Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (521)

Search Parameters:
Keywords = flow resistance coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4184 KB  
Article
Numerical Investigation of Heat Transfer and Flow Characteristics of Nano-Organic Working Fluid in a Smooth Tube
by Shilong Tian, Yinfang Jiang, Yuzhe Wu, Zhinan Liu, Hongyan Shang, Xingxing Wang and Yongqiang Feng
Energies 2026, 19(2), 469; https://doi.org/10.3390/en19020469 (registering DOI) - 17 Jan 2026
Abstract
The heat transfer and flow characteristics of TiO2/R123 nano-organic working fluid are investigated and compared with that of R123. A three-dimensional numerical model of the smooth circular tube with a diameter of 10 mm and a length of 1 m is [...] Read more.
The heat transfer and flow characteristics of TiO2/R123 nano-organic working fluid are investigated and compared with that of R123. A three-dimensional numerical model of the smooth circular tube with a diameter of 10 mm and a length of 1 m is established, and the thermodynamic properties of the nano-organic working fluids are rectified with the volume of fluid model. The grid independence validation is conducted, and the simulation results from three models (the k-ε model, the realizable k-ε model, and the Reynolds Stress Model) are evaluated against experimental data. When using the TiO2/R123 nano-organic working fluid, the error between the simulation and experimental results is 6.1%. The flow field distribution is examined, and the effect of mass flux on heat transfer coefficient and pressure drop is discussed. Results demonstrated that the inclusion of TiO2 nanoparticles significantly enhances heat transfer performance. At a 0.1 wt% nanoparticle concentration, the heat transfer coefficient increases by 23.2%, reaching a range of 1430.11 to 2647.25 W/(m2·K), compared to pure R123. However, this improvement in heat transfer performance is accompanied by an increase in flow resistance, with the flow resistance coefficient rising from 0.0353 to 0.0571. Additionally, pressure drops increase by up to 18.7%. Full article
26 pages, 4723 KB  
Article
Multiphysics Modelling Flow Disturbance Optimization of Proton Exchange Membrane Water Electrolysis Under Bubble Effects
by Chengming Du, Bo Huang, Ziqing Wang, Luhaibo Zhao, Haibo Wu, Shen Xu, Guoliang Wang and Zhiyong Tang
Energies 2026, 19(2), 437; https://doi.org/10.3390/en19020437 - 15 Jan 2026
Abstract
In Proton Exchange Membrane Water Electrolysis (PEMWE), the two-phase flow distribution in the anode field significantly affects overall electrolysis performance. Based on visualized experimental data, in this paper, the reaction kinetics equations were theoretically revised, and a three-dimensional, two-phase, non-isothermal, multi-physics coupled model [...] Read more.
In Proton Exchange Membrane Water Electrolysis (PEMWE), the two-phase flow distribution in the anode field significantly affects overall electrolysis performance. Based on visualized experimental data, in this paper, the reaction kinetics equations were theoretically revised, and a three-dimensional, two-phase, non-isothermal, multi-physics coupled model of the electrolysis was developed and experimentally validated. Four different configurations of rectangular turbulence promoters were designed within the anode serpentine flow field and compared with a conventional serpentine flow field (SFF) in terms of their multi-physics distribution characteristics. The results showed that, in the double-row rectangular block serpentine flow field (DRB SFF), the uniformity of liquid water saturation, temperature, and current density improved by 16.6%, 0.49% and 40.8%, respectively. The normal mass transfer coefficient increased by a factor of 6.3, and polarization performance improved by 6.98%. A cross-arranged turbulence promoter structure was further proposed. This design maintains effective turbulence while reducing flow resistance and pressure drop, thereby enhancing mass transfer efficiency and overall electrolysis performance through improved bubble fragmentation. Full article
Show Figures

Figure 1

21 pages, 2397 KB  
Article
Anomalous Shale Oil Flow in Nanochannels: Perspective from Nanofluidic Experiments
by Chuang Dong, Yaxiong Li, Xinrui Lyu, Dongling Xia, Wei Zhang, Xinkun Zhang and Qing You
Processes 2026, 14(2), 292; https://doi.org/10.3390/pr14020292 - 14 Jan 2026
Viewed by 86
Abstract
Shale oil is primarily hosted within nanopores, where its flow behavior exhibits significant deviations from classical Darcy flow. The combined influences of nanoscale confinement and interfacial interactions represent key scientific challenges that hinder efficient shale oil recovery. The results show that under 25 [...] Read more.
Shale oil is primarily hosted within nanopores, where its flow behavior exhibits significant deviations from classical Darcy flow. The combined influences of nanoscale confinement and interfacial interactions represent key scientific challenges that hinder efficient shale oil recovery. The results show that under 25 °C and 1 MPa, the displacement distances of shale oil within 12 s in 100, 200, and 300 nm channels were 2.88, 5.67, and 11.01 mm, respectively. As pore size decreases, flow capacity drops sharply, and the displacement–time relationship evolves from quasi-linear to strongly nonlinear, indicating pronounced nanoscale non-Darcy behavior. By incorporating an equivalent resistance coefficient into the plate-channel flow model, the experimental data were accurately fitted, enabling quantitative evaluation of the additional flow resistance induced by nanoconfinement and interfacial adsorption. The equivalent resistance coefficient increases markedly with decreasing pore size but decreases progressively with increasing temperature and driving pressure. Increasing temperature and pressure partially mitigates nanoconfinement effects. In 200 nm channels, the equivalent resistance coefficient decreases from 1.87 to 1.20 as temperature rises from 25 to 80 °C, while in 100 nm channels it decreases from 2.43 to 1.65 as driving pressure increases from 1 to 6 MPa. Nevertheless, even under high-temperature and high-pressure conditions, shale-oil flow does not fully recover to ideal Darcy behavior. This work establishes a nanofluidic-based prediction and evaluation framework for shale oil flow, offering theoretical guidance and experimental reference for unconventional reservoir development and the optimization of enhanced oil recovery strategies. Full article
Show Figures

Figure 1

16 pages, 5421 KB  
Article
Analytical Solutions of Free Surface Evolution Within Originally Dry, Coarse-Grain-Sized Embankment Dam Materials
by Francesco Federico and Chiara Cesali
Infrastructures 2026, 11(1), 23; https://doi.org/10.3390/infrastructures11010023 - 12 Jan 2026
Viewed by 82
Abstract
Tightness of homogeneous embankment dams is often ensured by means of upstream water barriers, such as bituminous concrete facings, concrete slabs, shotcrete membranes, metallic sheets, geomembranes, and cement blankets. The stability analysis of these dams, especially in areas with high seismicity, must include [...] Read more.
Tightness of homogeneous embankment dams is often ensured by means of upstream water barriers, such as bituminous concrete facings, concrete slabs, shotcrete membranes, metallic sheets, geomembranes, and cement blankets. The stability analysis of these dams, especially in areas with high seismicity, must include the hydraulic and mechanical effects resulting from an extensive, sudden cracking of the impervious facing. To this purpose, in this paper, simple, original analytical solutions are proposed to estimate the position of the exit point on the downstream slope of the dam, the maximum height of the saturation front at the downstream face, and the time required for the saturation front to reach the downstream face. These variables generally depend on several factors, such as the geometry of the dam, homogeneity or heterogeneity, the permeability coefficient of the dam body materials, and resistance laws to describe the seepage flow. The high number of these factors requires the development of advanced 2D/3D FEM analyses, often computationally heavy and complex to implement. Although approximate, the proposed solutions may however allow us to define the role of the various factors and their interaction, to quickly deduce the main, preliminary design indications. Full article
(This article belongs to the Special Issue Preserving Life Through Dams)
Show Figures

Figure 1

18 pages, 7234 KB  
Article
Preparation and Material–Structure–Performance Relationships of Biaxially Stretched Polytetrafluoroethylene (PTFE) Membranes for Air Filtration
by Chunxing Zhou, Haiqin Mo, Yiqin Shao, Parpiev Khabibulla, Juramirza Abdiramatovich Kayumov and Guocheng Zhu
Polymers 2026, 18(2), 199; https://doi.org/10.3390/polym18020199 - 11 Jan 2026
Viewed by 196
Abstract
Biaxially stretched polytetrafluoroethylene (PTFE) membranes are promising media for high-efficiency air filtration because of their stable node–fiber microstructure and environmental durability. To clarify how resin properties and microstructure govern filtration behavior, ten PTFE resins with different average molecular weights (Mn) and particle size [...] Read more.
Biaxially stretched polytetrafluoroethylene (PTFE) membranes are promising media for high-efficiency air filtration because of their stable node–fiber microstructure and environmental durability. To clarify how resin properties and microstructure govern filtration behavior, ten PTFE resins with different average molecular weights (Mn) and particle size characteristics were processed into membranes under essentially identical biaxial stretching and sintering conditions. Resin particle size, fiber diameter and pore size distributions were quantified, and coefficients of variation (CVs), together with Spearman rank correlations, were used to analyze material–structure–performance links. Filtration efficiency, pressure drop and quality factor (QF) were measured according to ISO 29463-3 using 0.1–0.3 μm aerosols. Higher Mn combined with lower particle-size dispersion favored finer fibers and narrower pores, yielding efficiencies close to 100%, but increased pressure drop and slightly reduced QF, indicating a trade-off between efficiency and flow resistance. The sample with the lowest Mn in its group and a high machine-direction draw ratio (12×), showed pronounced fibril breakage, node coalescence, broadened pore-size distribution and degraded QF, illustrating the sensitivity of structure and performance to resin-process mismatch. Overall, the study establishes a hierarchical material–fiber–pore–performance relationship that can guide resin selection, structural tuning and process optimization of biaxially stretched PTFE membranes. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

17 pages, 3467 KB  
Article
Modelling the Thickness of a Water Film on Road Pavements—Analysis of Existing and New Equations for Flow Resistance Estimation
by Petar Praštalo and Nenad Jaćimović
Water 2026, 18(2), 181; https://doi.org/10.3390/w18020181 - 9 Jan 2026
Viewed by 309
Abstract
This study investigates flow resistance in thin water films on road surfaces during rainfall, which is essential for assessing aquaplaning risk. A one-dimensional surface runoff model based on the diffusion-wave approach is used to compare existing equations for the Darcy–Weisbach friction factor and [...] Read more.
This study investigates flow resistance in thin water films on road surfaces during rainfall, which is essential for assessing aquaplaning risk. A one-dimensional surface runoff model based on the diffusion-wave approach is used to compare existing equations for the Darcy–Weisbach friction factor and Manning’s roughness coefficient. Laboratory data from three experimental cases support the analysis. The first case assesses the accuracy of existing equations and develops a new regression-based equation. The second case validates this new model for predicting water film thickness. Findings show that many existing equations poorly estimate water film thickness under high-intensity rainfall conditions relevant for aquaplaning analysis, often under- or overestimating it compared to measurements. Results indicate that flow resistance is mainly influenced by the Froude number, which is defined using the mean macro-texture depth of the pavement. The study emphasizes that accurate estimation of flow resistance parameters is critical in water film modelling, as it directly affects the reliability of traffic safety assessments. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 4094 KB  
Article
Theoretical and Experimental Studies of Permeate Fluxes in Double-Flow Direct-Contact Membrane Distillation (DCMD) Modules with Internal Recycle
by Chii-Dong Ho, Ching-Yu Li, Thiam Leng Chew and Yi-Ting Lin
Membranes 2026, 16(1), 37; https://doi.org/10.3390/membranes16010037 - 6 Jan 2026
Viewed by 225
Abstract
A new DCMD module design that introduces an insulation barrier of negligible thickness to divide the open duct of the hot-saline feed into two subchannels for dual-flow operation was investigated. This configuration enables one subchannel to operate in a cocurrent-flow mode and the [...] Read more.
A new DCMD module design that introduces an insulation barrier of negligible thickness to divide the open duct of the hot-saline feed into two subchannels for dual-flow operation was investigated. This configuration enables one subchannel to operate in a cocurrent-flow mode and the other in a countercurrent-flow recycling mode, thereby significantly enhancing the permeate flux. Theoretical and experimental investigations were conducted to develop modeling equations capable of predicting the permeate flux in DCMD modules. These studies demonstrated the technical feasibility of minimizing temperature polarization effects while improving flow characteristics to boost permeate flux. Results indicated that increasing both convective heat-transfer coefficients and residence time generally improved device performance. The dual-flow operation increased fluid velocity and extended residence time, leading to reduced heat-transfer resistance and enhanced heat-transfer efficiency. Theoretical predictions and experimental results consistently showed that the absorption flux improved by up to 40.77% under the double-flow operation with internal recycling configuration compared to a single-pass device of identical dimensions. The effects of inserting the insulation barrier on permeate flux enhancement, power consumption, and overall economic feasibility were also discussed. Full article
Show Figures

Figure 1

28 pages, 9766 KB  
Article
Fractal and Fluid Mobility Analysis of Pore-Throat Systems in Sandstone Reservoirs Based on HPMI and NMR: A Case Study from the Nahr Umr Formation, Iraq
by Tang Li, Meiyan Fu, Runze Wang, Ya Deng, Jiacheng Xu and Rui Guo
Fractal Fract. 2026, 10(1), 15; https://doi.org/10.3390/fractalfract10010015 - 25 Dec 2025
Viewed by 509
Abstract
The pore architecture of the Nahr Umr Formation sandstone reservoirs is highly complex and heterogeneous, severely limiting efficient oilfield development. Conventional methods often fail to adequately characterize such intricate pore systems, necessitating the application of fractal theory. Focusing on sandstone samples from the [...] Read more.
The pore architecture of the Nahr Umr Formation sandstone reservoirs is highly complex and heterogeneous, severely limiting efficient oilfield development. Conventional methods often fail to adequately characterize such intricate pore systems, necessitating the application of fractal theory. Focusing on sandstone samples from the Nahr Umr-B Member, this study integrates thin section identification, XRD, HPMI, and NMR to characterize the fractal features of the reservoir pore structure and evaluate fluid mobility. The results indicate that from Type I to Type III reservoirs, displacement pressure and median pressure gradually increase, whereas the average and median pore-throat radius gradually decrease, and the pore-throat sorting coefficient decreases. For instance, Type I reservoirs exhibit an average displacement pressure of 0.15 MPa, a median pressure of 0.81 MPa, an average pore-throat radius of 1.96 μm, and a median pore-throat radius of 2.85 μm; in contrast, Type III reservoirs show averages of 14.43 MPa, 45.32 MPa, 0.02 μm, and 0.03 μm, respectively. These trends reflect a gradual deterioration in pore connectivity, increased resistance to fluid flow, and a reduction in the development of larger pore throats. From Type I to Type III reservoirs, both the total fractal dimension (DH) and the movable fluid pore fractal dimension (DN2) show a gradual increasing trend. This indicates that the pore structure becomes increasingly complex and heterogeneous, the complexity of the movable fluid pore space increases, and fluid mobility progressively weakens. Furthermore, higher quartz content and lower cement and clay mineral contents correspond to smaller reservoir pore fractal dimensions and stronger fluid mobility. For example, Sample No. 3 (Type I) has a quartz content of 91.97%, a cement content of 1.64%, and a clay mineral content of 6.4%, with a DH of 2.4385 and DN2 of 2.9323. Conversely, Sample No. 4 (Type III) has a quartz content of 49.72%, a cement content of 11.21%, and a clay mineral content of 39.07%, with a DH of 3.9099 and DN2 of 2.9762. Compared to DH, DN2 reduces the prediction error for dynamic quality by over 70% on average, offering a more reliable prediction of fluid mobility and providing a more precise scale for evaluating reservoir development potential. Full article
(This article belongs to the Special Issue Analysis of Geological Pore Structure Based on Fractal Theory)
Show Figures

Figure 1

21 pages, 11748 KB  
Article
Numerical Analysis of the Dynamic Response of a Prestressed Reinforced Concrete Retaining Dam Under the Impact of Debris Flow Block Stones
by Yongbo Tie, Wei Jiang, Min Wang and Yong Zheng
Water 2026, 18(1), 60; https://doi.org/10.3390/w18010060 - 24 Dec 2025
Viewed by 337
Abstract
Debris flow is a common geological disaster in mountainous areas, characterized by its sudden onset, frequent occurrence, and high destructive power. Retaining dams are one of the most commonly used measures for debris flow prevention and are widely applied in debris flow management [...] Read more.
Debris flow is a common geological disaster in mountainous areas, characterized by its sudden onset, frequent occurrence, and high destructive power. Retaining dams are one of the most commonly used measures for debris flow prevention and are widely applied in debris flow management projects. This study investigates the impact resistance of retaining dams in high-altitude cold regions by establishing a three-dimensional numerical model of the retaining dam. The results show that the impact depth, resultant impact force, and acceleration of the prestressed reinforced concrete retaining dam with embedded prestressed reinforcement are significantly lower than those of the concrete retaining dam. The prestressed reinforced concrete retaining dam with embedded prestressed reinforcement can improve its impact resistance, effectively mitigating the impact of debris flow block collisions. The impact depth and resultant impact force of the prestressed reinforced concrete retaining dam both increase with the steel ball’s impact speed, impact angle, and impact mass, while they decrease with an increase in the shape coefficient of the steel ball. The effects of different parameters of the steel ball on the impact depth and resultant impact force of the barrier vary. The research findings provide a scientific basis for the design of barriers in the prevention and control of debris flows in high-altitude cold regions. Full article
Show Figures

Figure 1

18 pages, 5857 KB  
Article
Flow Characteristics of a Fully Developed Concentric Annular Turbulent Flow
by Lei Sun, Xihuan Sun, Yongye Li and Lianle Wang
Appl. Sci. 2025, 15(24), 13161; https://doi.org/10.3390/app152413161 - 15 Dec 2025
Viewed by 348
Abstract
The hydraulic transportation technology of piped vehicles is a new type of pipeline transportation mode. A concentric annular turbulent flow with different boundaries is formed between the barrel of the piped vehicle and the pipe wall. The study on the annular turbulent flow [...] Read more.
The hydraulic transportation technology of piped vehicles is a new type of pipeline transportation mode. A concentric annular turbulent flow with different boundaries is formed between the barrel of the piped vehicle and the pipe wall. The study on the annular turbulent flow can provide basic support for the application and promotion of this technology. Therefore, in this paper, the PIV technique was utilized to experimentally investigate the statistical characteristics of the annular turbulent flow in a fully developed smooth concentric annular pipe. The results showed that the position of the maximum velocity in the annular turbulent flow was not at the center but biased towards the barrel wall. Moreover, the smaller the radius ratio, the more it shifted towards the barrel wall. The position of the maximum velocity was independent of the Reynolds number and was a univariate function of the radius ratio; it was obtained by fitting experimental data that rmt*=k0.3491+k0.349. The resistance coefficient of annular turbulence was independent of the radius ratio and was a univariate function of the Reynolds number; it was obtained by fitting experimental data that λ=0.3183Rea0.2487. The shear stress on the barrel wall was greater than that on the pipe wall in annular turbulent flow. Moreover, as the radius ratio increased, the shear stress on the barrel wall decreased, while that on the pipe wall increased. The velocity distribution in annular turbulent flow was divided into an inner region and an outer region. In the inner region, the uc+yc+ curves were greatly affected by the Reynolds number, and the average gradient increased with the increase in the Reynolds number, while in the outer region, the average gradient of the up+yp+ curves decreased with the increase in the Reynolds number. The velocity distribution in annular turbulent flow cannot be expressed by a unified relationship. However, at high Reynolds numbers, there existed a region where the velocity distribution satisfied the logarithmic law in the outer region, and the slope of the logarithmic region was greater than that in circular pipe flow and parallel-plate flow. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

15 pages, 9961 KB  
Communication
Mechanisms of Microstructure Refinement and Wear Resistance in Laser-Cladded La2O3/TiB Composite Coatings: Experimental and Numerical Insights
by Menghui Ding, Youfeng Zhang, Guangyu Han, Yinling Wang and Wenzhu Zhang
Modelling 2025, 6(4), 163; https://doi.org/10.3390/modelling6040163 - 8 Dec 2025
Viewed by 303
Abstract
Titanium alloys such as Ti-6Al-4V are widely used in aerospace and biomedical fields, but their poor wear resistance and high friction coefficient limit service performance. In this study, laser cladding with La2O3 addition was employed to enhance the surface properties [...] Read more.
Titanium alloys such as Ti-6Al-4V are widely used in aerospace and biomedical fields, but their poor wear resistance and high friction coefficient limit service performance. In this study, laser cladding with La2O3 addition was employed to enhance the surface properties of Ti-6Al-4V, and the underlying mechanisms were systematically investigated by combining experimental characterization with multiphysics simulations. XRD and SEM analyses revealed that La2O3 addition refined grains and promoted uniform phase distribution throughout the coating thickness, leading to good metallurgical bonding. The hardness was 2–3 times higher than that of the titanium alloy substrate when the content of 2–3 wt.% was of added La2O3, while the wear loss ratio was reduced to 0.021% and the average friction coefficient decreased to 0.421. These improvements were strongly supported by simulations: temperature field calculations demonstrated steep thermal gradients conducive to rapid solidification; velocity field analysis and recoil-pressure-driven flow revealed vigorous melt pool convection, which homogenized solute distribution and enhanced coating densification; phase evolution simulations confirmed the role of La2O3 in heterogeneous nucleation and dispersion strengthening. In summary, the combined results establish a mechanistic framework where thermal cycling, melt pool dynamics, and La2O3-induced nucleation act synergistically to optimize coating microstructure, hardness, and wear resistance. This integrated experimental–numerical approach provides not only quantitative improvements but also a generalizable strategy for tailoring surface performance in laser-based manufacturing. Full article
(This article belongs to the Topic Numerical Simulation of Composite Material Performance)
Show Figures

Graphical abstract

14 pages, 2827 KB  
Article
Analysis of Heat Transfer Characteristics in a Latent Heat Storage Module Using Circular-Finned Tubes
by Ji-Woon Ko, Tae Hwan Song, Jong-Hoon Lee, Jong Hyeon Peck and Seung Jin Oh
Energies 2025, 18(23), 6325; https://doi.org/10.3390/en18236325 - 1 Dec 2025
Viewed by 319
Abstract
Latent heat thermal energy storage (LHTES) using inorganic salt hydrates is a promising technology for buffering renewable energy fluctuations; however, phase-dependent heat transfer remains insufficiently understood for design optimization. In this study, a shell-and-tube storage module with a circular-finned tube was constructed and [...] Read more.
Latent heat thermal energy storage (LHTES) using inorganic salt hydrates is a promising technology for buffering renewable energy fluctuations; however, phase-dependent heat transfer remains insufficiently understood for design optimization. In this study, a shell-and-tube storage module with a circular-finned tube was constructed and filled with 13.17 kg of barium hydroxide octahydrate (BHO). Discharge tests were conducted with heat transfer fluid (HTF) inlet temperatures ranging from 20 °C to 50 °C and flow rates of 10–25 L/min, while charging was performed at 90 °C. The overall heat transfer coefficient (Uo) was derived using the logarithmic mean temperature difference method, the inside coefficient (hi) was calculated by the Petukhov correlation, and the outside coefficient (ho) was obtained via thermal-resistance network. Results show that the average discharge energy was approximately 1.027 kWh (except 0.859 kWh at 50 °C inlet), with a mean utilization efficiency of 79.25%. The Uo was consistently highest in the liquid phase, followed by the latent and solid phases, with ranges of 0.257–0.863, 0.025–0.072, and 0.015–0.044 kW/m2·°C, respectively. Sensitivity analysis revealed that the HTF flow rate strongly influenced Uo across all phases, whereas inlet temperature played only a minor role. The outside coefficient ho was 0.033–0.162 kW/m2·°C in the latent regime and 0.018–0.064 kW/m2·°C in the solid regime, with a notable peak around Reynolds number 1.3 × 104 in the latent phase. These findings provide detailed phase-resolved Uo and ho data for inorganic salt hydrate storage and highlight design insights such as the diminishing returns of flow rate increase beyond a threshold, offering valuable guidelines for sizing and operation of LHTES in Power-to-Heat applications. Full article
Show Figures

Figure 1

11 pages, 6093 KB  
Article
The Influence of Powder Composition and Hydrogen Consumption on the Structural, Corrosion and Tribological Characteristics of Fe-Cr-Al Coatings Obtained by Air Plasma Spraying
by Aidar Kengesbekov, Dastan Buitkenov, Garip Erdogan, Aiym Nabioldina and Sultan Komekov
Materials 2025, 18(23), 5395; https://doi.org/10.3390/ma18235395 - 29 Nov 2025
Viewed by 322
Abstract
Fe-Cr-Al coatings were obtained by air plasma spraying (APS) from 85Fe-12Cr-3Al and 68Fe-26Cr-6Al powders at two hydrogen flow rates (8 and 13 L/min), which resulted in four deposition regimes (A1, A2, B1, B2). Stainless steel 20Kh13 (equivalent to AISI 420) was used as [...] Read more.
Fe-Cr-Al coatings were obtained by air plasma spraying (APS) from 85Fe-12Cr-3Al and 68Fe-26Cr-6Al powders at two hydrogen flow rates (8 and 13 L/min), which resulted in four deposition regimes (A1, A2, B1, B2). Stainless steel 20Kh13 (equivalent to AISI 420) was used as the substrate material. The microstructure of the coatings has a typical lamellar layering with molten and semi-molten particles. When the hydrogen flow rate is increased to 13 L/min, a denser and more homogeneous structure with reduced porosity is observed. X-ray phase analysis revealed the presence of metal and oxide phases (Fe,Cr), Fe3O4, FeO, Fe2+Cr2O4, which indicates partial oxidation of particles during the spraying process and stabilization of the structure. Electrochemical tests in 3.5% NaCl solution showed that the 85Fe-12Cr-3Al coatings are characterized by a corrosion potential of Eo ≈ −0.60…−0.67 V, a corrosion current density of io = (2.6–4.7) × 10−5 A/cm2, and a corrosion rate of 0.30–0.55 mm/year, whereas the 68Fe-26Cr-6Al coatings exhibit lower values of io = (1.4–2.9) × 10−5 A/cm2 and a corrosion rate of 0.17–0.34 mm/year, indicating the formation of a denser protective oxide film (Cr2O3 + Al2O3) and enhanced surface passivation. Tribological tests showed that 85Fe-12Cr-3Al coatings demonstrate more stable friction compared to 68Fe-26Cr-6Al, while for regime B2, after 180 m, an increase in the friction coefficient is observed, caused by brittleness and the local destruction of the oxide film. A comprehensive analysis of the results showed that increasing the hydrogen consumption to 13 L/min improves the density and corrosion–tribological characteristics of the coatings. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

38 pages, 2332 KB  
Review
The Modern Numerical and Experimental Methods for the Sound Absorbing Characteristics of Dissipative Sound Absorbing Materials: A Review
by Ruijun Liu, Zhicheng Zhang and Xu Zheng
Materials 2025, 18(23), 5353; https://doi.org/10.3390/ma18235353 - 27 Nov 2025
Viewed by 744
Abstract
This review provides a comprehensive overview of modern experimental and numerical methods for characterizing the sound absorbing properties of dissipative sound-absorbing materials. Experimentally, we summarize both in situ techniques (e.g., pulse reflection, two-microphone, p-u probe, and spatial Fourier transform method) and laboratory methods [...] Read more.
This review provides a comprehensive overview of modern experimental and numerical methods for characterizing the sound absorbing properties of dissipative sound-absorbing materials. Experimentally, we summarize both in situ techniques (e.g., pulse reflection, two-microphone, p-u probe, and spatial Fourier transform method) and laboratory methods (e.g., impedance tube, transfer function, and reverberation room methods), discussing their principles and applications. For the numerical methods, we detail the development and refinement of empirical models (e.g., Delany–Bazley, Miki, Komatsu), theoretical models (e.g., Johnson–Champoux–Allard), and computer numerical methods, along with methods for obtaining flow resistivity, including empirical formulas, experimental measurements. Furthermore, we review recent advances in machine learning approaches (e.g., generalized regression neural networks, radial basis function neural networks, and artificial neural networks) for predicting the sound absorption coefficient. This work aims to serve as a methodological reference for the research, development, and performance evaluation of dissipative sound-absorbing materials. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

17 pages, 6575 KB  
Article
Wind Load Distribution Characteristics of a Semi-Enclosed Sound Barrier at the Junction of a Single-Track Bridge and Three-Track Bridge of a High-Speed Railway
by Botao Li, Yinhui Bao, Guoqing Hu and Xun Zhang
Vibration 2025, 8(4), 75; https://doi.org/10.3390/vibration8040075 - 24 Nov 2025
Viewed by 352
Abstract
Due to its effective noise reduction, the semi-enclosed noise barrier is increasingly being applied in the construction of high-speed railways. However, there is still a lack of systematic research on the wind load distribution characteristics under natural crosswind, especially for the complex aerodynamic [...] Read more.
Due to its effective noise reduction, the semi-enclosed noise barrier is increasingly being applied in the construction of high-speed railways. However, there is still a lack of systematic research on the wind load distribution characteristics under natural crosswind, especially for the complex aerodynamic behavior of the intersection section of multi-line bridges. Therefore, the wind load distribution characteristics on the surface of the sound barrier under crosswind conditions are explored within the engineering context of a semi-enclosed acoustic barrier at the junction of a single-track bridge and a three-track bridge, using a combination of wind tunnel testing and numerical simulation. A rigid-body model with a geometric scale of 1:10 is established for the wind tunnel test. The wind load distribution characteristics of the two acoustic barriers are analyzed from the perspectives of mean wind pressure, pulsating wind pressure, and extreme wind pressure, respectively. FLUENT 2022 software is utilized to model the flow field characteristics of the sound barrier under two working conditions: windward and leeward. The results show that under the action of crosswind, the surface wind load of the sound barrier at the junction of the single/three-line bridge is very prominent, the maximum negative pressure shape coefficient is −4.516, and its distribution is dominated by negative pressure; that is, the sound barrier mainly bears suction. Compared with the semi-closed sound barrier on the single-track bridge, the extreme wind pressure at the semi-closed sound barrier on the three-track bridge and the junction of the two is more significant, which shows that this kind of area needs special attention in wind-resistant design. Full article
(This article belongs to the Special Issue Railway Dynamics and Ground-Borne Vibrations)
Show Figures

Figure 1

Back to TopTop