Fractal and Fluid Mobility Analysis of Pore-Throat Systems in Sandstone Reservoirs Based on HPMI and NMR: A Case Study from the Nahr Umr Formation, Iraq
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sample Information
3.2. Thin Section Analysis
3.3. Scanning Electron Microscopy
3.4. X-Ray Diffraction
3.5. Nuclear Magnetic Resonance
3.6. High-Pressure Mercury Injection
3.7. Fractal Theory
3.7.1. Fractal Dimension Calculation Based on High-Pressure Mercury Injection
3.7.2. Fractal Dimension Calculation Based on Nuclear Magnetic Resonance
4. Results
4.1. Petrological Characteristics and Pore-Throat Types
4.2. Characterization of Pore-Throat Structures by HPMI
4.3. Characterization of Movable Fluid Features by NMR
4.4. Fractal Characteristics of Pore Structure
5. Discussion
5.1. Influence of Reservoir Physical Properties on Fractal Dimension and Fluid Mobility
5.2. Influence of Pore Structure Parameters on Fractal Dimension and Fluid Mobility
5.3. Influence of Mineral Content on Fractal Dimension and Fluid Mobility
5.3.1. Influence of Quartz Content on Fractal Dimension and Fluid Mobility
5.3.2. Influence of Clay Mineral Content on Fractal Dimension and Fluid Mobility
5.3.3. Influence of Cement Content on Fractal Dimension and Fluid Mobility
5.4. Relationship Between Fractal Dimension and Fluid Mobility
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, Y.D.; Zhu, K.P.; Li, K.; Zhao, C.H.; Liu, K.D.; Ning, D.Y.; Liu, X.; Yan, P.Z.; Zhao, S.X. Study on the microscopic pore structure and seepage mechanism of the Luohe Formation sandstone in the roof of coal seams in the Huanglong Coalfield. Sci. Rep. 2025, 15, 33568. [Google Scholar] [CrossRef]
- Li, J.L.; Ji, L.L.; Jiang, W.B.; Lin, M.; Mao, M.; Wei, X.L.; Cao, G.H.; Qin, F. Investigation of pore structures and flow transport characteristics of continental shale in Dongying Sag. J. Pet. Explor. Prod. Technol. 2025, 15, 163. [Google Scholar] [CrossRef]
- Liu, S.; Wang, M.; Cheng, Y.L.; Yu, X.N.; Duan, X.M.; Kang, Z.; Xiong, Y.X. Fractal insights into permeability control by pore structure in tight sandstone reservoirs, Heshui area, Ordos Basin. Open Geosci. 2025, 17, 20250791. [Google Scholar] [CrossRef]
- Lin, W.; Zhao, X.L.; Li, M.T.; Zhuang, Y. Pore Structure Characterization and Fractal Characteristics of Tight Limestone Based on Low-Temperature Nitrogen Adsorption and Nuclear Magnetic Resonance. Fractal Fract. 2024, 8, 371. [Google Scholar] [CrossRef]
- Tang, L.D.; Zhang, Y.B.; Tang, X.Y.; Zhang, Q.H.; Chen, M.J.; Pei, X.H.; Kang, Y.; Zhang, Y.G.; Liu, Y.T.; Zhou, B.H. Pore Structure and Fractal Characteristics of Kelasu Ultra-Deep Tight Sandstone Gas Reservoirs. Processes 2025, 13, 3074. [Google Scholar] [CrossRef]
- Zhang, H.R.; Yuan, Y.; Chen, J.W.; Liang, J.; Zhao, H.L. Pore Structure Characteristics and Reservoir Classification of Tight Sandstones within the Upper Permian Longtan Formation in the Laoshan Uplift, South Yellow Sea Basin: Implications for Hydrocarbon Exploration. J. Mar. Sci. Eng. 2024, 12, 732. [Google Scholar] [CrossRef]
- Chang, B.; Tong, Q.; Cao, C.; Zhang, Y.D. Effect of pore-throat structure on movable fluid and gas–water seepage in tight sandstone from the southeastern Ordos Basin, China. Sci. Rep. 2025, 15, 7714. [Google Scholar] [CrossRef]
- Kang, Y.; Zhu, R.K.; Liu, K.Q.; Zhang, J.Y.; Liu, C. Pore Fractal and Structure Analysis of Pore-Filling Chlorite in Continental Shales: A Case Study from the Qingshankou Formation in the Gulong Sag. Fractal Fract. 2025, 9, 266. [Google Scholar] [CrossRef]
- Zhao, X.L.; Yang, Z.M.; Zhou, S.B.; Luo, Y.T.; Liu, X.W.; Zhang, Y.P.; Lin, W.; Xiao, Q.H.; Niu, Z.K. Research on Characterization and Heterogeneity of Microscopic Pore Throat Structures in Tight Oil Reservoirs. ACS Omega 2021, 6, 24672–24682. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Jiang, F.J.; Zhang, C.L.; Song, Z.Z.; Mo, W.L. Study on the Pore Structure and Fractal Dimension of Tight Sandstone in Coal Measures. Energy Fuels 2021, 35, 3887–3898. [Google Scholar] [CrossRef]
- Li, C.Y.; Dai, W.H.; Luo, B.F.; Pi, J.; Liu, Y.S.; Zhang, Y. New fractal-dimension-based relation model for estimating absolute permeability through capillary pressure curves. J. Pet. Sci. Eng. 2021, 196, 107672. [Google Scholar] [CrossRef]
- Wang, L.H.; Li, X.F.; Wang, J.J.; Zhang, H.B.; Shi, H.G.; Liu, G.F.; Yang, D.Y. Effect of pore-throat structure on irreducible water saturation and gas seepage capacity in a multilayer tight sandstone gas reservoir. Geoenergy Sci. Eng. 2025, 249, 213787. [Google Scholar] [CrossRef]
- Xia, Y.X.; Cai, J.C.; Perfect, E.; Wei, W.; Zhang, Q.; Meng, Q.B. Fractal dimension, lacunarity and succolarity analyses on CT images of reservoir rocks for permeability prediction. J. Hydrol. 2019, 579, 124198. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, Z.X.; Sun, W.; Li, Y.H.; Zhang, X.; Zhu, L.; Wen, M. A multiscale comprehensive study on pore structure of tight sandstone reservoir realized by nuclear magnetic resonance, high pressure mercury injection and constant-rate mercury injection penetration test. Mar. Pet. Geol. 2019, 109, 208–222. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.Y.; Wang, L.N.; Qu, Z.Y.; Ding, X.Y.; Gao, C.L.; Meng, W.C. Pore structure and fractal characteristics of tight sandstones based on nuclear magnetic resonance: A case study in the Triassic Yanchang Formation of the Ordos Basin, China. ACS Omega 2023, 8, 16284–16297. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.B.; Du, Z.W.; Qiang, X.L.; Lei, T.; Jiang, T.T.; Wang, W.; Zhu, Y.S. Binary pore structure and fractal characteristics of tight sandstone: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin. Pet. Geol. Recovery Effic. 2024, 31, 45–56. (In Chinese) [Google Scholar] [CrossRef]
- Wu, B.H.; Xie, R.H.; Wang, X.Y.; Wang, T.Y.; Yue, W.Z. Characterization of pore structure of tight sandstone reservoirs based on fractal analysis of NMR echo data. J. Nat. Gas Sci. Eng. 2020, 81, 103483. [Google Scholar] [CrossRef]
- Teng, Y.X.; Er, C.; Zhao, J.Z.; Guo, Q.Q.; Shen, C.M.; Tan, S.J. Pore structure characterization based on NMR experiment: A case from the Shanxi Formation tight sandstones in the Daning-Jixian area, eastern Ordos Basin. Energy Geosci. 2023, 4, 100192. [Google Scholar] [CrossRef]
- Guo, X.B.; Huang, Z.L.; Zhao, L.B.; Han, W.; Ding, C.; Sun, X.W.; Yan, R.T.; Zhang, T.H.; Yang, X.J.; Wang, R.M. Pore structure and multi-fractal analysis of tight sandstone using MIP, NMR and NMRC methods: A case study from the Kuqa depression, China. J. Pet. Sci. Eng. 2019, 178, 544–558. [Google Scholar] [CrossRef]
- Zhang, H.T.; Li, G.R.; Guo, H.P.; Zhang, W.J.; Wang, Y.M.; Li, W.B.; Zhou, J.Y.; Wang, C.S. Applications of nuclear magnetic resonance (NMR) logging in tight sandstone reservoir pore structure characterization. Arab. J. Geosci. 2020, 13, 1–8. [Google Scholar] [CrossRef]
- Verma, M.K.; Ahlbrandt, T.S.; Al-Gailani, M. Petroleum reserves and undiscovered resources in the total petroleum systems of Iraq: Reserve growth and production implications. GeoArabia 2004, 9, 51–74. [Google Scholar] [CrossRef]
- Al-Dabbas, M.A.; Al-Jassim, J.A.; Qaradaghi, A.I. Siliciclastic deposit of the Nahr Umr Formation, sedimentological and depositional environment studies, central and southern Iraq. Arab. J. Geosci. 2013, 6, 4771–4783. [Google Scholar] [CrossRef]
- Lyu, Z.; Wang, Y.P.; Wang, Y.J.; Dai, H.S.; Zhu, G.Y.; Mu, L.F. Controlling Factors on Physical Properties of Cretaceous Nahr Umr Formation Sandstone Reservoir in Halfaya Oilfield, Iraq. J. Earth Sci. Environ. 2019, 41, 707–720. (In Chinese) [Google Scholar]
- Zhu, X.E.; Jin, Z.K.; Yi, S.; Wei, K.; Li, Y. Sedimentary characteristics and depositional environment of clastie deposits: The Cretaceous Nahr Umr formation, Halfaya oilfield, Iraq. China Sci. 2023, 18, 956–965+986. (In Chinese) [Google Scholar]
- Al-Juboury, A.I.A. The Upper Miocene Injana (Upper Fars) Formation of Iraq: Insights on provenance history. Arab. J. Geosci. 2009, 2, 337–364. [Google Scholar] [CrossRef]
- Athersuch, J. Ostracod faunas from the Halul, Laffan and Nahr Umr Formations of offshore Abu Dhabi, U.A.E. J. Micropalaeontol. 1987, 6, 1–10. [Google Scholar] [CrossRef]
- Wang, L.M.; Cheng, L.; Yin, S.H.; Chen, W.; Li, H.J.; Li, S.; Zhang, C. Pore structure evolution and fractal characteristics of sandstone uranium ore under different leaching temperatures. Powder Technol. 2025, 454, 120713. [Google Scholar] [CrossRef]
- Wang, W.G.; Lin, C.Y.; Zhang, X.G. Fractal Dimension Analysis of Pore Throat Structure in Tight Sandstone Reservoirs of Huagang Formation: Jiaxing Area of East China Sea Basin. Fractal Fract. 2024, 8, 374. [Google Scholar] [CrossRef]
- Jiang, F.J.; Zhang, C.L.; Wang, K.; Zhao, Z.F.; Zhong, K.S. Characteristics of micropores, pore throats, and movable fluids in the tight sandstone oil reservoirs of the Yanchang Formation in the southwestern Ordos Basin, China. AAPG Bull. 2019, 103, 2835–2859. [Google Scholar] [CrossRef]
- Zang, Q.B.; Liu, C.L.; Awan, R.S.; Yang, X.Y.; Li, G.X.; Wu, Y.P.; Lu, Z.D.; Feng, D.H. Occurrence characteristics of the movable fluid in heterogeneous sandstone reservoir based on fractal analysis of NMR data: A case study of the Chang 7 Member of Ansai Block, Ordos Basin, China. J. Pet. Sci. Eng. 2022, 214, 110499. [Google Scholar] [CrossRef]
- Zhang, Q.P.; Yang, C.; Tian, Y.; Liu, H.; Xiao, W.; Wang, Z.K.; Mi, Z.R.; Li, Z.Y.; Huo, Y.; Li, Y.; et al. Effect of microscopic pore–throat structure heterogeneity on waterflooding seepage characteristics of tight sandstone reservoirs. Open Geosci. 2025, 17, 20250798. [Google Scholar] [CrossRef]
- Li, P.; Shen, B.J.; Liu, Y.L.; Bi, H.; Liu, Z.B.; Bian, R.K.; Wang, P.W.; Li, P. The fractal characteristics of the pore throat structure of tight sandstone and its influence on oil content: A case study of the Chang 7 Member of the Ordos Basin, China. Pet. Sci. 2025, 22, 2262–2273. [Google Scholar] [CrossRef]
- Zhang, H.M.; Li, X.J.; Liu, J.F.; Wang, Y.P.; Guo, L.; Wu, Z.Y.; Tian, Y.F. A Fractal Characteristics Analysis of the Pore Throat Structure in Low-Permeability Sandstone Reservoirs: A Case Study of the Yanchang Formation, Southeast Ordos Basin. Fractal Fract. 2025, 9, 224. [Google Scholar] [CrossRef]
- Wang, F.Y.; Jiao, L.; Liu, Z.C.; Tan, X.Q.; Wang, C.L.; Gao, J. Fractal analysis of pore structures in low permeability sandstones using mercury intrusion porosimetry. J. Porous Media 2018, 21, 1097–1119. [Google Scholar] [CrossRef]
- Wang, W.R.; Yue, D.L.; Eriksson, K.A.; Qu, X.F.; Li, W.; Lyu, M.; Zhang, J.Q.; Zhang, X.T. Quantification and Prediction of Pore Structures in Tight Oil Reservoirs Based on Multifractal Dimensions from Integrated Pressure- and Rate-Controlled Porosimetry for the Upper Triassic Yanchang Formation, Ordos Basin, China. Energy Fuels 2020, 34, 4366–4383. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.W.; Zheng, Y.Q.; Li, W.L.; Cai, C. Method for calculating the fractal dimension of the pore structure of low permeability reservoirs: A case study on the Xujiahe formation reservoir in central Sichuan Basin. J. Northeast Pet. Univ. 2013, 37, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Li, K.W. Analytical derivation of Brooks–Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity. J. Pet. Sci. Eng. 2010, 73, 20–26. [Google Scholar] [CrossRef]
- Song, Z.Z.; Liu, G.D.; Yang, W.W.; Zou, H.Y.; Sun, M.L.; Wang, X.L. Multi-fractal distribution analysis for pore structure characterization of tight sandstone—A case study of the Upper Paleozoic tight formations in the Longdong District, Ordos Basin. Mar. Pet. Geol. 2018, 92, 842–854. [Google Scholar] [CrossRef]
- Wang, Z.F.; Yao, Y.B.; Ma, R.Y.; Zhang, X.N.; Zhang, G.B. Application of Multifractal Analysis Theory to Interpret T2 Cutoffs of NMR Logging Data: A Case Study of Coarse Clastic Rock Reservoirs in Southwestern Bozhong Sag, China. Fractal Fract. 2023, 7, 57. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Weller, A. Fractal dimension of pore-space geometry of an Eocene sandstone formation. Geophysics 2014, 79, D377–D387. [Google Scholar] [CrossRef]
- Huang, H.X.; Li, R.X.; Xiong, F.Y.; Hu, H.; Sun, W.; Jiang, Z.X.; Chen, L.; Wu, L. A method to probe the pore-throat structure of tight reservoirs based on low-field NMR: Insights from a cylindrical pore model. Mar. Pet. Geol. 2020, 117, 104344. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Liu, L.Y.; Zhu, Y.S. Characteristics of movable fluids in tight sandstone reservoir and its influencing factors: A case study of Chang 7 reservoir in the Southwestern of Ordos Basin. J. Pet. Explor. Prod. Technol. 2021, 11, 3493–3507. [Google Scholar] [CrossRef]
- Li, P.; Jia, C.Z.; Jin, Z.J.; Liu, Q.Y.; Zheng, M.; Huang, Z.K. The characteristics of movable fluid in the Triassic lacustrine tight oil reservoir: A case study of the Chang 7 member of Xin’anbian Block, Ordos Basin, China. Mar. Pet. Geol. 2019, 102, 126–137. [Google Scholar] [CrossRef]
- Zhang, H.M.; Guo, L.; Wu, Z.Y.; Ma, J.B. Pore-throat structure, fractal characteristics and permeability prediction of tight sandstone: The Yanchang Formation, Southeast Ordos Basin. Sci. Rep. 2024, 14, 27913. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.W.; Fan, Z.Y.; Chen, J.; Wang, S.C.; Zhou, Z.L.; Fan, X.Q. Insight into the pore structure of tight sandstones using NMR and HPMI measurements. Energy Fuels 2016, 30, 10200–10214. [Google Scholar] [CrossRef]
- Rahimi, R.; Bagheri, M.; Masihi, M. Characterization and estimation of reservoir properties in a carbonate reservoir in Southern Iran by fractal methods. J. Pet. Explor. Prod. Technol. 2018, 8, 31–41. [Google Scholar] [CrossRef]
- Dong, X.X.; Meng, X.Z.; Pu, R.H. Occurrence characteristics of movable fluids based on the division of pore throat system in tight gas reservoir by fractal theory. Nat. Gas Ind. 2023, 43, 78–90. [Google Scholar] [CrossRef]











| Sample ID | Well | Depth (m) | Lithology | Porosity (%) | Permeability (×10−3 μm2) |
|---|---|---|---|---|---|
| 1 | A1 | 3644.25 | siltstone | 4.96 | 0.018 |
| 2 | A1 | 3652.50 | medium-grained sandstone | 17.78 | 3.300 |
| 3 | A1 | 3659.05 | medium-grained sandstone | 17.92 | 4.400 |
| 4 | A1 | 3663.35 | siltstone | 2.82 | 0.152 |
| 5 | A1 | 3670.20 | fine-grained sandstone | 8.46 | 1.220 |
| 6 | A1 | 3675.62 | siltstone | 3.14 | 0.027 |
| 7 | A1 | 3677.20 | medium-grained sandstone | 18.04 | 4.250 |
| 8 | A1 | 3678.47 | medium- to fine-grained sandstone | 10.35 | 2.730 |
| 9 | A1 | 3681.25 | siltstone | 2.57 | 0.060 |
| 10 | A1 | 3683.75 | fine-grained sandstone | 6.88 | 0.870 |
| 11 | A1 | 3684.65 | medium-grained sandstone | 12.83 | 3.590 |
| 12 | A1 | 3687.74 | fine-grained sandstone | 6.77 | 0.410 |
| Sample ID | Quartz (%) | Cement (%) | Total Clay Minerals (%) | Specific Clay Minerals | |||
|---|---|---|---|---|---|---|---|
| Kaolinite (%) | Illite (%) | Smectite (%) | Mixed-Layer Illite/Smectite (%) | ||||
| 1 | 60.50 | 6.68 | 32.82 | 29.21 | 2.02 | 0.34 | 1.25 |
| 2 | 89.92 | 3.15 | 6.93 | 5.89 | 0.52 | 0.18 | 0.34 |
| 3 | 91.97 | 1.64 | 6.40 | 4.61 | 0.95 | 0.23 | 0.61 |
| 4 | 49.72 | 11.21 | 39.07 | 30.08 | 5.04 | 1.00 | 2.95 |
| 5 | 74.00 | 5.98 | 20.02 | 16.22 | 2.05 | 0.47 | 1.28 |
| 6 | 58.03 | 9.81 | 32.15 | 26.68 | 3.11 | 0.54 | 1.82 |
| 7 | 86.30 | 4.17 | 9.53 | 7.43 | 1.12 | 0.30 | 0.68 |
| 8 | 86.59 | 1.96 | 11.45 | 10.08 | 0.72 | 0.21 | 0.44 |
| 9 | 52.83 | 13.36 | 33.81 | 27.05 | 3.86 | 0.65 | 2.25 |
| 10 | 56.17 | 9.78 | 34.05 | 24.86 | 5.23 | 0.84 | 3.12 |
| 11 | 89.41 | 1.79 | 8.80 | 6.6 | 1.21 | 0.25 | 0.74 |
| 12 | 68.80 | 8.16 | 23.04 | 19.81 | 1.78 | 0.37 | 1.08 |
| Sample ID | Pore-Throat Classification | Displacement Pressure (MPa) | Median Pressure (MPa) | Median Pore-Throat Radius (μm) | Mean Pore-Throat Radius (μm) | Pore-Throat Sorting Coefficient |
|---|---|---|---|---|---|---|
| 2 | I | 0.15 | 0.39 | 1.93 | 2.80 | 1.30 |
| 3 | I | 0.13 | 1.65 | 0.45 | 1.20 | 2.30 |
| 7 | I | 0.06 | 0.17 | 4.80 | 6.20 | 3.80 |
| 8 | I | 0.28 | 1.45 | 0.52 | 0.85 | 2.20 |
| 11 | I | 0.13 | 0.37 | 2.10 | 3.20 | 3.20 |
| Type I Average | 0.15 | 0.81 | 1.96 | 2.85 | 2.56 | |
| 5 | II | 0.44 | 3.15 | 0.24 | 0.35 | 2.80 |
| 10 | II | 2.79 | 7.45 | 0.10 | 0.07 | 1.70 |
| 12 | II | 7.45 | 22.20 | 0.03 | 0.02 | 1.20 |
| Type II Average | 3.56 | 10.94 | 0.13 | 0.15 | 1.90 | |
| 1 | III | 5.37 | 26.00 | 0.03 | 0.06 | 2.00 |
| 4 | III | 22.20 | 55.50 | 0.01 | 0.01 | 1.00 |
| 6 | III | 5.37 | 40.50 | 0.02 | 0.03 | 1.20 |
| 9 | III | 24.76 | 59.30 | 0.01 | 0.01 | 0.80 |
| Type III Average | 14.43 | 45.32 | 0.02 | 0.03 | 1.25 | |
| Maximum | 24.76 | 59.30 | 0.03 | 0.06 | 2.00 | |
| Minimum | 5.37 | 26.00 | 0.01 | 0.01 | 0.80 | |
| Average | 14.43 | 45.32 | 0.02 | 0.03 | 1.25 | |
| Sample ID | Reservoir Type | T2 Cutoff (ms) | Movable Fluid Saturation (%) | Irreducible Fluid Saturation (%) | Movable Fluid Porosity (%) |
|---|---|---|---|---|---|
| 2 | I | 14.6 | 41.28 | 58.72 | 7.34 |
| 3 | I | 13.0 | 48.71 | 51.29 | 8.73 |
| 7 | I | 8.7 | 62.86 | 37.14 | 11.34 |
| 8 | I | 3.3 | 60.49 | 39.51 | 6.26 |
| 11 | I | 6.4 | 40.07 | 59.93 | 5.14 |
| Average | 9.2 | 50.68 | 49.32 | 7.76 | |
| 5 | II | 4.9 | 26.18 | 73.82 | 2.21 |
| 10 | II | 5.4 | 23.36 | 76.64 | 1.61 |
| 12 | II | 3.2 | 22.36 | 77.64 | 1.51 |
| Average | 4.5 | 23.97 | 76.03 | 1.78 | |
| 1 | III | 4.9 | 24.03 | 75.97 | 1.19 |
| 4 | III | 2.3 | 31.93 | 68.07 | 0.90 |
| 6 | III | 2.6 | 19.58 | 80.42 | 0.61 |
| 9 | III | 2.7 | 15.81 | 84.19 | 0.41 |
| Average | 3.1 | 22.84 | 77.16 | 0.78 | |
| Sample ID | Reservoir Type | HPMI | NMR | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| D1 | ϕ1 | D2 | ϕ2 | D3 | ϕ3 | DH | DN1 | DN2 | ||
| 2 | I | 3.2401 | 8.57 | 2.1276 | 7.97 | 2.0269 | 1.24 | 2.6569 | 1.2595 | 2.9468 |
| 3 | I | 2.9095 | 6.55 | 2.1896 | 9.47 | 2.0551 | 1.90 | 2.4385 | 0.9225 | 2.9323 |
| 7 | I | 3.0894 | 9.74 | 2.1175 | 5.44 | 2.0387 | 2.85 | 2.6299 | 0.9028 | 2.8849 |
| 8 | I | 3.7608 | 4.89 | 2.1378 | 3.99 | 2.0622 | 1.47 | 2.8930 | 0.939 | 2.9083 |
| 11 | I | 3.3252 | 6.36 | 2.1141 | 5.62 | 2.0284 | 0.85 | 2.7083 | 0.5547 | 2.9723 |
| 5 | II | 4.7079 | 2.67 | 2.169 | 5.78 | n.a. | n.a. | 2.9718 | 1.0426 | 2.9866 |
| 10 | II | 5.0778 | 3.02 | 2.3122 | 2.50 | 2.0863 | 1.36 | 3.4834 | 1.2890 | 2.9815 |
| 12 | II | 5.452 | 3.12 | 2.2153 | 3.64 | n.a. | n.a. | 3.7092 | 0.9866 | 2.9843 |
| 1 | III | 4.8172 | 2.82 | 2.1299 | 2.14 | n.a. | n.a. | 3.6562 | 1.1818 | 2.9817 |
| 4 | III | 5.3025 | 1.53 | 2.2671 | 1.29 | n.a. | n.a. | 3.9099 | 0.7727 | 2.9762 |
| 6 | III | 5.706 | 0.41 | 2.9758 | 1.49 | 2.2398 | 1.24 | 3.0430 | 0.9263 | 2.9962 |
| 9 | III | 6.1249 | 1.54 | 2.2088 | 1.03 | n.a. | n.a. | 4.5543 | 0.9518 | 2.9912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, T.; Fu, M.; Wang, R.; Deng, Y.; Xu, J.; Guo, R. Fractal and Fluid Mobility Analysis of Pore-Throat Systems in Sandstone Reservoirs Based on HPMI and NMR: A Case Study from the Nahr Umr Formation, Iraq. Fractal Fract. 2026, 10, 15. https://doi.org/10.3390/fractalfract10010015
Li T, Fu M, Wang R, Deng Y, Xu J, Guo R. Fractal and Fluid Mobility Analysis of Pore-Throat Systems in Sandstone Reservoirs Based on HPMI and NMR: A Case Study from the Nahr Umr Formation, Iraq. Fractal and Fractional. 2026; 10(1):15. https://doi.org/10.3390/fractalfract10010015
Chicago/Turabian StyleLi, Tang, Meiyan Fu, Runze Wang, Ya Deng, Jiacheng Xu, and Rui Guo. 2026. "Fractal and Fluid Mobility Analysis of Pore-Throat Systems in Sandstone Reservoirs Based on HPMI and NMR: A Case Study from the Nahr Umr Formation, Iraq" Fractal and Fractional 10, no. 1: 15. https://doi.org/10.3390/fractalfract10010015
APA StyleLi, T., Fu, M., Wang, R., Deng, Y., Xu, J., & Guo, R. (2026). Fractal and Fluid Mobility Analysis of Pore-Throat Systems in Sandstone Reservoirs Based on HPMI and NMR: A Case Study from the Nahr Umr Formation, Iraq. Fractal and Fractional, 10(1), 15. https://doi.org/10.3390/fractalfract10010015

