Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (932)

Search Parameters:
Keywords = follicular cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2849 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 (registering DOI) - 1 Aug 2025
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
10 pages, 1460 KiB  
Article
Induction of Sustained Remissions Associated with Immune Activation by Idelalisib in Patients with Follicular Lymphoma
by Anna-Carina Hund, Jörg Larsen and Gerald G. Wulf
Lymphatics 2025, 3(3), 22; https://doi.org/10.3390/lymphatics3030022 - 1 Aug 2025
Abstract
Phosphatidylinositol-3-kinase (PI3K) inhibition has emerged as a therapeutic option against indolent lymphoma, including relapsed follicular lymphoma (FL). While inhibition of active signaling in the lymphoma cell represents the primary mode of action, PI3K inhibition also exerts immunomodulatory effects. Here we have analyzed 17 [...] Read more.
Phosphatidylinositol-3-kinase (PI3K) inhibition has emerged as a therapeutic option against indolent lymphoma, including relapsed follicular lymphoma (FL). While inhibition of active signaling in the lymphoma cell represents the primary mode of action, PI3K inhibition also exerts immunomodulatory effects. Here we have analyzed 17 consecutive advanced treatment line FL patients treated with the delta-selective PI3K inhibitor idelalisib in a retrospective single-center observational study, with a specific focus on response and immune effects. Eleven patients achieved complete remission (CR) or partial remission (PR) with median response duration of 22 (11–88) months following a median idelalisib exposure of 15 (4–88) months. Disease response persisted in three patients for a median of 37 (21–63) months following cessation of idelalisib without another therapy being initiated. Autoimmune side effects occurred in eight of the eleven patients who responded, compared to none in six patients whose disease did not respond. In conclusion, a time-limited exposure to idelalisib may induce sustained remissions in a portion of patients with recurrent and/or refractory (r/r) FL, suggesting immunomodulatory effects of PI3K inhibition to be involved in the control of the disease. Full article
(This article belongs to the Collection Lymphomas)
Show Figures

Figure 1

10 pages, 1604 KiB  
Article
Anifrolumab Attenuates Follicular Helper T Cell Activation in Patients with Systemic Lupus Erythematosus
by Ádám Diós, Ágnes Gyetvai, Gábor Papp and Tünde Tarr
Int. J. Mol. Sci. 2025, 26(15), 7397; https://doi.org/10.3390/ijms26157397 (registering DOI) - 31 Jul 2025
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease characterized by autoantibody production and multi-organ involvement. Anifrolumab, a monoclonal antibody targeting the type I interferon (IFN) receptor, has been approved for the treatment of SLE. Our aim was to investigate the long-term effects [...] Read more.
Systemic lupus erythematosus (SLE) is a severe autoimmune disease characterized by autoantibody production and multi-organ involvement. Anifrolumab, a monoclonal antibody targeting the type I interferon (IFN) receptor, has been approved for the treatment of SLE. Our aim was to investigate the long-term effects of inhibited type I IFN signaling on circulating follicular helper T subsets (TFH), follicular regulatory T cells (TFR), and B lymphocyte subpopulations, reflecting the ongoing germinal center reactions in SLE patients. Peripheral blood samples were obtained from ten SLE patients before the initiation of anifrolumab treatment, and at months 6 and 12 of the intervention period. Flow cytometry analysis was performed to assess the frequencies of circulating TFH cell subsets, TFR cells, and certain B cell subpopulations. Serological parameters, including autoantibody levels and complement components, were determined as part of the routine diagnostic evaluation. We observed a significant and sustained reduction in the percentage of activated circulating TFH cells. Notably, the frequency of CXCR3CCR6+ TFH17 cells decreased, whereas the proportion of CXCR3+CCR6 TFH1 cells increased significantly. Furthermore, the proportion of the IgDCD27 double-negative B lymphocytes was also significantly reduced. These findings suggest that anifrolumab therapy attenuates TFH cell activation, which may contribute to its clinical efficacy by modulating germinal center responses in SLE. Full article
(This article belongs to the Special Issue Drug Therapy of Systemic Lupus Erythematosus)
Show Figures

Figure 1

21 pages, 2004 KiB  
Review
Interplay of Oxidative Stress, Autophagy, and Rubicon in Ovarian Follicle Dynamics: Orchestrating Ovarian Aging
by Kiyotaka Yamada, Masami Ito, Haruka Nunomura, Takashi Nishigori, Atsushi Furuta, Mihoko Yoshida, Akemi Yamaki, Kanto Shozu, Ippei Yasuda, Sayaka Tsuda, Tomoko Shima and Akitoshi Nakashima
Antioxidants 2025, 14(8), 919; https://doi.org/10.3390/antiox14080919 - 27 Jul 2025
Viewed by 390
Abstract
Organ functions generally decline with age, but the ovary is a prototypical organ that undergoes functional loss over time. Autophagy plays a crucial role in maintaining organ homeostasis, and age-related upregulation of the autophagy inhibitor protein, Rubicon, has been linked to cellular and [...] Read more.
Organ functions generally decline with age, but the ovary is a prototypical organ that undergoes functional loss over time. Autophagy plays a crucial role in maintaining organ homeostasis, and age-related upregulation of the autophagy inhibitor protein, Rubicon, has been linked to cellular and tissue dysfunction. This review describes how granulosa cell autophagy supports follicular growth and oocyte selection and maturation by regulating cellular energy metabolism and protein quality control. We then introduce the role of selective autophagy, including mitophagy or lipophagy, in steroidogenesis and cellular remodeling during luteinization. In aged ovaries, Rubicon accumulation suppresses autophagic flux, leading to diminished oxidative-stress resilience and enhanced DNA damage. Moreover, impaired autophagy drives the accumulation of ATP citrate lyase, which correlates with poor oocyte quality and reduced ovarian reserve. Following fertilization, oocytes further upregulate autophagy to provide the energy required for blastocyst transition. Conversely, in infertility-related disorders, such as premature ovarian insufficiency, endometriosis, and polycystic ovary syndrome, either deficient or excessive autophagy contributes to disease pathogenesis. Both autophagy inhibitors (e.g., Rubicon) and activators (e.g., Beclin1) could be emerging as promising biomarkers for assessing ovarian autophagy status. Therapeutically, Rubicon inhibition by trehalose in aged ovaries and autophagy suppression by agents such as hydroxychloroquine in polycystic ovary syndrome and endometriosis hold potential. Establishing robust methods to evaluate ovarian autophagy will be essential for translating these insights into targeted treatments. Full article
Show Figures

Figure 1

12 pages, 6326 KiB  
Article
Two Cases of Feather Dystrophy in Free-Living Griffon Vultures (Gyps fulvus fulvus) Associated with Viral-like Inclusion Bodies
by Stefano Pesaro, Donatella Volpatti, Alice Baggio, Ranieri Verin, Fulvio Genero, Luca Sicuro, Livio Galosi, Lucia Biagini, Isabella Perlin, Patrizia Robino, Barbara Colitti, Daniele Avanzato and Giacomo Rossi
Animals 2025, 15(15), 2190; https://doi.org/10.3390/ani15152190 - 25 Jul 2025
Viewed by 169
Abstract
The griffon vulture (Gyps fulvus fulvus) is a scavenger species that plays a vital ecological role in carrion removal. Successful survival and reproduction in captive and wildlife conditions require optimal physical status and plumage integrity. Nutritional and environmental factors, systemic diseases, [...] Read more.
The griffon vulture (Gyps fulvus fulvus) is a scavenger species that plays a vital ecological role in carrion removal. Successful survival and reproduction in captive and wildlife conditions require optimal physical status and plumage integrity. Nutritional and environmental factors, systemic diseases, and various etiological agents can influence feather alterations. Although frequently documented in captive psittacine species, feather abnormalities are extremely rare in wild birds. Since 2020, two free-living griffon vultures in northeastern Italy have been found in poor physical condition, unable to fly due to partial feather loss and malformation of remiges and rectrices. Histopathologic examination of follicles and peri-follicular tissue revealed atrophy, keratin replacement, vasculitis, and calamus dystrophy with lymphohistiocytic perivasculitis. Immunohistochemical and ultrastructural analysis identified the presence of virus-like particles in epithelial and inflammatory cells. Although virome analysis did not confirm the presence of this virus in pooled affected samples, this study provides the first report of an emerging plumage disorder in free-ranging griffon vultures, which requires further characterization. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

13 pages, 9208 KiB  
Article
Hormonal Signaling and Follicular Regulation in Normal and Miniature Pigs During Corpus Luteum Regression
by Sang-Hwan Kim
Int. J. Mol. Sci. 2025, 26(15), 7147; https://doi.org/10.3390/ijms26157147 - 24 Jul 2025
Viewed by 160
Abstract
Reproductive efficiency in pigs is regulated by hormonal pathways that control follicular development at Day 15 of the estrous cycle, during corpus luteum regression. Miniature pigs are extensively employed as human-relevant models in biomedical research, yet their reproductive characteristics during mid-luteal regression remain [...] Read more.
Reproductive efficiency in pigs is regulated by hormonal pathways that control follicular development at Day 15 of the estrous cycle, during corpus luteum regression. Miniature pigs are extensively employed as human-relevant models in biomedical research, yet their reproductive characteristics during mid-luteal regression remain inadequately characterized, limiting assessments of their translational reliability. Differences in follicular morphology, hormonal signaling, and vascular development may underlie their lower fertility compared to conventional pigs. In this study, follicular development after corpus luteum formation was compared between conventional pigs and minipigs using histological staining, immunofluorescence, hormonal assays, and transcriptomic profiling. The expression of VEGF, mTOR, LH, FSH, PAPP-A, and apoptosis markers was evaluated across the granulosa and thecal regions. Differential gene expression was analyzed using microarray data followed by GO categorization. Minipigs exhibited smaller follicles, reduced vascularization, and lower VEGF and MMP activity compared to conventional pigs. Expression of LH and PAPP-A was higher in conventional pigs, while minipigs showed relatively elevated E2 and FSH levels. Transcriptomic data revealed greater upregulation of cell-survival- and angiogenesis-related genes in conventional pigs, including genes involved in IGF pathways. Apoptosis and poor extracellular matrix remodeling were more pronounced in minipigs. Minipigs demonstrated impaired follicular remodeling and weaker hormonal signaling after corpus luteum formation, which likely contributed to their reduced reproductive efficiency. Understanding these species differences can guide breeding strategies and fertility management in biomedical and agricultural settings. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

21 pages, 358 KiB  
Review
Infectious Complications in Patients with B-Cell Non-Hodgkin Lymphoma Treated with Bispecific Antibodies
by Agnieszka Szymczyk, Joanna Drozd-Sokołowska and Iwona Hus
Cancers 2025, 17(15), 2426; https://doi.org/10.3390/cancers17152426 - 22 Jul 2025
Viewed by 260
Abstract
Bispecific antibodies (BsABs) have become a new standard of treatment of refractory/relapsed patients with diffuse large B-cell lymphoma and follicular lymphoma, being also intensively studied in other types of B-cell non-Hodgkin lymphoma (B-NHL). Since the therapy with BsABs results in profound B-cell depletion [...] Read more.
Bispecific antibodies (BsABs) have become a new standard of treatment of refractory/relapsed patients with diffuse large B-cell lymphoma and follicular lymphoma, being also intensively studied in other types of B-cell non-Hodgkin lymphoma (B-NHL). Since the therapy with BsABs results in profound B-cell depletion and T-cell exhaustion, it is associated with significantly increased risk of infections. Additional risk factors involve immune disorders caused by lymphoma itself and previous lines of therapy. In this review, we focus on the infectious complications in B-NHL patients treated BsABs, presenting their incidence in clinical trials, admittedly performed to a large extent during the COVID-19 pandemic, as well as the proposals of infection prophylaxis. Full article
(This article belongs to the Special Issue Targeted Therapies for B-Cell Leukemia and Lymphoma)
Show Figures

Figure 1

16 pages, 10508 KiB  
Article
Pharmacological Evaluation of Polygoni Multiflori Radix Praeparata Extract: Inhibition of PANoptosis in Alleviating Premature Ovarian Insufficiency
by Can Zhu, Jinhong Li, Yaofeng Li, Daiyong Chen and Chang Lin
Curr. Issues Mol. Biol. 2025, 47(7), 569; https://doi.org/10.3390/cimb47070569 - 19 Jul 2025
Viewed by 297
Abstract
Polygoni Multiflori Radix Praeparata (PMRP), a processed root of Polygonum multiflorum Thunb. (known as Zhiheshouwu in Chinese medicine), exhibits anti-aging properties and is used to improve ovarian aging. However, its therapeutic mechanism against premature ovarian insufficiency (POI) remains unclear. This study investigates whether [...] Read more.
Polygoni Multiflori Radix Praeparata (PMRP), a processed root of Polygonum multiflorum Thunb. (known as Zhiheshouwu in Chinese medicine), exhibits anti-aging properties and is used to improve ovarian aging. However, its therapeutic mechanism against premature ovarian insufficiency (POI) remains unclear. This study investigates whether PMRP alleviates POI by inhibiting PANoptosis—a cell death pathway characterized by the concurrent occurrence and interplay of pyroptosis, apoptosis, and necroptosis. POI was induced in rats using tripterygium glycosides. We evaluated the estrous cycle, serum hormone levels (follicle-stimulating hormone [FSH], estrogen [E2], anti-Müllerian hormone [AMH]), follicular development, and the ultrastructure of granulosa cells. PANoptosome assembly (apoptosis-associated speck-like protein containing a CARD [ASC]/caspase-8/receptor-interacting protein kinase 3 [RIPK3] co-localization) and key effectors of PANoptosis (caspase 3, cleaved caspase 3, gasdermin D [GSDMD], cleaved GSDMD, GSDME, RIPK1, mixed-lineage kinase domain-like protein [MLKL], and p-MLKL) were analyzed. PMRP restored the estrous cycle, lowered FSH levels, and increased E2 and AMH levels in POI rats. It reduced follicular atresia, preserved primordial follicles, and suppressed PANoptosis-like death in granulosa cells. Mechanistically, PMRP disrupted PANoptosome assembly and downregulated key effectors of PANoptosis. PMRP alleviates POI by inhibiting PANoptosis in granulosa cells, overcoming the previous limitations of targeting single death pathways and providing novel insights into the pathogenesis and treatment strategies for POI. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 1927 KiB  
Article
Missense Mutations in the KAT Domain of CREBBP Gene in Patients with Follicular Lymphoma: Implications for Differential Diagnosis and Prognosis
by Anna Smolianinova, Ivan Bolshakov, Yulia Sidorova, Alla Kovrigina, Tatiana Obukhova, Nelli Gabeeva, Eduard Gemdzhian, Elena Nikulina, Bella Biderman, Nataliya Severina, Nataliya Risinskaya, Andrey Sudarikov, Eugeniy Zvonkov and Elena Parovichnikova
Int. J. Mol. Sci. 2025, 26(14), 6913; https://doi.org/10.3390/ijms26146913 - 18 Jul 2025
Viewed by 337
Abstract
Follicular lymphoma (FL) is one of the most common types of non-Hodgkin’s lymphomas. The tumor is characterized by a wide range of clinical manifestations, ranging from indolent forms to early transformation and progression with a poor prognosis. The search for clinically significant genetic [...] Read more.
Follicular lymphoma (FL) is one of the most common types of non-Hodgkin’s lymphomas. The tumor is characterized by a wide range of clinical manifestations, ranging from indolent forms to early transformation and progression with a poor prognosis. The search for clinically significant genetic changes is essential for personalized risk assessment and treatment selection. The CREBBP gene is frequently mutated in this type of lymphoma, with changes occurring at the level of the earliest tumor precursor cells. However, the prognostic and diagnostic significance of the CREBBP gene mutation status in FL has not been fully established. In this study, we analyzed sequencing data of exons 22–30 of the CREBBP gene in 86 samples from patients with different grades of FL (1–3B), including those in the 3A–3B subgroup without the t(14;18) translocation. We also investigated the prognostic significance of CREBBP gene mutations in relation to the treatment options, namely high-dose chemotherapy with autologous hematopoietic stem cell transplantation (HDCT/auto-HSCT) and conventional chemotherapy programs (CCT). It was found that FL patients with a single missense mutation in the KAT domain of the CREBBP gene experienced an extremely low number of early adverse events related to lymphoma and had better long-term survival rates, regardless of treatment option. In contrast, when comparing patients with FL without a missense mutation in the KAT domain or those with multiple mutations in the CREBBP gene, overall and progression free survival were worse, and early progression and histological transformation were more common. Compared to standard therapy, patients who underwent HDCT/auto-HSCT in the FL 1–3B (14;18)-positive group without a single missense mutation in the KAT domain had better survival rates and lower rates of transformation and early progression. In addition, among patients with FL 3A–3B (14;18)-negative, we found that there were no cases of a missense mutation in the KAT domain of the CREBBP gene. This suggests that a single missense mutation in the CREBBP gene may be a feature that discriminates 14;18-positive FL with a favorable prognosis from a high-risk disease. FL 3A–3B (14;18)-negative may represent a distinct variant with different biology and underlying mechanisms of development compared to classical FL. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Figure 1

18 pages, 575 KiB  
Article
The Molecular Landscape of Nitric Oxide in Ovarian Function and IVF Success: Bridging Redox Biology and Reproductive Outcomes
by Diamandis Athanasiou, Charalampos Voros, Ntilay Soyhan, Georgia Panagou, Maria Sakellariou, Despoina Mavrogianni, Eleni Sivylla Bikouvaraki, George Daskalakis and Kalliopi Pappa
Biomedicines 2025, 13(7), 1748; https://doi.org/10.3390/biomedicines13071748 - 17 Jul 2025
Viewed by 287
Abstract
Background: Nitric oxide (NO) is an important modulator of ovarian physiology, which contributes to angiogenesis, steroidogenesis, and redox control. The stable metabolites nitrate (NO3) and nitrite (NO2) may indicate real-time follicular function during IVF. Methods: [...] Read more.
Background: Nitric oxide (NO) is an important modulator of ovarian physiology, which contributes to angiogenesis, steroidogenesis, and redox control. The stable metabolites nitrate (NO3) and nitrite (NO2) may indicate real-time follicular function during IVF. Methods: In this prospective study, we included 89 women who underwent controlled ovarian stimulation. The Griess test was used to measure NO2-NO3 concentrations in follicular fluid collected on the day of oocyte retrieval. Non-parametric and correlation tests were used to investigate the associations between oocyte yield, maturity (MII), fertilization (2PN), embryo development, and hormone levels. Results: Higher NO2-NO3 levels were substantially associated with increased total oocyte count, MII oocytes (p = 0.014), and 2PN embryos (p = 0.029). This suggests a strong relationship between NO bioavailability and oocyte competence. NO2-NO3 levels showed a positive correlation with estradiol (p < 0.001) and progesterone (p < 0.001), suggesting a possible function in granulosa cell steroidogenesis. Conclusions: Follicular NO metabolites are candidate functional indicators for oocyte quality evaluation and intrafollicular steroidogenic activity. Their predictive value may improve customized IVF treatment, especially in individuals with complicated ovarian phenotypes such as PCOS or decreased ovarian reserve. Full article
(This article belongs to the Special Issue New Advances in Human Reproductive Biology)
Show Figures

Figure 1

13 pages, 12971 KiB  
Article
The Role of Gonadotropins and Growth Factor in Regulating Ras During Maturation in Cumulus–Oocyte Complexes of Pigs
by Eunju Seok, Minyoung Son, Seunghyung Lee, Hee-Tae Cheong and Sang-Hee Lee
Animals 2025, 15(14), 2100; https://doi.org/10.3390/ani15142100 - 16 Jul 2025
Viewed by 324
Abstract
Oocytes and cumulus cells undergo meiotic resumption and proliferation via gonadotropins and growth factors during maturation, and various small G proteins are activated when COCs undergo physiological changes. This study investigated the influence of gonadotropins and growth factors on Ras and its GTPases [...] Read more.
Oocytes and cumulus cells undergo meiotic resumption and proliferation via gonadotropins and growth factors during maturation, and various small G proteins are activated when COCs undergo physiological changes. This study investigated the influence of gonadotropins and growth factors on Ras and its GTPases during porcine COC maturation. Unmatured COCs were treated with FSH, LH, or EGF for 44 h. The mRNA expression levels of the Ras subfamily (H-Ras, K-Ras, N-Ras, and R-Ras), its GTPases (RASA1 and SOS1), and proliferation factors (ERK, CCNB1, and Cdc2) were analyzed using RT-PCR. In contrast to other Ras subfamilies, R-Ras expression is upregulated during COC maturation. We evaluated the effects of FSH, LH, and EGF at various concentrations that most effectively regulated the expression of R-Ras and GTPases. The results demonstrated that 0.5 µg/mL FSH, 10 IU/mL human chorionic gonadotropin (hCG), and 10 ng/mL EGF effectively enhanced R-Ras expression and cell proliferation. FSH supplementation during porcine COC maturation significantly upregulated R-Ras and ERK expression, independent of LH and EGF, and downregulated Cdc2 expression. These results indicated that FSH regulates R-Ras expression, thereby promoting cell proliferation during COC maturation. These results provide fundamental knowledge for understanding the role of Ras and its family members in the development of follicular environments in pigs. Full article
(This article belongs to the Special Issue Health of the Ovaries, Uterus, and Mammary Glands in Animals)
Show Figures

Figure 1

17 pages, 1438 KiB  
Review
Pathogenesis of Autoimmunity/Systemic Lupus Erythematosus (SLE)
by Shunichi Shiozawa
Cells 2025, 14(14), 1080; https://doi.org/10.3390/cells14141080 - 15 Jul 2025
Viewed by 505
Abstract
SLE is characterized by the generation of a variety of autoantibodies including anti-dsDNA autoantibodies, causing damage in various organs. If autoimmunity is defined by the generation of a variety of autoantibodies against the self, SLE is the only disease to qualify. Identification of [...] Read more.
SLE is characterized by the generation of a variety of autoantibodies including anti-dsDNA autoantibodies, causing damage in various organs. If autoimmunity is defined by the generation of a variety of autoantibodies against the self, SLE is the only disease to qualify. Identification of the SLE-causing factor must fulfill the following criteria: (i) the factor induces SLE, (ii) the factor is operating in active SLE and (iii) SLE heals after removal of the factor. All candidate factors are reviewed from this viewpoint in this review. As to the cause of SLE, high levels of interferon α can induce SLE; however, interferon α in most patients did not reach this high level. BAFF (B cell activating factor of the TNF family) is increased in SLE. BAFF itself induced some manifestation of SLE, whereas removal of interferon α or BAFF by an antibody (Ab) did not heal SLE. BXSB male mice with a duplicated TLR7 gene develop SLE; however, the gene Sle1 is also required for the development of SLE. In addition, sanroque mice develop a variety of autoantibodies and SLE; the sanroque mutation, which disrupts one of the repressors of ICOS, results in increased CCR7lo CXCR5+Tfh cells, IL-21 and SLE. ICOS+T follicular helper (Tfh) cells increase in SLE and SLE-model (NZBxNZW)F1 mice, and the blockade of Tfh development ameliorated SLE, indicating the importance of Tfh cells in the pathogenesis of SLE. Self-organized criticality theory shows that SLE is caused by repeated infection, wherein SLE-inducing pathogens can vary individually depending on one’s HLA; however, the pathogen presented on HLA stimulates the T cell receptor (TCR) strongly beyond self-organized criticality. This stimulation generates TCR-revised, autoreactive DOCK8+Tfh cells, which induced a variety of autoantibodies and SLE. The SARS-CoV-2 virus is an example pathogen because SLE occurs after SARS-CoV-2 infection and vaccination. DOCK8+Tfh cells and SLE decreased after conventional or anti-DOCK Ab therapies. Thus, DOCK8+Tfh cells newly generated after repeated infection fulfill the criteria (i), (ii) and (iii) as the cause of SLE. Full article
Show Figures

Figure 1

12 pages, 3941 KiB  
Article
Integrated Metabolomic and Transcriptomic Analysis Reveals the Regulatory Effects of Curcumin on Bovine Ovarian Granulosa Cells
by Bingfei Zhang, Le Chen, Liping Mei, Xianbo Jia, Shiyi Chen, Jie Wang, Hengwei Yu, Songjia Lai and Wenqiang Sun
Int. J. Mol. Sci. 2025, 26(14), 6713; https://doi.org/10.3390/ijms26146713 - 12 Jul 2025
Viewed by 379
Abstract
Curcumin is a natural polyphenolic compound known to alleviate follicular developmental abnormalities associated with ovarian dysfunction. However, its precise molecular mechanisms remain to be fully elucidated. In this study, we systematically investigated the regulatory effects of curcumin on bovine ovarian granulosa cells through [...] Read more.
Curcumin is a natural polyphenolic compound known to alleviate follicular developmental abnormalities associated with ovarian dysfunction. However, its precise molecular mechanisms remain to be fully elucidated. In this study, we systematically investigated the regulatory effects of curcumin on bovine ovarian granulosa cells through integrated transcriptomic and metabolomic analyses. A total of 503 and 200 significantly altered metabolites were identified in the positive and negative ion modes, respectively, with enrichment in key pathways such as glutathione metabolism, fatty acid biosynthesis, and the phosphatidylinositol signaling pathway. Transcriptomic profiling revealed 1168 differentially expressed genes (582 upregulated and 586 downregulated) which were significantly enriched in pathways related to glutathione metabolism and cellular senescence. Joint multi-omics analysis further demonstrated that curcumin significantly influenced pathways related to glutathione metabolism, cysteine, and methionine metabolism, as well as multiple forms of programmed cell death, including apoptosis, necroptosis, and ferroptosis. Collectively, these findings suggest that curcumin may enhance the antioxidant capacity and survival of granulosa cells by maintaining redox homeostasis and modulating cell fate. This work provides new insights into the potential cellular mechanisms underlying the protective effects of curcumin on granulosa cell function. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 2771 KiB  
Article
Impact of Heat Stress on Ovarian Function and circRNA Expression in Hu Sheep
by Jianwei Zou, Lili Wei, Zhihua Mo, Yishan Liang, Jun Lu, Juhong Zou, Fan Wang, Shaoqiang Wu, Hai’en He, Wenman Li, Yanna Huang and Qinyang Jiang
Animals 2025, 15(14), 2063; https://doi.org/10.3390/ani15142063 - 12 Jul 2025
Viewed by 302
Abstract
Climate change poses an increasing threat to livestock reproduction, with heat stress (HS) known to significantly impair ovarian function. This study aimed to elucidate the impact of HS on ovarian function and circRNA expression profiles in Hu sheep. Twelve ewes were randomly assigned [...] Read more.
Climate change poses an increasing threat to livestock reproduction, with heat stress (HS) known to significantly impair ovarian function. This study aimed to elucidate the impact of HS on ovarian function and circRNA expression profiles in Hu sheep. Twelve ewes were randomly assigned to a control (Con, n = 6) or HS group (n = 6) and exposed to different temperatures for 68 days. Compared with the Con group, HS significantly increased the respiratory rate (108.33 ± 3.72 vs. 63.58 ± 2.42 breaths/min), pulse rate (121.17 ± 3.98 vs. 78.08 ± 3.31 beats/min), and rectal temperature (40.17 ± 0.14 °C vs. 39.02 ± 0.21 °C; p < 0.05). Concurrently, serum antioxidant levels were markedly decreased, including total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px) (p < 0.05). Histological analysis revealed a significant reduction in the numbers of primordial, primary, secondary, and mature follicles, alongside an increase in antral follicles (p < 0.05). TUNEL staining demonstrated enhanced granulosa cell apoptosis (p < 0.05), accompanied by the upregulation of pro-apoptotic genes Bax and Caspase-3 and downregulation of the anti-apoptotic gene Bcl-2, as confirmed by qPCR (p < 0.05). CircRNA sequencing identified 152 differentially expressed circRNAs (120 upregulated, 32 downregulated), and enrichment analyses indicated their involvement in apoptosis, mitophagy, and the FoxO signaling pathway. Collectively, these findings demonstrate that HS impairs ovarian physiology and antioxidant defense, induces follicular damage and cell apoptosis, and alters circRNA expression profiles, providing new insights into the molecular mechanisms underlying HS-induced reproductive dysfunction in Hu sheep. Full article
Show Figures

Figure 1

15 pages, 1792 KiB  
Article
The Enhancement of Immunity Gained from Feline Trivalent Vaccines in Mice Using Feline IL-15, IL-23 and Metabolic Regulatory Molecules
by Ruichen Gao, Wei Sun, Danning Zhang, Linhan Zhang, Dafang He, Mengxi Li, Yi Wei, Junjie Peng and Gang Wang
Biology 2025, 14(7), 834; https://doi.org/10.3390/biology14070834 - 9 Jul 2025
Viewed by 288
Abstract
The feline calicivirus, herpesvirus, and panleukopenia viruses are major infections that cause serious diseases in cats; however, current trivalent vaccines have limitations in immune efficacy and their duration of protection. This study assesses the immune-enhancing effects of novel adjuvants (feline IL-15, IL-23, and [...] Read more.
The feline calicivirus, herpesvirus, and panleukopenia viruses are major infections that cause serious diseases in cats; however, current trivalent vaccines have limitations in immune efficacy and their duration of protection. This study assesses the immune-enhancing effects of novel adjuvants (feline IL-15, IL-23, and metabolic modulators) on vaccine responses. Forty mice were randomly assigned to four groups: Group A (composite adjuvants), Group B (metabolic regulatory molecules and Mn adjuvant), Group C1 (Mn adjuvant), and Group C2 (a blank commercial vaccine). The results showed that Group A had significantly higher neutralizing antibody titers against calicivirus post-booster immunization, while both Groups A and B exhibited enhanced antibody responses against the herpesvirus and panleukopenia viruses. Notably, Group A displayed increased proportions of memory T cells, follicular B cells, and activated B cells. These findings suggest that the combination of feline IL-15, IL-23, and metabolic modulators are safe and effective immunoadjuvants for trivalent feline vaccines to promote immune cell differentiation and antibody production, thus representing a promising strategy to optimize vaccine efficacy. Full article
(This article belongs to the Special Issue Immune Response Regulation in Animals)
Show Figures

Figure 1

Back to TopTop