Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = floral characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2769 KiB  
Article
Characterization of the Flavors and Organoleptic Attributes of Petit Manseng Noble Rot Wines from the Eastern Foothills of Helan Mountain in Ningxia, China
by Fuqi Li, Fan Yang, Quan Ji, Longxuan Huo, Chen Qiao and Lin Pan
Foods 2025, 14(15), 2723; https://doi.org/10.3390/foods14152723 - 4 Aug 2025
Viewed by 192
Abstract
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into [...] Read more.
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into three groups based on infection status: uninfected, mildly infected, and severely infected with Botrytis cinerea. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and an electronic nose were employed to detect and analyze the aroma components of wines under the three infection conditions. Additionally, trained sensory panelists conducted sensory evaluations of the wine aromas. The results revealed that wines made from severely infected grapes exhibited the richest and most complex aroma profiles. A total of 70 volatile compounds were identified, comprising 32 esters, 17 alcohols, 5 acids, 8 aldehydes and ketones, 4 terpenes, and 4 other compounds. Among these, esters and alcohols accounted for the highest contents. Key aroma-active compounds included isoamyl acetate, ethyl decanoate, phenethyl acetate, ethyl laurate, hexanoic acid, linalool, decanoic acid, citronellol, ethyl hexanoate, and methyl octanoate. Sensory evaluation indicated that the “floral aroma”, “pineapple/banana aroma”, “honey aroma”, and “overall aroma intensity” were most pronounced in the severely infected group. These findings provide theoretical support for the harvesting of severely Botrytis cinerea-infected Petit Manseng grapes and the production of high-quality noble rot wine in this region. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

16 pages, 2968 KiB  
Article
Dissecting Organ-Specific Aroma-Active Volatile Profiles in Two Endemic Phoebe Species by Integrated GC-MS Metabolomics
by Ming Xu, Yu Chen and Guoming Wang
Metabolites 2025, 15(8), 526; https://doi.org/10.3390/metabo15080526 - 3 Aug 2025
Viewed by 145
Abstract
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics [...] Read more.
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics approach combined with a relative odor activity value (rOAV) analysis to comprehensively profile and compare the volatile metabolite landscape in the seeds and leaves of both species. Results: In total, 1666 volatile compounds were putatively identified, of which 540 were inferred as key aroma-active contributors based on the rOAV analysis. A multivariate statistical analysis revealed clear tissue-related separation: the seeds were enriched in sweet, floral, and fruity volatiles, whereas the leaves contained higher levels of green leaf volatiles and terpenoids associated with ecological defense. KEGG pathway enrichment indicated that terpenoid backbone and phenylpropanoid biosynthesis pathways played major roles in shaping these divergent profiles. A Venn diagram analysis further uncovered core and unique volatiles underlying species and tissue specificity. Conclusions: These insights provide an integrated reference for understanding tissue-divergent volatile profiles in Phoebe species and offer a basis for fragrance-oriented selection, ecological trait evaluation, and the sustainable utilization of organ-related metabolic characteristics in breeding and conservation programs. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

23 pages, 3342 KiB  
Article
Zoning of “Protected Designation of Origin La Mancha Saffron” According to the Quality of the Flower
by Jorge F. Escobar-Talavera, María Esther Martínez-Navarro, Sandra Bravo, Gonzalo L. Alonso and Rosario Sánchez-Gómez
Agronomy 2025, 15(8), 1819; https://doi.org/10.3390/agronomy15081819 - 27 Jul 2025
Viewed by 370
Abstract
The quality of Crocus sativus L. flowers, beyond their stigmas, is influenced by the presence of bioactive metabolites also in their floral bio-residues. Given the effect of climatic and soil variables on these bioactive compounds, the aim of this research was to develop [...] Read more.
The quality of Crocus sativus L. flowers, beyond their stigmas, is influenced by the presence of bioactive metabolites also in their floral bio-residues. Given the effect of climatic and soil variables on these bioactive compounds, the aim of this research was to develop an agroecological zoning of saffron crop areas within the Protected Designation of Origin (PDO) La Mancha region (Castilla-La Mancha, Spain) by integrating the floral metabolite content with climatic and soil variables. To achieve this, a total of 173 samples were collected during the 2022 and 2023 harvests and analyzed via RP-HPLC-DAD to determine crocins, picrocrocin, kaempferols, and anthocyanins. Two new indices, Cropi (crocins + picrocrocin) and Kaeman (kaempferols + anthocyanins), were defined to classify flowers into four quality categories (A–D). High-quality classifications (A and B) were consistently associated with plots grouped in the meteorological stations of Ontur, El Sanchón, and Bolaños, indicating favorable edaphoclimatic conditions and climatic parameters, such as moderate temperatures and reduced humidity, for metabolite biosynthesis. In contrast, plots included in the meteorological stations of Tarazona and Pedernoso were mostly assigned to lower categories (C and D). Spatial analysis using thematic maps revealed that areas with an intermediate carbonate content, less calcareous soils, and higher organic matter levels were linked to higher flower quality. These findings highlight the influence of soil characteristics and climate, with distinct seasonal contrasts, that positively influence metabolite synthesis and flower quality. Full article
Show Figures

Figure 1

20 pages, 847 KiB  
Article
Exploring the Influence of Different Saccharomyces cerevisiae Strains and Hop Varieties on Beer Composition and Sensory Profiles
by Antonella Costantini, Maurizio Petrozziello, Christos Tsolakis, Andriani Asproudi, Enrico Vaudano, Laura Pulcini, Federica Bonello, Katya Carbone and Maria Carla Cravero
Foods 2025, 14(13), 2357; https://doi.org/10.3390/foods14132357 - 2 Jul 2025
Viewed by 342
Abstract
The influence of different Saccharomyces cerevisiae (Sc) strains and hop varieties on the physical, chemical and sensory properties of beer was investigated. ISE77, an oenological Sc strain screened for the IRC7 gene and β-lyase activity, and a commercial yeast, as a [...] Read more.
The influence of different Saccharomyces cerevisiae (Sc) strains and hop varieties on the physical, chemical and sensory properties of beer was investigated. ISE77, an oenological Sc strain screened for the IRC7 gene and β-lyase activity, and a commercial yeast, as a control, were experimented with two hops (dry hopping), Mosaic® (M) and Hallertau Mittelfrüh (HM). Both hop variety and yeast strain exerted a considerable influence on the organoleptic profile of the beer. Samples with M hops exhibited elevated levels of specific volatile compounds (e.g., limonene and linalool). ISE77 generated higher levels of esters, irrespective of the hop variety employed, imparting fruity and floral characteristics. Moreover, the beers fermented with ISE77 showed herbal and spicy notes. Regardless of the hop variety, samples brewed with the control yeast showed higher honey and caramel note levels. Beers fermented with ISE77 and HM exhibited remarkable similarities to those produced with ISE77 and M, particularly for some odour attributes (citrus, exotic fruits, and aromatic herbs). These attributes were more intense than in beers fermented with the control yeast and HM. This study demonstrated the potential of oenological Sc strains to achieve innovative brewing outcomes when combined with selected hops. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 1443 KiB  
Review
Impact of Spontaneous Fermentation on the Physicochemical and Sensory Qualities of Cacao
by Lucas Fernando Quintana-Fuentes, Alberto García-Jerez, Ana Carolina Rodríguez-Negrette, Nurys Tatiana Hoyos-Merlano and Armando Alvis-Bermúdez
Fermentation 2025, 11(7), 377; https://doi.org/10.3390/fermentation11070377 - 30 Jun 2025
Viewed by 732
Abstract
Fermentation is a fundamental technique that allows us to obtain high-quality cacao beans and derived products. Therefore, it is necessary to apply fermentation correctly to maximize product quality. Fermentation techniques vary by region and include piles, trays, wooden boxes, baskets, and platforms. During [...] Read more.
Fermentation is a fundamental technique that allows us to obtain high-quality cacao beans and derived products. Therefore, it is necessary to apply fermentation correctly to maximize product quality. Fermentation techniques vary by region and include piles, trays, wooden boxes, baskets, and platforms. During these processes, several factors influence the physicochemical and sensory characteristics of cacao beans. The factors that influence these characteristics are the frequency of turning, the genotype of the bean, and the duration of fermentation. This review aims to explore how the fermentation method, turning frequency, bean genotype, and fermentation duration affect the physicochemical and sensory qualities of cacao beans. To this end, an exhaustive search for recent information on the most commonly used fermentation methods in cacao-producing countries over the last 10 years was carried out. The fermentation method in wooden boxes or crates is the most commonly used method worldwide. The most common turning frequency is 24 or 48 h, which is considered the most suitable time for obtaining cacao beans with better sensory attributes, such as floral and fruity aromas, and a lower level of acidity. Finally, a relationship was found between the genotype and the optimal fermentation time of cacao: about 4 days for Criollo cacao, approximately 5 days for Forastero cacao and between 1.5 and 10 days for Trinitario cacao. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

14 pages, 1742 KiB  
Article
Italian Honeydew Honey Characterization by 1H NMR Spectroscopy
by Dalila Iannone, Laura Ruth Cagliani and Roberto Consonni
Foods 2025, 14(13), 2234; https://doi.org/10.3390/foods14132234 - 25 Jun 2025
Viewed by 354
Abstract
Honeydew honey represents a bee-derived product with different organoleptic characteristics and distinct properties with respect to floral honey. The market interest in honeydew honey has been growing in recent years due to its higher bioactive characteristics with respect to floral honey. The need [...] Read more.
Honeydew honey represents a bee-derived product with different organoleptic characteristics and distinct properties with respect to floral honey. The market interest in honeydew honey has been growing in recent years due to its higher bioactive characteristics with respect to floral honey. The need for a deeper chemical characterization aimed to evaluate a possible botanical differentiation attracted the use of different analytical approaches. The present work aims to distinguish the botanical honeydew origin by using Nuclear Magnetic Resonance (NMR) spectroscopy and a multivariate approach. Two different data pretreatments have been considered to obtain the best sample discrimination. The saccharide content significantly affects the differentiation of the botanical variety consisting of fir, oak, citrus fruits, eucalyptus, and forest mainly by using a classification approach taking advantage of the Orthogonal Signal Correction filters. Notwithstanding the botanical diversity of the honeydew honey (HDH) samples, fir honeydew (F-HDH), oak honeydew (O-HDH), and eucalyptus honeydew (E-HDH) resulted always well discriminated among all the botanical varieties investigated, while citrus fruits honeydew (CF-HD) and forest honeydew (FO-HDH) did not. In particular, F-HDH resulted characterized by sucrose, erlose, maltose, maltotriose, maltotetraose, and melezitose, E-HDH resulted enriched in α, β-glucose and β-fructose in furanosidic form, and O-HDH enriched in β-fructose in furanosidic form, isomaltose. Full article
(This article belongs to the Special Issue Application of NMR Spectroscopy in Food Analysis)
Show Figures

Figure 1

14 pages, 2626 KiB  
Article
Aroma-Driven Differentiation of Wuyi Shuixian Tea Grades: The Pivotal Role of Linalool Revealed by OAV and Multivariate Analysis
by Mengzhen Zhang, Ying Zhang, Yeyun Lin, Yuhua Wang, Jishuang Zou, Miaoen Qiu, Qingxu Zhang, Jianghua Ye, Xiaoli Jia, Haibin He, Haibin Wang and Qi Zhang
Foods 2025, 14(13), 2169; https://doi.org/10.3390/foods14132169 - 21 Jun 2025
Viewed by 349
Abstract
Wuyi Shuixian tea, a premium oolong tea known for its complex floral-fruity aroma, exhibits significant quality variations across different grades. This study systematically analyzed the aroma characteristics and key fragrant compounds of four grades (Grand Prize SA, First Prize SB, Outstanding Award SC, [...] Read more.
Wuyi Shuixian tea, a premium oolong tea known for its complex floral-fruity aroma, exhibits significant quality variations across different grades. This study systematically analyzed the aroma characteristics and key fragrant compounds of four grades (Grand Prize SA, First Prize SB, Outstanding Award SC, and Non-award SD) using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) analysis, and multivariate statistical methods. A total of 159 volatile compounds were identified, with similar compound categories but distinct concentration gradients between grades. OAV-splitting analysis (based on OAV ≥ 1 as the threshold for aroma activity) identified β-ionone (fruity), octanal (fatty), and linalool (floral) as core aroma-active contributors, as their OAV values significantly exceeded 10 in awarded grades (SA, SB, SC), indicating dominant roles in sensory perception. Notably, linalool, a floral marker, showed a concentration gradient (SA > SB > SC) and was absent in SD, serving as a critical determinant of grade differentiation. Orthogonal partial least squares-discriminant analysis (OPLS-DA) further distinguished awarded grades (SA, SB, SC) by balanced fruity, floral, and woody notes, while SD lacked floral traits and exhibited burnt aromas. This classification was supported by hierarchical clustering analysis (HCA) of volatile profiles and principal component analysis (PCA). Electronic nose data validated these findings, showing strong correlations between sensor responses (W5S/W2W) and key compounds like hexanal and β-ionone. This study elucidates the molecular basis of aroma-driven quality grading in Wuyi Shuixian tea, providing a scientific framework for optimizing processing techniques and enhancing quality evaluation standards. The integration of chemical profiling with sensory attributes advances precision in tea industry practices, bridging traditional grading with objective analytical metrics. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

22 pages, 3140 KiB  
Review
Biological and Medicinal Properties of Chrysanthemum boreale Makino and Its Bioactive Products
by Christian Bailly
Int. J. Mol. Sci. 2025, 26(13), 5956; https://doi.org/10.3390/ijms26135956 - 20 Jun 2025
Viewed by 646
Abstract
Chrysanthemum species represent an economically important group of flowering plants. Many species also present a medicinal interest, notably for the treatment of inflammatory pathologies. This is the case for Chrysanthemum boreale Makino, endemic to Japan and widespread in Eastern Asia. This perennial plant [...] Read more.
Chrysanthemum species represent an economically important group of flowering plants. Many species also present a medicinal interest, notably for the treatment of inflammatory pathologies. This is the case for Chrysanthemum boreale Makino, endemic to Japan and widespread in Eastern Asia. This perennial plant has long been used in folk medicine to treat inflammatory diseases and bacterial infections. An extensive review of the scientific literature pertaining to C. boreale has been performed to analyze the origin of the plant, its genetic traits, the traditional usages, and the properties of aqueous or organic plant extracts and essential oils derived from this species. Aqueous extracts and the associated flavonoids, such as acacetin and glycoside derivatives, display potent antioxidant activities. These aqueous extracts and floral waters are used mainly as cytoprotective agents. Organic extracts, in particular those made from methanol or ethanol, essentially display antioxidant and anti-inflammatory properties useful to protect organs from oxidative damage. They can be used for neuroprotection. Essential oils from C. boreale have been used as cytoprotective or antibacterial agents. The main bioactive natural products isolated from the plant include flavonoids such as acacetin and related glycosides (notably linarin), and diverse sesquiterpene lactones (SLs). Among monomeric SLs, cumambrins and borenolide are the main products of interest, with cumambrin A targeting covalently the transcription factor NF-κB to regulate proinflammatory gene expression to limit osteoclastic bone resorption. The dimeric SL handelin, which is characteristic of C. boreale, exhibits a prominent anti-inflammatory action, with a capacity to target key proteins like kinase TAK1 and chaperone Hsp70. A few other natural products isolated from the plant (tulipinolide, polyacetylenic derivatives) are discussed. Altogether, the review explores all medicinal usages of the plant and the associated phytochemical panorama, with the objective of promoting further botanical and chemical studies of this ancestral medicinal species. Full article
(This article belongs to the Special Issue Anti-cancer Effects of Natural Products)
Show Figures

Figure 1

21 pages, 1390 KiB  
Article
Seven New Records of Curcuma L. (Zingiberaceae) for the Flora of Laos: Implications for Biodiversity Conservation and Sustainable Horticulture
by Piyaporn Saensouk, Surapon Saensouk, Khamfa Chanthavongsa, Anousone Sengthong, Kajonesuk Phengmala, Charun Maknoi, Sarayut Rakarcha and Thawatphong Boonma
Horticulturae 2025, 11(7), 720; https://doi.org/10.3390/horticulturae11070720 - 20 Jun 2025
Viewed by 579
Abstract
This study reports seven new records of Curcuma L. (Zingiberaceae) for the flora of Laos: Curcuma comosa Roxb., C. pedicellata (Chaveer. & Mokkamul) Škorničk., C. phrayawan Boonma & Saensouk, C. pierreana Gagnep., C. rangjued Saensouk & Boonma, C. sabhasrii Saensouk, Maknoi, Wongnak & [...] Read more.
This study reports seven new records of Curcuma L. (Zingiberaceae) for the flora of Laos: Curcuma comosa Roxb., C. pedicellata (Chaveer. & Mokkamul) Škorničk., C. phrayawan Boonma & Saensouk, C. pierreana Gagnep., C. rangjued Saensouk & Boonma, C. sabhasrii Saensouk, Maknoi, Wongnak & Rakarcha, and C. wanenlueanga Saensouk, Thomudtha & Boonma. Field surveys were conducted across various habitats in Laos, and species identification was confirmed through morphological comparisons with type specimens and protologues. An identification key for Curcuma species in Laos is provided to facilitate future taxonomic studies. Additionally, the lectotypification of C. comosa Roxb. is designated to ensure nomenclatural stability and clarify its taxonomic placement. The discovery of these species expands the known distribution of Curcuma in Indochina and highlights the importance of continued floristic exploration in understudied regions. These findings emphasize the need for biodiversity conservation, particularly in the nnatural habitats where these species occur. Furthermore, some of the newly recorded species exhibit attractive floral characteristics, making them valuable for sustainable horticultural applications, especially in ornamental plant cultivation. This study underscores the significance of taxonomic research in documenting regional flora, supporting conservation efforts, and promoting the sustainable utilization of plant diversity. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

20 pages, 2805 KiB  
Article
Design of and Experiment with Physical Perception Pineapple Targeted Flower Forcing-Spraying Control System
by Sili Zhou, Shuang Zheng, Ye Dai, Ganran Deng, Guojie Li, Zhende Cui, Xilin Wang, Ling Li, Fengguang He, Bin Yan, Shuangmei Qin, Zehua Liu, Pinlan Chen and Yizhi Luo
Horticulturae 2025, 11(6), 688; https://doi.org/10.3390/horticulturae11060688 - 16 Jun 2025
Viewed by 817
Abstract
Induction in pineapples requires the targeted delivery of specific chemical solutions into the plant’s central core to enable batch management, a task currently reliant on manual operation. This study addressed this challenge by analyzing the physical characteristics of pineapple plants and establishing a [...] Read more.
Induction in pineapples requires the targeted delivery of specific chemical solutions into the plant’s central core to enable batch management, a task currently reliant on manual operation. This study addressed this challenge by analyzing the physical characteristics of pineapple plants and establishing a perception-based mathematical model for core position localization. An integrated hardware–software system was developed, complemented by a human–machine interface for real-time operational monitoring. Comprehensive experiments were conducted to evaluate the spraying accuracy, nozzle response time, and prototype performance. The results demonstrate that the actuation system—comprising solenoid valves, pumps, and flowmeters—achieved an average spraying error of 2.72%. The average nozzle opening/closing time was 0.111 s; with a standard operating speed of 0.5 m/s, a delay compensation distance of 55.5 mm was implemented. In human–machine comparative trials, the automated system outperformed manual spraying in both efficiency and stability, with average errors of 7.1% and 6.4%, respectively. The system reduced chemical usage by over 67,500 mL per hectare while maintaining a miss-spray rate of 5–6%. Both two-tailed tests revealed extremely significant differences (p < 0.001). These findings confirm that the developed solution meets the operational requirements for pineapple floral induction, offering significant improvements in precision and resource efficiency. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

17 pages, 3379 KiB  
Article
Intraspecific Evaluation of Phenotypic Variations of Caryopteris incana (Thunb. ex Houtt.) Miq. in Western Kyushu, Japan
by Masaya Ando, Takanori Kuronuma and Hitoshi Watanabe
Plants 2025, 14(12), 1840; https://doi.org/10.3390/plants14121840 - 15 Jun 2025
Viewed by 423
Abstract
Caryopteris incana (Thunb. ex Houtt.) Miq., an endangered species native to western Kyushu, Japan, forms locally isolated populations. In our previous studies, we conducted a distribution survey of 109 populations across four regions and performed phylogenetic analyses using chloroplast DNA to clarify their [...] Read more.
Caryopteris incana (Thunb. ex Houtt.) Miq., an endangered species native to western Kyushu, Japan, forms locally isolated populations. In our previous studies, we conducted a distribution survey of 109 populations across four regions and performed phylogenetic analyses using chloroplast DNA to clarify their genetic structure and diversity. The primary objective of this study was to clearly compare and evaluate phenotypic differences that are considered to be genetically fixed among adaptive traits evolved in response to the native environments of each region. We evaluated morphological characteristics—such as floral parts, leaves, and plant form—under uniform cultivation conditions using seeds collected from native populations. As a result, region-specific phenotypes were identified, and diverse variations were observed both among and within regions. Furthermore, the presence of phenotypes with high coefficients of variation even within the same region suggests the existence of diverse gene pools suitable for various applications. This study not only contributes to understanding the regional adaptive strategies of C. incana, but also provides fundamental data for developing conservation plans for this endangered species. Additionally, the phenotypic information obtained is expected to be useful for breeding horticultural varieties and for setting future conservation priorities. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 6071 KiB  
Article
Identification and Expression Analysis of C2H2-Type Zinc Finger Protein (C2H2-ZFP) Genes in Bougainvillea in Different Colored Bracts
by Yushan Wang, Yanping Hu, Wen Liu, Wengang Yu, Jian Wang and Yang Zhou
Horticulturae 2025, 11(6), 659; https://doi.org/10.3390/horticulturae11060659 - 10 Jun 2025
Viewed by 412
Abstract
Bougainvillea spp. possesses vibrantly pigmented bracts that exhibit high ornamental value. Zinc finger proteins (ZFPs), one of the most extensive transcription factor families in plants, are implicated in diverse biological functions, including plant morphogenesis, transcriptional regulation, and responses to abiotic stress. Nevertheless, their [...] Read more.
Bougainvillea spp. possesses vibrantly pigmented bracts that exhibit high ornamental value. Zinc finger proteins (ZFPs), one of the most extensive transcription factor families in plants, are implicated in diverse biological functions, including plant morphogenesis, transcriptional regulation, and responses to abiotic stress. Nevertheless, their regulatory roles in bract pigmentation in Bougainvillea remain unexplored. In the present investigation, 105 BbZFP genes were identified from the Bougainvillea genome via bioinformatic analyses and subsequently categorized into five subgroups according to the quantity and arrangement of their structural domains. Analysis of physicochemical characteristics demonstrated that the BbZFP family encompasses both acidic and basic proteins, all of which are hydrophilic and predominantly classified as unstable proteins. Gene structure analysis revealed that the majority of BbZFP genes comprise between one and five– introns. Cis-regulatory element analysis suggested that BbZFP promoter regions harbor multiple elements associated with abiotic stress responses, hormonal regulation, and light responsiveness, implying their possible participation in these physiological processes. Transcriptomic data analysis revealed distinct expression patterns of BbZFP genes among bracts of different colors. A quantitative real-time polymerase chain reaction (RT-qPCR) further confirmed that Bou_68928, Bou_1096, Bou_4400, and Bou_17631 were markedly upregulated in yellow bracts relative to white bracts, suggesting their involvement in flavonoid biosynthesis regulation. Meanwhile, Bou_1096 and Bou_17631 exhibited markedly elevated expression in red-purple bracts compared to white bracts, potentially regulating betacyanin biosynthesis in Bougainvillea. These findings offer candidate genes for molecular breeding strategies aimed at enhancing floral coloration in Bougainvillea. The next step will involve elucidating the functions of these genes in bract coloration. Full article
(This article belongs to the Special Issue Color Formation and Regulation in Horticultural Plants)
Show Figures

Figure 1

15 pages, 1084 KiB  
Article
Organic vs. Conventional Chestnuts (Castanea sativa Mill.): A Focus on Antioxidant Activity, Volatile Compounds, and Sensory Profile
by Maria Teresa Frangipane, Lara Costantini, Stefania Garzoli, Nicolò Merendino, Riccardo Massantini and Piermaria Corona
Foods 2025, 14(12), 2013; https://doi.org/10.3390/foods14122013 - 6 Jun 2025
Viewed by 420
Abstract
The consumption of organic foods is on the rise, as health-conscious consumers increasingly perceive them as superior both in nutritional value and for overall well-being. However, data on the nutritional and sensory properties of organic chestnuts remain scarce. This research aimed to evaluate [...] Read more.
The consumption of organic foods is on the rise, as health-conscious consumers increasingly perceive them as superior both in nutritional value and for overall well-being. However, data on the nutritional and sensory properties of organic chestnuts remain scarce. This research aimed to evaluate and compare the nutritional and sensory characteristics of organic and conventional chestnuts. Results indicate that organic chestnuts exhibit a distinct sensory profile and achieve significantly higher overall scores in sensory analysis compared to conventional chestnuts. Specifically, organic chestnuts displayed stronger aromas of chestnut (9 vs. 8), hazelnut (5.87 vs. 5), almond (5 vs. 4), butter (3.96 vs. 3), and floral notes (5.95 vs. 4.96). Notably, organic chestnuts were strongly characterized by a caramel aroma, which was completely absent in conventional chestnuts (1.95 vs. 0), and probably due to the exclusive presence of decanal and 1-pentanol observed among the volatile compounds. Furthermore, organic chestnuts demonstrated a higher nutritional value, particularly in terms of antioxidant content. The total phenolic content (TPC) was significantly greater in organic chestnuts (6.54 mg GAE/g) compared to conventional samples (5.18 mg GAE/g). The relationships between attributes and consumers’ perceived liking revealed a strong association between liking and the attributes of caramel, floral, hazelnut, almond, and chestnut. These attributes are specific to organic chestnuts. As a result, both consumers and the trained panel prefer organic chestnut samples over conventional ones. Promoting the consumption of organic chestnuts by enhancing knowledge and awareness of their characteristics can encourage their use, contributing to key health and environmental sustainability goals. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

15 pages, 2957 KiB  
Article
Floral Preferences of Butterflies Based on Plant Traits: A Case Study in the National Botanical Garden, Godawari, Nepal
by Ujjawala KC, Shailendra Sharma, Asmit Subba, Naresh Pandey, Ankit Kumar Singh, Narayan Prasad Koju and Laxman Khanal
J. Zool. Bot. Gard. 2025, 6(2), 30; https://doi.org/10.3390/jzbg6020030 - 4 Jun 2025
Viewed by 1172
Abstract
Butterflies have nectar-feeding preferences based on various floral characteristics, including flower shape, size, color, fragrance, and nectar composition, which in turn affect their survival, reproduction, and roles in pollination. The National Botanical Garden (NBG) in Lalitpur, Nepal, holds a variety of flowering plants [...] Read more.
Butterflies have nectar-feeding preferences based on various floral characteristics, including flower shape, size, color, fragrance, and nectar composition, which in turn affect their survival, reproduction, and roles in pollination. The National Botanical Garden (NBG) in Lalitpur, Nepal, holds a variety of flowering plants and butterfly populations, providing a suitable study site to test the hypotheses on floral preferences of butterflies. This study assessed the floral preferences of the butterfly community in the NBG based on flower color, the origin of flowering plants (native and alien), and the type of plants (herbs and shrubs). It also tested the association between butterfly proboscis lengths and corolla tube lengths of flowers. Data were collected from 10 blocks (each 5 × 5 m2) through direct observation during the spring and autumn seasons, from March to October 2022. A total of 24 species of butterflies were recorded during the study period, with the chocolate pansy (Junonia iphita) being the most abundant. The relative abundance of pink flowers was higher in the NBG, but the butterflies’ visitation frequency was significantly higher on yellow flowers (p < 0.05) than on other colors. The visitation frequencies of butterflies significantly varied with the flowers’ origin and types. Butterflies visited flowers of alien origin more frequently than native ones (p < 0.05) and those of herbs over shrubs (p < 0.05). Flowers from alien plants, such as Calluna vulgaris and Viola tricolor, were among the most frequently visited. The proboscis length of butterflies showed a significantly strong positive correlation with the corolla tube length of flowers (τ = 0.74, p < 0.001). These results can inform conservation practices and garden management strategies aimed at supporting butterfly diversity through the intentional selection of floral resources. Full article
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Characterization of Aroma, Sensory Properties, and Consumer Acceptability of Honey from Capparis spinosa L.
by Gianluca Tripodi, Maria Merlino, Marco Torre, Concetta Condurso, Antonella Verzera and Fabrizio Cincotta
Foods 2025, 14(11), 1978; https://doi.org/10.3390/foods14111978 - 3 Jun 2025
Viewed by 571
Abstract
The increasing scarcity of traditional nectar sources due to climate change has led beekeepers to explore alternative floral sources. This study investigates the volatile profile, sensory characteristics, and consumer acceptability of monofloral honey derived from Capparis spinosa L., a drought-resistant Mediterranean plant. Honey [...] Read more.
The increasing scarcity of traditional nectar sources due to climate change has led beekeepers to explore alternative floral sources. This study investigates the volatile profile, sensory characteristics, and consumer acceptability of monofloral honey derived from Capparis spinosa L., a drought-resistant Mediterranean plant. Honey samples produced by Apis mellifera ssp. sicula on Aeolian Islands (Sicily, Italy) were analyzed. Volatile organic compounds (VOCs) were extracted using headspace solid–phase microextraction (HS-SPME) and identified by gas chromatography–mass spectrometry (GC–MS), revealing 59 compounds, with dimethyl sulfide being the predominant one. Sensory evaluation using quantitative descriptive analysis (QDA) and Time Intensity (TI) analysis identified distinctive descriptors such as sweet-caramel, cabbage/cauliflower, and pungent notes. Statistical analyses confirmed correlations between specific VOCs and sensory perceptions. A consumer acceptability test involving 80 participants showed lower preference scores for caper honey in terms of aroma and overall acceptability compared to commercial multifloral honey, with differences observed across age groups. The unique aromatic profile and consumer feedback suggest that caper honey has strong potential as a niche, high-quality product, particularly within the context of climate-resilient beekeeping, offering valuable opportunities for innovation and diversification in sustainable apiculture. Full article
(This article belongs to the Special Issue Novel Insights into Food Flavor Chemistry and Analysis)
Show Figures

Figure 1

Back to TopTop