; Vemala, V.; Mallett, S.; Chowdary, P.; Davenport, A.; Jalan, R.; Burroughs, A. Evaluation of Coagulation Abnormalities in Acute Liver Failure. J. Hepatol. 2012, 57, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Loaeza-del-Castillo, A.; Paz-Pineda, F.; Oviedo-Cárdenas, E.; Sánchez-Ávila, F.; Vargas-Vorácková, F. AST to Platelet Ratio Index (APRI) for the Noninvasive Evaluation of Liver Fibrosis: Original Article. Ann. Hepatol. 2008, 7, 350–357. [Google Scholar] [CrossRef]
- Aslam, F.; Loveday, T.; Junior, P.L.S.U.; Borad, M.J. Utility of Ast to Platelet Ratio Index (APRI) Score in Predicting Post-Surgical Outcomes in Patients with Cholangiocarcinoma. J. Clin. Oncol. 2023, 41, 502. [Google Scholar] [CrossRef]
- Kim, W.R.; Berg, T.; Asselah, T.; Flisiak, R.; Fung, S.; Gordon, S.C.; Janssen, H.L.A.; Lampertico, P.; Lau, D.; Bornstein, J.D.; et al. Evaluation of Apri and FIB-4 Scoring Systems for Non-Invasive Assessment of Hepatic Fibrosis in Chronic Hepatitis B Patients. J. Hepatol. 2016, 64, 773–780. [Google Scholar] [CrossRef]
- Sonneveld, M.J.; Brouwer, W.P.; Chan, H.L.Y.; Piratvisuth, T.; Jia, J.-D.; Zeuzem, S.; Liaw, Y.-F.; Hansen, B.E.; Choi, H.; Wat, C.; et al. Optimisation of the Use of APRI and FIB-4 to Rule out Cirrhosis in Patients with Chronic Hepatitis B: Results from the Sonic-B Study. Lancet Gastroenterol. Hepatol. 2019, 4, 538–544. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Wei, L.; Tang, Q.; Hu, P. Optimized Cutoffs of Gamma-Glutamyl Transpeptidase-to-Platelet Ratio, Aspartate Aminotransferase-to-Platelet Ratio Index, and Fibrosis-4 Scoring Systems for Exclusion of Cirrhosis in Patients with Chronic Hepatitis B. Hepatol. Commun. 2022, 6, 1664–1672. [Google Scholar] [CrossRef]
- Van Beers, B.E.; Daire, J.-L.; Garteiser, P. New Imaging Techniques for Liver Diseases. J. Hepatol. 2015, 62, 690–700. [Google Scholar] [CrossRef]
- Van Beers, B.E.; Garteiser, P.; Leporq, B.; Rautou, P.-E.; Valla, D. Quantitative Imaging in Diffuse Liver Diseases. Semin. Liver Dis. 2017, 37, 243–258. [Google Scholar]
- Mathew, R.P.; Venkatesh, S.K. Imaging of Hepatic Fibrosis. Curr. Gastroenterol. Rep. 2018, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa Babu, A.; Wells, M.L.; Teytelboym, O.M.; Mackey, J.E.; Miller, F.H.; Yeh, B.M.; Ehman, R.L.; Venkatesh, S.K. Elastography in Chronic Liver Disease: Modalities, Techniques, Limitations, and Future Directions. RadioGraphics 2016, 36, 1987–2006. [Google Scholar] [CrossRef] [PubMed]
- Haj-Mirzaian, A.; Kadivar, A.; Kamel, I.R.; Zaheer, A. Updates on Imaging of Liver Tumors. Curr. Oncol. Rep. 2020, 22, 46. [Google Scholar] [CrossRef]
- Park, C.C.; Nguyen, P.; Hernandez, C.; Bettencourt, R.; Ramirez, K.; Fortney, L.; Hooker, J.; Sy, E.; Savides, M.T.; Alquiraish, M.H.; et al. Magnetic Resonance Elastography Vs Transient Elastography in Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gastroenterology 2017, 152, 598–607.e2. [Google Scholar] [CrossRef]
- European Association for Study of Liver; Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH Clinical Practice Guidelines: Non-Invasive Tests for Evaluation of Liver Disease Severity and Prognosis. J. Hepatol. 2015, 63, 237–264. [Google Scholar] [CrossRef]
- Germani, G.; Hytiroglou, P.; Fotiadu, A.; Burroughs, A.K.; Dhillon, A.P. Assessment of Fibrosis and Cirrhosis in Liver Biopsies: An Update. Semin. Liver Dis. 2011, 31, 082–090. [Google Scholar] [CrossRef]
- Crossan, C.; Tsochatzis, E.A.; Longworth, L.; Gurusamy, K.; Davidson, B.; Rodríguez-Perálvarez, M.; Mantzoukis, K.; O’Brien, J.; Thalassinos, E.; Papastergiou, V.; et al. Cost-Effectiveness of Non-Invasive Methods for Assessment and Monitoring of Liver Fibrosis and Cirrhosis in Patients with Chronic Liver Disease: Systematic Review and Economic Evaluation. Health Technol. Assess. 2015, 19, 9. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D.Y. Non-Invasive Diagnosis of Hepatitis B Virus-Related Cirrhosis. World J. Gastroenterol. 2014, 20, 445–459. [Google Scholar] [CrossRef]
- Muir, A.J. Understanding the Complexities of Cirrhosis. Clin. Ther. 2015, 37, 1822–1836. [Google Scholar] [CrossRef]
- Berzigotti, A. Advances and Challenges in Cirrhosis and Portal Hypertension. BMC Med. 2017, 15, 200. [Google Scholar] [CrossRef]
- Gupta, S.; Walker, S. Testing for Cirrhosis. Aust. Prescr. 2021, 44, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Aldulaimi, S.; Mendez, A.M. Splenomegaly: Diagnosis and Management in Adults. Am. Fam. Physician 2021, 104, 271–276. [Google Scholar] [PubMed]
- Borrell-Carrió, F.; Poveda, B.F.; Seco, E.M.; Castillejo, J.A.P.; González, M.P.; Rodríguez, E.P. Family Physicians’ Ability to Detect a Physical Sign (Hepatomegaly) from an Unannounced Standardized Patient (Incognito Sp). Eur. J. Gen. Pract. 2011, 17, 95–102. [Google Scholar] [CrossRef]
- Yilma, M.; Xu, R.H.; Saxena, V.; Muzzin, M.; Tucker, L.-Y.; Lee, J.; Mehta, N.; Mukhtar, N. Survival Outcomes among Patients with Hepatocellular Carcinoma in a Large Integrated Us Health System. JAMA Netw. Open 2024, 7, e2435066. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhang, B.; Xu, Y.; Wang, W.; Shen, Y.; Zhang, A.; Xu, Z. Prospective Study of Early Detection for Primary Liver Cancer. J. Cancer Res. Clin. Oncol. 1997, 123, 357–360. [Google Scholar] [CrossRef]
- Burra, P.; Becchetti, C.; Germani, G. Nafld and Liver Transplantation: Disease Burden, Current Management and Future Challenges. JHEP Rep. 2020, 2, 100192. [Google Scholar] [CrossRef]
- Haque, M. Liver Transplantation Costs in the Era of a Health Care Crisis: Are We Looking Beyond and Thinking About the Economics? Liver Transplant. 2010, 16, 534. [Google Scholar] [CrossRef]
- Ferrandino, G.; Ricciardi, F.; Murgia, A.; Banda, I.; Manhota, M.; Ahmed, Y.; Sweeney, K.; Nicholson-Scott, L.; McConville, L.; Gandelman, O.; et al. Exogenous Volatile Organic Compound (Evoc®) Breath Testing Maximizes Classification Performance for Subjects with Cirrhosis and Reveals Signs of Portal Hypertension. Biomedicines 2023, 11, 2957. [Google Scholar] [CrossRef]
- Weber, I.C.; Oosthuizen, D.N.; Mohammad, R.W.; Mayhew, C.A.; Pratsinis, S.E.; Güntner, A.T. Dynamic Breath Limonene Sensing at High Selectivity. ACS Sens. 2023, 8, 2618–2626. [Google Scholar] [CrossRef]
- Patnaik, R.K.; Lin, Y.-C.; Agarwal, A.; Ho, M.-C.; Yeh, J.A. A Pilot Study for the Prediction of Liver Function Related Scores Using Breath Biomarkers and Machine Learning. Sci. Rep. 2022, 12, 2032. [Google Scholar] [CrossRef]
- Hu, B. Mass Spectrometric Analysis of Exhaled Breath: Recent Advances and Future Perspectives. TrAC Trends Anal. Chem. 2023, 168, 117320. [Google Scholar] [CrossRef]
- Yuan, Z.-C.; Zhang, Y.; Cai, S.-H.; Chen, W.; Hu, B. Solid Phase Microextraction for Human Breath Analysis of Environmental and Occupational Exposures: A Review. Adv. Sample Prep. 2022, 3, 100023. [Google Scholar] [CrossRef]
- Ghawanmeh, A.A.; Tanash, S.A.; Al-Rawashdeh, N.A.F.; Albiss, B. The Recent Progress on Nanomaterial-Based Chemosensors for Diagnosis of Human Exhaled Breath: A Review. J. Mater. Sci. 2024, 59, 8573–8605. [Google Scholar] [CrossRef]
- Hu, W.; Wu, W.; Jian, Y.; Haick, H.; Zhang, G.; Qian, Y.; Yuan, M.; Yao, M. Volatolomics in Healthcare and Its Advanced Detection Technology. Nano Res. 2022, 15, 8185–8213. [Google Scholar] [CrossRef]
- Henderson, B.; Khodabakhsh, A.; Metsälä, M.; Ventrillard, I.; Schmidt, F.M.; Romanini, D.; Ritchie, G.A.D.; Hekkert, S.T.L.; Briot, R.; Risby, T.; et al. Laser Spectroscopy for Breath Analysis: Towards Clinical Implementation. Appl. Phys. B 2018, 124, 161. [Google Scholar] [CrossRef]
- McCurdy, M.R.; Bakhirkin, Y.; Wysocki, G.; Lewicki, R.; Tittel, F.K. Recent Advances of Laser-Spectroscopy-Based Techniques for Applications in Breath Analysis. J. Breath Res. 2007, 1, 014001. [Google Scholar] [CrossRef]
- Bruderer, T.; Gaisl, T.; Gaugg, M.T.; Nowak, N.; Streckenbach, B.; Müller, S.; Moeller, A.; Kohler, M.; Zenobi, R. On-Line Analysis of Exhaled Breath. Chem. Rev. 2019, 119, 10803–10828. [Google Scholar] [CrossRef]
- Di Gilio, A.; Palmisani, J.; Ventrella, G.; Facchini, L.; Catino, A.; Varesano, N.; Pizzutilo, P.; Galetta, D.; Borelli, M.; Barbieri, P.; et al. Breath Analysis: Comparison among Methodological Approaches for Breath Sampling. Molecules 2020, 25, 5823. [Google Scholar] [CrossRef]
- Berna, A.Z.; Schaber, C.L.; Bollinger, L.B.; Mwale, M.; Mlotha-Mitole, R.; Trehan, I.; John, A.R.O. Comparison of Breath Sampling Methods: A Post Hoc Analysis from Observational Cohort Studies. Analyst 2019, 144, 2026–2033. [Google Scholar] [CrossRef]
- Schulz, E.; Woollam, M.; Grocki, P.; Davis, M.D.; Agarwal, M. Methods to Detect Volatile Organic Compounds for Breath Biopsy Using Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry. Molecules 2023, 28, 4533. [Google Scholar] [CrossRef]
- van Oort, P.M.P.; White, I.R.; Ahmed, W.; Johnson, C.; Bannard-Smith, J.; Felton, T.; Bos, L.D.; Goodacre, R.; Dark, P.; Fowler, S.J. Detection and Quantification of Exhaled Volatile Organic Compounds in Mechanically Ventilated Patients—Comparison of Two Sampling Methods. Analyst 2021, 146, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Biehl, W.; Schmetzer, H.; Koczulla, R.; Hattesohl, A.; Jörres, R.; Duell, T.; Althöhn, U. P01.03|Voc Pattern Recognition of Lung Cancer: A Comparative Evaluation of Different Dog- and Enose-Based Strategies Using Different Sampling Materials. J. Immunother. Cancer 2020, 8 (Suppl. S2), A9. [Google Scholar]
- Dadamio, J.; Van den Velde, S.; Laleman, W.; Van Hee, P.; Coucke, W.; Nevens, F.; Quirynen, M. Breath Biomarkers of Liver Cirrhosis. J. Chromatogr. B 2012, 905, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Wu, G.; Huang, H.; Liu, T.; Wang, J.; Sun, J.; Wang, H. A Semi-Packed Micro Gc Column for Separation of the Nafld Exhaled Breath VOCs. Surf. Coat. Technol. 2019, 363, 322–329. [Google Scholar] [CrossRef]
- Materić, D.; Bruhn, D.; Turner, C.; Morgan, G.; Mason, N.; Gauci, V. Methods in Plant Foliar Volatile Organic Compounds Research. Appl. Plant Sci. 2015, 3, 1500044. [Google Scholar] [CrossRef]
- Zhan, X.; Duan, J.; Duan, Y. Recent Developments of Proton-Transfer Reaction Mass Spectrometry (PTR-MS) and Its Applications in Medical Research. Mass Spectrom. Rev. 2013, 32, 143–165. [Google Scholar] [CrossRef]
- Brown, P.A. Investigations of Proton Transfer Reaction Mass Spectrometry for Applications in Organophosphate Detection and Breath Analysis. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2012. [Google Scholar]
- Španěl, P.; Smith, D. Selected Ion Flow Tube: A Technique for Quantitative Trace Gas Analysis of Air and Breath. Med. Biol. Eng. Comput. 1996, 34, 409–419. [Google Scholar] [CrossRef]
- Lehnert, A.S.; Behrendt, T.; Ruecker, A.; Pohnert, G.; Trumbore, S.E. SIFT-MS Optimization for Atmospheric Trace Gas Measurements at Varying Humidity. Atmos. Meas. Tech. 2020, 13, 3507–3520. [Google Scholar] [CrossRef]
- Belluomo, I.; Boshier, P.R.; Myridakis, A.; Vadhwana, B.; Markar, S.R.; Spanel, P.; Hanna, G.B. Selected Ion Flow Tube Mass Spectrometry for Targeted Analysis of Volatile Organic Compounds in Human Breath. Nat. Protoc. 2021, 16, 3419–3438. [Google Scholar] [CrossRef]
- Markar, S.R.; Wiggins, T.; Antonowicz, S.; Chin, S.-T.; Romano, A.; Nikolic, K.; Evans, B.; Cunningham, D.; Mughal, M.; Lagergren, J.; et al. Assessment of a Noninvasive Exhaled Breath Test for the Diagnosis of Oesophagogastric Cancer. JAMA Oncol. 2018, 4, 970–976. [Google Scholar] [CrossRef]
- Langford, V.S.; Billiau, C.; McEwan, M.J. Evaluation of the Efficacy of Sift-Ms for Speciation of Wastewater Treatment Plant Odors in Parallel with Human Sensory Analysis. Environments 2020, 7, 90. [Google Scholar] [CrossRef]
- Lacko, M.; Wang, N.; Sovová, K.; Pásztor, P.; Španěl, P. Addition of Fast gas Chromatography to Selected Ion Flow Tube Mass Spectrometry for Analysis of Individual Monoterpenes in Mixtures. Atmos. Meas. Tech. 2019, 12, 4965–4982. [Google Scholar] [CrossRef]
- Wang, T.; Španěl, P.; Smith, D. Selected Ion Flow Tube, Sift, Studies of the Reactions of H3O+, NO+ and O2+ with Eleven C10h16 Monoterpenes. Int. J. Mass Spectrom. 2003, 228, 117–126. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Zhou, Y.; Wang, J.; You, R. Research Progress of Electronic Nose Technology in Exhaled Breath Disease Analysis. Microsyst. Nanoeng. 2023, 9, 129. [Google Scholar] [CrossRef]
- Nazir, N.U.; Abbas, S.R.; Nasir, H.; Hussain, I. Electrochemical Sensing of Limonene Using Thiol Capped Gold Nanoparticles and Its Detection in the Real Breath Sample of a Cirrhotic Patient. J. Electroanal. Chem. 2022, 905, 115977. [Google Scholar] [CrossRef]
- Voss, A.; Schroeder, R.; Schulz, S.; Haueisen, J.; Vogler, S.; Horn, P.; Stallmach, A.; Reuken, P. Detection of Liver Dysfunction Using a Wearable Electronic Nose System Based on Semiconductor Metal Oxide Sensors. Biosensors 2022, 12, 70. [Google Scholar] [CrossRef]
- Chang, Y.; Tang, N.; Qu, H.; Liu, J.; Zhang, D.; Zhang, H.; Pang, W.; Duan, X. Detection of Volatile Organic Compounds by Self-Assembled Monolayer Coated Sensor Array with Concentration-Independent Fingerprints. Sci. Rep. 2016, 6, 23970. [Google Scholar] [CrossRef]
- Yang, Y.; Nagano, K.; Chaoluomeng; Iwasa, T.; Fukuda, H. Analysis of Surface Acoustic Wave Propagation Velocity in Biological Function-Oriented Odor Sensor. J. Sens. 2018, 2018, 8129484. [Google Scholar] [CrossRef]
- Grate, J.W.; Abraham, M.H. Solubility Interactions and the Design of Chemically Selective Sorbent Coatings for Chemical Sensors and Arrays. Sens. Actuators B Chem. 1991, 3, 85–111. [Google Scholar] [CrossRef]
- Du, X.; Rouseff, R. Comparison of Fast Gas Chromatography−Surface Acoustic Wave Sensor (FGC-SAW) and Capillary Gc-Ms for Determining Strawberry and Orange Juice Volatiles. In Recent Advances in the Analysis of Food and Flavors; American Chemical Society: Washington, DC, USA, 2012; pp. 177–189. [Google Scholar]
- Vaughan, S.R.; Speller, N.C.; Chhotaray, P.; McCarter, K.S.; Siraj, N.; Pérez, R.L.; Li, Y.; Warner, I.M. Class Specific Discrimination of Volatile Organic Compounds Using a Quartz Crystal Microbalance Based Multisensor Array. Talanta 2018, 188, 423–428. [Google Scholar] [CrossRef]
- Cao, Y.; Fu, M.; Fan, S.; Gao, C.; Ma, Z.; Hou, D. Hydrophobic MOF/PDMs-Based QCM Sensors for VOCs Identification and Quantitative Detection in High-Humidity Environments. ACS Appl. Mater. Interfaces 2024, 16, 7721–7731. [Google Scholar] [CrossRef] [PubMed]
- Penza, M.; Cassano, G.; Aversa, P.; Cusano, A.; Cutolo, A.; Giordano, M.; Nicolais, L. Carbon Nanotube Acoustic and Optical Sensors for Volatile Organic Compound Detection. Nanotechnology 2005, 16, 2536. [Google Scholar] [CrossRef]
- Torad, N.L.; Kim, J.; Kim, M.; Lim, H.; Na, J.; Alshehri, S.M.; Ahamad, T.; Yamauchi, Y.; Eguchi, M.; Ding, B.; et al. Nanoarchitectured Porous Carbons Derived from Zifs toward Highly Sensitive and Selective QCM Sensor for Hazardous Aromatic Vapors. J. Hazard. Mater. 2021, 405, 124248. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Sang, M.; Wang, M.; Han, L.; Gong, Z.; Tang, X.; Long, X.; Xiong, H.; Peng, H. Rapid Detection of D-Limonene Emanating from Citrus Infestation by Bactrocera dorsalis (Hendel) Using a Developed Gas-Sensing System Based on QCM Sensors Coated with Ethyl Cellulose. Sens. Actuators B Chem. 2021, 328, 129048. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, C. Volatile Organic Compounds Gas Sensor Based on Quartz Crystal Microbalance for Fruit Freshness Detection: A Review. Food Chem. 2021, 334, 127615. [Google Scholar] [CrossRef]
- Völkle, J.; Kumpf, K.; Feldner, A.; Lieberzeit, P.; Fruhmann, P. Development of Conductive Molecularly Imprinted Polymers (cMIPs) for Limonene to Improve and Interconnect QCM and Chemiresistor Sensing. Sens. Actuators B Chem. 2022, 356, 131293. [Google Scholar] [CrossRef]
- Sasaki, K.; Furusawa, H.; Nagamine, K.; Tokito, S. Detection of Odorant Molecules in the Gaseous Phase Using A-, Β-, and Γ-Cyclodextrin Films on a Quartz Crystal Microbalance. Technologies 2018, 6, 63. [Google Scholar] [CrossRef]
- Rossi, A.; Spagnoli, E.; Tralli, F.; Marzocchi, M.; Guidi, V.; Fabbri, B. New Approach for the Detection of Sub-Ppm Limonene: An Investigation through Chemoresistive Metal-Oxide Semiconductors. Sensors 2023, 23, 6291. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, F.; Bounds, J.; Aluauee, E.; Kolomenskii, A.; Dong, Q.; He, J.; Meadows, C.; Zhang, S.; Schuessler, H. Spectroscopic Trace Gas Detection in Air-Based Gas Mixtures: Some Methods and Applications for Breath Analysis and Environmental Monitoring. J. Appl. Phys. 2022, 131, 22. [Google Scholar] [CrossRef]
- Dumitras, D.C.; Petrus, M.; Bratu, A.-M.; Popa, C. Applications of near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules 2020, 25, 1728. [Google Scholar] [CrossRef]
- Selvaraj, R.; Vasa, N.J.; Nagendra, S.M.S.; Mizaikoff, B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules 2020, 25, 2227. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Sun, F.; Bian, Y.; Ni, J.; Wang, Q.J.; Yu, X. Mid-Infrared Absorption Spectroscopy with Enhanced Detection Performance for Biomedical Applications. Appl. Spectrosc. Rev. 2023, 58, 834–868. [Google Scholar] [CrossRef]
- Covington, J.A.; der Schee, M.P.V.; Edge, A.S.L.; Boyle, B.; Savage, R.S.; Arasaradnam, R.P. The Application of Faims Gas Analysis in Medical Diagnostics. Analyst 2015, 140, 6775–6781. [Google Scholar] [CrossRef] [PubMed]
- Eiceman, G.A.; Karpas, Z.; Hill, H.H., Jr. Ion Mobility Spectrometry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Janzen, M.C.; Ponder, J.B.; Bailey, D.P.; Ingison, C.K.; Suslick, K.S. Colorimetric Sensor Arrays for Volatile Organic Compounds. Anal. Chem. 2006, 78, 3591–3600. [Google Scholar] [CrossRef]
- Gurung, A.; Gurung, R.; Kumari, P.; Bhutia, T.; Poudyal, P.; Pradhan, G. Fabrication of Porphyrin Based Colorimetric Sensor for the Detection of Liver Cirrhosis Biomarker. ChemRxiv 2023. [Google Scholar] [CrossRef]
- Gan, Z.; Wang, J. A Mof-Stabilized Enzyme-Based Colorimetric Biosensor Integrated with Ph Test Strips for Portable Detection of D-Limonene in Agricultural Applications. Chem. Eng. J. 2025, 510, 161719. [Google Scholar] [CrossRef]
- Ma, H.; Yang, Y.; Wang, J.; Li, C.; Fan, Z.; Wang, J. Recent Advances in Luminescent Metal-Organic Frameworks for Detection of Gas and Volatile Organic Molecules. IEEE Trans. Instrum. Meas. 2023, 72, 1500712. [Google Scholar] [CrossRef]
- Ding, B.; Wang, M.; Wang, X.; Yu, J.; Sun, G. Electrospun Nanomaterials for Ultrasensitive Sensors. Mater. Today 2010, 13, 16–27. [Google Scholar] [CrossRef]
- Aliheidari, N.; Aliahmad, N.; Agarwal, M.; Dalir, H. Electrospun Nanofibers for Label-Free Sensor Applications. Sensors 2019, 19, 3587. [Google Scholar] [CrossRef]
- Guo, Y.; Qiao, Y.; Cui, T.; Wu, F.; Ji, S.; Yang, Y.; Tian, H.; Ren, T. Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications. Appl. Sci. 2022, 12, 4370. [Google Scholar] [CrossRef]
- Chen, Z.; Guan, M.; Bian, Y.; Yin, X. Multifunctional Electrospun Nanofibers for Biosensing and Biomedical Engineering Applications. Biosensors 2024, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Halicka, K.; Cabaj, J. Electrospun Nanofibers for Sensing and Biosensing Applications—A Review. Int. J. Mol. Sci. 2021, 22, 6357. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.S.; Tian, Y.; Zhang, C.; Ye, Z.; Roy, K.; Chinnappan, A.; Ramakrishna, S.; Liu, W.; Ghosh, R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers 2021, 13, 3746. [Google Scholar] [CrossRef] [PubMed]
- Macagnano, A.; Molinari, F.N.; Mancini, T.; Lupi, S.; De Cesare, F. Uv Light Stereoselective Limonene Sensor Using Electrospun Pvp Composite Nanofibers. Proceedings 2024, 97, 131. [Google Scholar] [CrossRef]
- Gaggiotti, S.; Della Pelle, F.; Mascini, M.; Cichelli, A.; Compagnone, D. Peptides, DNA and Mips in Gas Sensing. From the Realization of the Sensors to Sample Analysis. Sensors 2020, 20, 4433. [Google Scholar] [CrossRef]
- Saito, T.; Nishida, Y.; Tabata, M.; Isobayashi, A.; Tomizawa, H.; Miyahara, Y.; Sugizaki, Y. Molecular Interactions between an Enzyme and Its Inhibitor for Selective Detection of Limonene. Anal. Chem. 2022, 94, 7692–7702. [Google Scholar] [CrossRef]
- Rungreungthanapol, T.; Homma, C.; Akagi, K.I.; Tanaka, M.; Kikuchi, J.; Tomizawa, H.; Sugizaki, Y.; Isobayashi, A.; Hayamizu, Y.; Okochi, M. Volatile Organic Compound Detection by Graphene Field-Effect Transistors Functionalized with Fly Olfactory Receptor Mimetic Peptides. Anal. Chem. 2023, 95, 4556–4563. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Hitomi, T.; Homma, C.; Rungreungthanapol, T.; Tanaka, M.; Yamada, K.; Hamasaki, H.; Sugizaki, Y.; Isobayashi, A.; Tomizawa, H.; et al. Enantioselective Detection of Gaseous Odorants with Peptide-Graphene Sensors Operating in Humid Environments. ACS Appl. Mater. Interfaces 2024, 16, 18564–18573. [Google Scholar] [CrossRef]
- Cuypers, W.; Lieberzeit, P.A. Combining Two Selection Principles: Sensor Arrays Based on Both Biomimetic Recognition and Chemometrics. Front. Chem. 2018, 6, 268. [Google Scholar] [CrossRef]
- Iqbal, N.; Mustafa, G.; Rehman, A.; Biedermann, A.; Najafi, B.; Lieberzeit, P.A.; Dickert, F.L. Qcm-Arrays for Sensing Terpenes in Fresh and Dried Herbs Via Bio-Mimetic Mip Layers. Sensors 2010, 10, 6361–6376. [Google Scholar] [CrossRef]
- Hawari, H.F.; Samsudin, N.M.; Ahmad, M.N.; Shakaff, A.Y.M.; Ghani, S.A.; Wahab, Y.; Hashim, U. Recognition of Limonene Volatile Using Interdigitated Electrode Molecular Imprinted Polymer Sensor. In Proceedings of the 2012 Third International Conference on Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, 8–10 February 2012; pp. 723–726. [Google Scholar]
- Wilson, A.D. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath. Metabolites 2015, 5, 140–163. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Niculae, A.-R.; Staden, R.-I.S.-V.; van Staden, J.F.; State, R.G. Sulfur-Doped Graphene-Based Electrochemical Sensors for Fast and Sensitive Determination of (R)-(+)-Limonene from Beverages. Sensors 2022, 22, 5851. [Google Scholar] [CrossRef] [PubMed]
- Olsen, B.G.; Stradiotto, N.R. Electrochemical Sensor Based on Nanostructured Surface of Reduced Graphene Oxide and Gold Nanoparticles Containing Electropolymerized Poly-Pyrrole for Selective Determination of Limonene Enantiomers in Orange and Pine Essential Oils. Microchem. J. 2025, 209, 112781. [Google Scholar] [CrossRef]
- Obermeier, J.; Trefz, P.; Wex, K.; Sabel, B.; Schubert, J.K.; Miekisch, W. Electrochemical Sensor System for Breath Analysis of Aldehydes, Co and No. J. Breath Res. 2015, 9, 016008. [Google Scholar] [CrossRef]
- Maiti, K.S.; Lewton, M.; Fill, E.; Apolonski, A. Sensitive Spectroscopic Breath Analysis by Water Condensation. J. Breath Res. 2018, 12, 046003. [Google Scholar] [CrossRef]
- Namjou, K.; Roller, C.B.; McMillen, G. Breath-Analysis Using Mid-Infrared Tunable Laser Spectroscopy. In Proceedings of the IEEE Sensors, Atlanta, GA, USA, 28–31 October 2007. [Google Scholar]
- Naz, F.; Groom, A.G.; Mohiuddin, M.D.; Sengupta, A.; Daigle-Maloney, T.; Burnell, M.J.; Michael, J.C.R.; Graham, S.; Beydaghyan, G.; Scheme, E.; et al. Using Infrared Spectroscopy to Analyze Breath of Patients Diagnosed with Breast Cancer. J. Clin. Oncol. 2022, 40, e13579. [Google Scholar] [CrossRef]
- Liu, S.; Dong, X.; Cao, H.; Lv, J.; Zhao, L.; Xia, Y.; Wang, Y.; Lv, Z. Mid-Infrared Photothermal Spectroscopy for Breath Nitric Oxide Testing with an Anti-Resonant Fiber. Opt. Laser Technol. 2022, 152, 108158. [Google Scholar] [CrossRef]
- Zhou, J.; Al Husseini, D.; Li, J.; Lin, Z.; Sukhishvili, S.; Coté, G.L.; Gutierrez-Osuna, R.; Lin, P.T. Detection of Volatile Organic Compounds Using Mid-Infrared Silicon Nitride Waveguide Sensors. Sci. Rep. 2022, 12, 5572. [Google Scholar] [CrossRef]
- Flores Rangel, G.; de León Martinez, L.D.; Mizaikoff, B. Helicobacter Pylori Breath Test Via Mid-Infrared Sensor Technology. ACS Sens. 2025, 10, 1005–1010. [Google Scholar] [CrossRef]
- D’Arco, A.; Mancini, T.; Paolozzi, M.C.; Macis, S.; Mosesso, L.; Marcelli, A.; Petrarca, M.; Radica, F.; Tranfo, G.; Lupi, S.; et al. High Sensitivity Monitoring of VOCs in Air through FTIR Spectroscopy Using a Multipass Gas Cell Setup. Sensors 2022, 22, 5624. [Google Scholar] [CrossRef] [PubMed]
- Yost, M.G.; Rose, M.A.; Morgan, M.S. An Evaluation of Fourier Transform Infrared (FTIR) Spectroscopy for Detecting Organic Solvents in Expired Breath. Appl. Occup. Environ. Hyg. 2003, 18, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Hauer, J.; Maiti, K.S. Development of Non-Invasive Diagnosis Based on FTIR Spectroscopy. Vib. Spectrosc. 2024, 134, 103724. [Google Scholar] [CrossRef]
- Zhong, X.; Li, D.; Du, W.; Yan, M.; Wang, Y.; Huo, D.; Hou, C. Rapid Recognition of Volatile Organic Compounds with Colorimetric Sensor Arrays for Lung Cancer Screening. Anal. Bioanal. Chem. 2018, 410, 3671–3681. [Google Scholar] [CrossRef]
- Chevrot, A.; Venckute, J.; Cuesta, S.; Golparvar, A.; Kapic, A.; Barbruni, G.L.; Carrara, S. Portable Breathalyzer for Exhaled Volatile Organic Compounds Monitoring in Lung Diseases. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022. [Google Scholar]
- Bunkowski, A.; Maddula, S.; Davies, A.N.; Westhoff, M.; Litterst, P.; Bödeker, B.; Baumbach, J.I. One-Year Time Series of Investigations of Analytes within Human Breath Using Ion Mobility Spectrometry. Int. J. Ion Mobil. Spectrom. 2010, 13, 141–148. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gómez-Ríos, G.A.; Silva, É.A.S.; Pawliszyn, J. Coupling Needle Trap Devices with Gas Chromatography–Ion Mobility Spectrometry Detection as a Simple Approach for on-Site Quantitative Analysis. J. Chromatogr. A 2013, 1300, 193–198. [Google Scholar] [CrossRef]
- Molinari, F.N.; Marelli, M.; Berretti, E.; Serrecchia, S.; Coppola, R.E.; De Cesare, F.; Macagnano, A. Cutting-Edge Sensor Design: Mip Nanoparticle-Functionalized Nanofibers for Gas-Phase Detection of Limonene in Predictive Agriculture. Polymers 2025, 17, 326. [Google Scholar] [CrossRef]
- González-Vila, Á.; Debliquy, M.; Lahem, D.; Zhang, C.; Mégret, P.; Caucheteur, C. Molecularly Imprinted Electropolymerization on a Metal-Coated Optical Fiber for Gas Sensing Applications. Sens. Actuators B Chem. 2017, 244, 1145–1151. [Google Scholar] [CrossRef]
- Okabayashi, T.; Toda, T.; Yamamoto, I.; Utsunomiya, K.; Yamashita, N.; Nakagawa, M. Temperature-Programmed Chemiluminescence Measurements for Discrimination and Determination of Fragrance. Sens. Actuators B Chem. 2001, 74, 152–156. [Google Scholar] [CrossRef]
- Zhang, R.; Cao, X.; Liu, Y.; Chang, X. Development of a Simple Cataluminescence Sensor System for Detecting and Discriminating Volatile Organic Compounds at Different Concentrations. Anal. Chem. 2013, 85, 3802–3806. [Google Scholar] [CrossRef]
- Lu, Y.; Chang, Y.; Tang, N.; Qu, H.; Liu, J.; Pang, W.; Zhang, H.; Zhang, D.; Duan, X. Detection of Volatile Organic Compounds Using Microfabricated Resonator Array Functionalized with Supramolecular Monolayers. ACS Appl. Mater. Interfaces 2015, 7, 17893–17903. [Google Scholar] [CrossRef] [PubMed]
- Cain, W.S.; Schmidt, R.; Wolkoff, P. Olfactory Detection of Ozone and D-Limonene: Reactants in Indoor Spaces. Indoor Air 2007, 17, 337–347. [Google Scholar] [CrossRef]
- Ghatak, B.; Ali, S.B.; Naskar, H.; Tudu, B.; Pramanik, P.; Mukherji, S.; Bandyopadhyay, R. Selective and Sensitive Detection of Limonene in Mango Using Molecularly Imprinted Polymer Based Quartz Crystal Microbalance Sensor. In Proceedings of the 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan, 26–29 May 2019. [Google Scholar]
Sensor | Aptamer-Based Sensors | MIP Sensors |
---|---|---|
Material | Biological—nucleic acids | Synthetic polymers |
Synthesis method | Systematic evolution of ligands by exponential enrichment | Polymerization in the presence of the target molecule |
Method of recognition | Non-covalent interactions with specific three-dimensional folding | Physical shape and chemical complementarity of the imprinted cavities |
Preferred implementation | Biological and medical applications due to their biocompatibility | Situations requiring robustness and stability under harsh conditions |
Short Name | Full Name | Sensing Principle | Articles Analysing Limonene | Articles Analysing Other VOCs |
---|---|---|---|---|
e-Nose | Electronic nose sensor | Array of chemical sensors and pattern recognition algorithms | - | [99,101,139,140] |
EC | Electrochemical sensor | Electrical signals resulting from a chemical reaction, typically involving oxidation or reduction at an electrode | [100,141,142] | [143] |
QCM | Quartz crystal microbalance | Tiny changes in mass by detecting shifts in the resonance frequency of a quartz crystal caused by material deposition on its surface | [110,113] | [107] |
IR | Infrared absorption | Identifies chemical compounds or detects motion based on the absorption or emission of IR light | [144] | [80,115,116,145,146,147,148,149,150,151,152] |
MOS | Metal-oxide semiconductor | Changes in electrical resistance of a metal-oxide material when it reacts with target gas molecules | [73,114] | [101] |
CS | Colorimetric sensor | Visible colour change in response to a chemical reaction with the target analyte | [122,123] | [121,153] |
ESN | Electrospun nanofibre sensor | Ultra-thin nanofibres produced by electrospinning, offering a high surface area and porosity for enhanced sensitivity (of electrochemical or optical sensor) | [131] | [125] |
APT | Aptamer-based sensor | Short, single-stranded DNA or RNA molecules bind specific targets with high affinity and selectivity | [133,134,135] | [154] |
IMS | Ion mobility spectroscopy | Identifies and separates ionized molecules in the gas phase based on their mobility through a drift tube under an electric field | [155,156] | [120] |
MIP | Molecularly imprinted polymer sensor | Synthetic polymers with specific cavities designed to selectively recognize and bind target molecules | [112,137,138,157] | [158] |
LUM | Luminescence sensor | Light emitted by a substance as a result of a chemical, biochemical, or physical process | [159] | [160] |
SAW | Surface acoustic wave sensor | Variations in acoustic wave velocity travelling along the surface of a material | [103,105] | [102,161] |
Detection Method | Sensitivity | Detection Limit | Additional Notes |
---|---|---|---|
Chemoresistive metal-oxide (WO3) | Response of 2.5 at 100 ppb | Sub-ppm concentrations | Humidity-independent behaviour, selective vs. different gases [114] |
Chemoresistive sensor (Si/WO3) | - | 20 ppb | Robust to 10–90% relative humidity, real-time breath monitoring [73] |
Olfactory detection | - | 8 ppb | Individual differences in sensitivity, carbon filtration improves measurement [162] |
Molecularly imprinted polymer (QCM) | 0.16 Hz/ppm | 1 ppm | High selectivity factor of 58.16%, reproducibility of 98.8% [163] |
Molecularly imprinted polymer (QCM) | 0.102 ± 0.022 ppm−1 | 190 ppb | High selectivity against similar monoterpenes of 73% with stabilization of 200 s [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kny, E.; Kleber, C.; Luczak, W. Limonene Detection in the Exhaled Human Breath Providing an Early Diagnosis Method of Liver Diseases. Chemosensors 2025, 13, 204. https://doi.org/10.3390/chemosensors13060204
Kny E, Kleber C, Luczak W. Limonene Detection in the Exhaled Human Breath Providing an Early Diagnosis Method of Liver Diseases. Chemosensors. 2025; 13(6):204. https://doi.org/10.3390/chemosensors13060204
Chicago/Turabian StyleKny, Erich, Christoph Kleber, and Wiktor Luczak. 2025. "Limonene Detection in the Exhaled Human Breath Providing an Early Diagnosis Method of Liver Diseases" Chemosensors 13, no. 6: 204. https://doi.org/10.3390/chemosensors13060204
APA StyleKny, E., Kleber, C., & Luczak, W. (2025). Limonene Detection in the Exhaled Human Breath Providing an Early Diagnosis Method of Liver Diseases. Chemosensors, 13(6), 204. https://doi.org/10.3390/chemosensors13060204