Effect of Oxidative Stress on Reproduction and Development—3rd Edition

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: 30 January 2026 | Viewed by 800

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biology, Interdepartmental Research Center for Environment, IRCEnv (CIRAm), University of Naples Federico II, Naples, Italy
Interests: climate change and reprotoxicity; antioxidative physiological defense; steroids and steroid receptors; antioxidants under steroid control; reproductive health assessment; endangered species and validation of non-destructive examination methods; biodiversity conservation microassay
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Chemical Science, Complesso Monte S. Angelo, via Cinthia 4, 80126 Naples, Italy
Interests: oxidative stress monitoring; reactive oxygen species; analytical and physico-chemical methods; electron paramagnetic resonance; non-invasive environmental monitoring; spectroscopic methods
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Our previous Special Issue on the "Effect of Oxidative Stress on Reproduction and Development—2nd Edition", published in the 2024 volume of Antioxidants, received an overwhelming number of submissions and was a successful compilation of research and review articles. As this is a rapidly evolving topic, we would like to further explore the role of Oxidative Stress in reproduction health with a follow-up Special Issue for the year 2025.

Stressors, by inducing physiological and reproductive disorders, determine failures in various cellular processes, such as development, differentiation, growth, regeneration, and regression, threatening the survival of living species. Although the definite role of free radicals and antioxidants is well established, there is sparse knowledge of their role in a multitude of stressors such as climate change, temperature fluctuations, osmotic stress, alterations in oxygen availability, and other anthropogenic impacts, all factors which can directly affect free radical overexpression during reproduction. Therefore, we cordially invite authors to contribute to this Special Issue with original research articles and reviews on animal reproduction, creating overview on the interplay between mitochondrial metabolism and ROS during gametogenesis and embryogenesis and on how oxidative stress can influence these physiological processes in human reproduction. We also acknowledge studies on the latest techniques developed to select gametes and embryos based on their redox state and the treatments developed to manage the oxidative stress in assisted reproduction to improve the chances of pregnancy. Critical and objective perspectives on hormones and vitamins and on factors that limit or facilitate fertility and fertilization also fall within the scope of this Special Issue. Data collected in this issue may represent a new opportunity to answer basic questions on one-health conservation and sustainability and indicate to us how we can perform assessments by oxidant and/or antioxidant detection.

Prof. Dr. Giulia Guerriero
Prof. Dr. Gerardino D’Errico
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • free radicals and antioxidants
  • oxidative stress in male and female reproduction
  • mitochondria
  • gametogenesis
  • assisted reproduction
  • thermal fertility limit (TFL)
  • climate change
  • one-health
  • biodiversity conservation and sustainability
  • reproduction
  • development and nutrigenomics
  • methods for reactive oxygen species detection and antioxidant property determination.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

21 pages, 2004 KiB  
Review
Interplay of Oxidative Stress, Autophagy, and Rubicon in Ovarian Follicle Dynamics: Orchestrating Ovarian Aging
by Kiyotaka Yamada, Masami Ito, Haruka Nunomura, Takashi Nishigori, Atsushi Furuta, Mihoko Yoshida, Akemi Yamaki, Kanto Shozu, Ippei Yasuda, Sayaka Tsuda, Tomoko Shima and Akitoshi Nakashima
Antioxidants 2025, 14(8), 919; https://doi.org/10.3390/antiox14080919 - 27 Jul 2025
Viewed by 525
Abstract
Organ functions generally decline with age, but the ovary is a prototypical organ that undergoes functional loss over time. Autophagy plays a crucial role in maintaining organ homeostasis, and age-related upregulation of the autophagy inhibitor protein, Rubicon, has been linked to cellular and [...] Read more.
Organ functions generally decline with age, but the ovary is a prototypical organ that undergoes functional loss over time. Autophagy plays a crucial role in maintaining organ homeostasis, and age-related upregulation of the autophagy inhibitor protein, Rubicon, has been linked to cellular and tissue dysfunction. This review describes how granulosa cell autophagy supports follicular growth and oocyte selection and maturation by regulating cellular energy metabolism and protein quality control. We then introduce the role of selective autophagy, including mitophagy or lipophagy, in steroidogenesis and cellular remodeling during luteinization. In aged ovaries, Rubicon accumulation suppresses autophagic flux, leading to diminished oxidative-stress resilience and enhanced DNA damage. Moreover, impaired autophagy drives the accumulation of ATP citrate lyase, which correlates with poor oocyte quality and reduced ovarian reserve. Following fertilization, oocytes further upregulate autophagy to provide the energy required for blastocyst transition. Conversely, in infertility-related disorders, such as premature ovarian insufficiency, endometriosis, and polycystic ovary syndrome, either deficient or excessive autophagy contributes to disease pathogenesis. Both autophagy inhibitors (e.g., Rubicon) and activators (e.g., Beclin1) could be emerging as promising biomarkers for assessing ovarian autophagy status. Therapeutically, Rubicon inhibition by trehalose in aged ovaries and autophagy suppression by agents such as hydroxychloroquine in polycystic ovary syndrome and endometriosis hold potential. Establishing robust methods to evaluate ovarian autophagy will be essential for translating these insights into targeted treatments. Full article
Show Figures

Figure 1

Back to TopTop