Exploring the Influence of Different Saccharomyces cerevisiae Strains and Hop Varieties on Beer Composition and Sensory Profiles
Abstract
1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. PCR Screening for β-Lyase Gene
2.3. Choice of the Strain and Evaluation of β-Lyase Activity
2.4. Yeast Strains and Preparation of the Starters
2.5. Hops
2.6. Fermentation
2.7. Chemical–Physical Analyses
2.8. Analysis of the Volatile Aromatic Fraction by GC-MS After SPME Extraction
2.9. Analysis of Polyfunctional Thiols
2.10. Sensory Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Screening of β-Lyase Gene
3.2. Choice of the Strain and Evaluation of β-Lyase Activity
3.3. Fermentation Trials and Basic Chemical Analyses
3.4. VOC and Thiol Quantification
3.5. Sensory Analysis
3.5.1. Ranking Tests
3.5.2. Sensory Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Postigo, V.; Mauro, L.; Diaz, T.; Saiz, R.; Arroyo, T.; García, M. Autochthonous Ingredients for Craft Beer Production. Fermentation 2024, 10, 225. [Google Scholar] [CrossRef]
- Faganel, A.; Rižnar, I. The Growth in Demand for Craft Beer and the Proliferation of Microbreweries in Slovenia. Beverages 2023, 9, 86. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Worch, T.; Phelps, T.; Jin, D.; Cardello, A.V. Preference segments among declared craft beer drinkers: Perceptual, attitudinal and behavioral responses underlying craft-style vs. traditional-style flavor preferences. Food Qual. Prefer. 2020, 82, 103884. [Google Scholar] [CrossRef]
- Aquilani, B.; Laureti, T.; Poponi, S.; Secondi, L. Beer choice and consumption determinants when craft beers are tasted: An exploratory study of consumer preferences. Food Qual. Prefer. 2015, 41, 214–224. [Google Scholar] [CrossRef]
- Nasuti, C.; Solieri, L. Yeast Bioflavoring in Beer: Complexity Decoded and Built up Again. Fermentation 2024, 10, 183. [Google Scholar] [CrossRef]
- Suárez-Lepe, J.A.; Morata, A. New trends in yeast selection for winemaking. Trends Food Sci. Technol. 2012, 23, 39–50. [Google Scholar] [CrossRef]
- Tempère, S.; Marchal, A.; Barbe, J.-C.; Bely, M.; Masneuf-Pomarede, I.; Marullo, P.; Albertin, W. The complexity of wine: Clarifying the role of microorganisms. Appl. Microbiol. Biotechnol. 2018, 102, 3995–4007. [Google Scholar] [CrossRef]
- Stewart, G.G. The Production of Secondary Metabolites with Flavour Potential during Brewing and Distilling Wort Fermentations. Fermentation 2017, 3, 63. [Google Scholar] [CrossRef]
- Lengeler, K.B.; Stovicek, V.; Fennessy, R.T.; Katz, M.; Förster, J. Never Change a Brewing Yeast? Why Not, There Are Plenty to Choose from. Front. Genet. 2020, 11, 582789. [Google Scholar] [CrossRef]
- Tufariello, M.; Grieco, F.; Fiore, A.; Gerardi, C.; Capozzi, V.; Baiano, A. Effects of brewing procedures and oenological yeasts on chemical composition, antioxidant activity, and sensory properties of emmer-based craft beers. LWT 2024, 199, 116044. [Google Scholar] [CrossRef]
- Postigo, V.; García, M.; Cabellos, J.M.; Arroyo, T. Wine Saccharomyces yeasts for beer fermentation. Fermentation 2021, 7, 290. [Google Scholar] [CrossRef]
- Machado, J.C.; Faria, M.A.; Ferreira, I.M.P.L.V.O. Hops: New Perspectives for an Old Beer Ingredient. Nat. Beverages 2019, 13, 267–301. [Google Scholar] [CrossRef]
- Martins, C.; Brandão, T.; Almeida, A.; Rocha, S.M. Unveiling the lager beer volatile terpenic compounds. Food Res. Int. 2018, 114, 199–207. [Google Scholar] [CrossRef]
- Carbone, K.; Gervasi, F. An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention. Plants 2022, 11, 3434. [Google Scholar] [CrossRef]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A story that begs to be told. A review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Gros, J.; Peeters, F.; Collin, S. Occurrence of odorant polyfunctional thiols in beers hopped with different cultivars. First evidence of an S-Cysteine conjugate in hop (Humulus lupulus L.). J. Agric. Food Chem. 2012, 60, 7805–7816. [Google Scholar] [CrossRef]
- Lermusieau, G.; Collin, S. Volatile Sulfur Compounds in Hops and Residual Concentrations in Beer—A Review. J. Am. Soc. Brew. Chem. 2004, 61, 109–113. [Google Scholar] [CrossRef]
- Liu, Y.; Dancker, P.; Biendl, M.; Coelhan, M. Comparison of polyfunctional thiol, element, and total essential oil contents in 32 hop varieties from different countries. Food Chem. 2024, 455, 139855. [Google Scholar] [CrossRef]
- Vicente, J.; Kiene, F.; Fracassetti, D.; De Noni, I.; Shemehen, R.; Tarasov, A.; Dobrydnev, A.V.; Marquina, D.; Santos, A.; Rauhut, D.; et al. Precursors consumption preferences and thiol release capacity of the wine yeasts Saccharomyces cerevisiae, Torulaspora delbrueckii, and Lachancea thermotolerans. Int. J. Food Microbiol. 2024, 425, 110858. [Google Scholar] [CrossRef]
- Darriet, P.; Tominaga, T.; Lavigne, V.; Boidron, J.; Dubourdieu, D. Identification of a powerful aromatic component of Vitis vinifera L. var. sauvignon wines: 4-mercapto-4-methylpentan-2-one. Flavour Fragr. J. 1995, 10, 385–392. [Google Scholar] [CrossRef]
- Tominaga, T.; Furrer, A.; Henry, R.; Dubourdieu, D. Identification of new volatile thiols in the aroma of Vitis vinifera L. var. Sauvignon blanc wines. Flavour Fragr. J. 1998, 13, 159–162. [Google Scholar] [CrossRef]
- Tominaga, T.; Murat, M.-L.; Dubourdieu, D. Development of a Method for Analyzing the Volatile Thiols Involved in the Characteristic Aroma of Wines Made from Vitis vinifera L. Cv. Sauvignon Blanc. J. Agric. Food Chem. 1998, 46, 1044–1048. [Google Scholar] [CrossRef]
- Tominaga, T.; Darriet, P.; Dubordieu, D. Identification de l’acétate de 3-mercaptohexanol, composé à forte odeur de buis, intervenant dans l’arôme des vins de Sauvignon. VITIS-J. Grapevine Res. 1996, 35, 207–210. [Google Scholar] [CrossRef]
- Takoi, K.; Degueil, M.; Shinkaruk, S.; Thibon, C.; Maeda, K.; Ito, K.; Bennetau, B.; Dubourdieu, D.; Tominaga, T. Identification and Characteristics of New Volatile Thiols Derived from the Hop (Humulus luplus L.) Cultivar Nelson Sauvin. J. Agric. Food Chem. 2009, 57, 2493–2502. [Google Scholar] [CrossRef]
- Tominaga, T.; Peyrot des Gachons, C.; Dubourdieu, D. A New Type of Flavor Precursors in Vitis vinifera L. cv. Sauvignon Blanc: S-Cysteine Conjugates. J. Agric. Food Chem. 1998, 46, 5215–5219. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Beisert, B.; Navascués, E.; Marquina, D.; Calderón, F.; Rauhut, D.; Benito, S.; Santos, A. Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. Int. J. Food Microbiol. 2017, 257, 183–191. [Google Scholar] [CrossRef]
- Roncoroni, M.; Santiago, M.; Hooks, D.O.; Moroney, S.; Harsch, M.J.; Lee, S.A.; Richards, K.D.; Nicolau, L.; Gardner, R.C. The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiol. 2011, 28, 926–935. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Navascués, E.; Marquina, D.; Santos, A. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity. Int. J. Food Microbiol. 2016, 225, 1–8. [Google Scholar] [CrossRef]
- Chenot, C.; Haest, S.; Robiette, R.; Collin, S. Thiol S-Conjugate Profiles: A Comparative Investigation on Dual Hop and Grape Must with Focus on Sulfanylalkyl Aldehydes and Acetates Adducts. J. Am. Soc. Brew. Chem. 2023, 81, 23–32. [Google Scholar] [CrossRef]
- Michel, M.; von Terzi, K.; Ampenberger, F.; Meier-Dörnberg, T.; Stretz, D.; Hutzler, M.; Coelhan, M.; Liu, Y. Screening of brewing yeast β-lyase activity and release of hop volatile thiols from precursors during fermentation. Brew. Sci. 2019, 72, 179–186. [Google Scholar] [CrossRef]
- Buiatti, S.; Tat, L.; Natolino, A.; Passaghe, P. Biotransformations Performed by Yeasts on Aromatic Compounds Provided by Hop—A Review. Fermentation 2023, 9, 327. [Google Scholar] [CrossRef]
- Cocolin, L.; Bisson, L.F.; Mills, D.A. Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol. Lett. 2000, 189, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Dziekońska-Kubczak, U.; Pielech-Przybylska, K.; Patelski, P.; Balcerek, M. Development of the Method for Determination of Volatile Sulfur Compounds (VSCs) in Fruit Brandy with the Use of HS–SPME/GC–MS. Molecules 2020, 25, 1232. [Google Scholar] [CrossRef]
- Herbst-Johnstone, M.; Piano, F.; Duhamel, N.; Barker, D.; Fedrizzi, B. Ethyl propiolate derivatisation for the analysis of varietal thiols in wine. J. Chromatogr. A 2013, 1312, 104–110. [Google Scholar] [CrossRef]
- 8589:2007; Sensory analysis—General guidance for the design of test rooms. ISO: Geneva, Switzerland, 2007.
- 3591:1977; Sensory analysis—Apparatus—Wine-tasting glass. ISO: Geneva, Switzerland, 1977.
- 8587:2006; Sensory analysis—Methodology—Ranking. ISO: Geneva, Switzerland, 2006.
- 11035:1994; Sensory analysis—Identification and selection of descriptors for establishing a sensory profile by a multidimensional approach. ISO: Geneva, Switzerland, 1994.
- Cravero, M.C.; Bonello, F.; Tsolakis, C.; Piano, F.; Borsa, D. Comparison between Nero d’Avola wines produced with grapes grown in Sicily and Tuscany. Ital. J. Food Sci. 2012, 24, 384–387. [Google Scholar]
- Bonello, F.; Cravero, M.C.; Asproudi, A.; Lottero, M.R.; Piras, F.; Damasco, G.; Demelas, L.; Petrozziello, M.; Lovicu, G. Exploring the aromatic complexity of Sardinian red wines obtained from minor and rare varieties. Eur. Food Res. Technol. 2021, 247, 133–156. [Google Scholar] [CrossRef]
- Carbone, K.; Bianchi, G.; Petrozziello, M.; Bonello, F.; Macchioni, V.; Parisse, B.; De Natale, F.; Alilla, R.; Cravero, M.C. Tasting the Italian Terroir through Craft Beer: Quality and Sensory Assessment of Cascade Hops Grown in Central Italy and Derived Monovarietal Beers. Foods 2021, 10, 2085. [Google Scholar] [CrossRef]
- Cordente, A.G.; Borneman, A.R.; Bartel, C.; Capone, D.; Solomon, M.; Roach, M.; Curtin, C.D. Inactivating Mutations in Irc7p Are Common in Wine Yeasts, Attenuating Carbon-Sulfur β-Lyase Activity and Volatile Sulfur Compound Production. Appl. Environ. Microbiol. 2019, 85, e02684-18. [Google Scholar] [CrossRef]
- Borneman, A.R.; Forgan, A.H.; Kolouchova, R.; Fraser, J.A.; Schmidt, S.A. Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae. G3 Genes|Genomes|Genetics 2016, 6, 957–971. [Google Scholar] [CrossRef]
- Ruiz, J.; de Celis, M.; Martín-Santamaría, M.; Benito-Vázquez, I.; Pontes, A.; Lanza, V.F.; Sampaio, J.P.; Santos, A.; Belda, I. Global distribution of IRC7 alleles in Saccharomyces cerevisiae populations: A genomic and phenotypic survey within the wine clade. Environ. Microbiol. 2021, 23, 3182–3195. [Google Scholar] [CrossRef]
- Ernandes, J.R.; Williams, J.W.; Russell, I.; Stewart, G.G. Effect of Yeast Adaptation to Maltose Utilization on Sugar Uptake During the Fermentation of Brewer’s Wort. J. Inst. Brew. 1993, 99, 67–71. [Google Scholar] [CrossRef]
- Gallone, B.; Steensels, J.; Prahl, T.; Soriaga, L.; Saels, V.; Herrera-Malaver, B.; Merlevede, A.; Roncoroni, M.; Voordeckers, K.; Miraglia, L.; et al. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell 2016, 166, 1397–1410.e16. [Google Scholar] [CrossRef] [PubMed]
- Lorca Mandujano, G.P.; Alves, H.C.; Prado, C.D.; Martins, J.G.O.; Novaes, H.R.; Maia de Oliveira da Silva, J.P.; Teixeira, G.S.; Ohara, A.; Alves, M.H.R.; Pedrino, I.C.; et al. Identification and selection of a new Saccharomyces cerevisiae strain isolated from Brazilian ethanol fermentation process for application in beer production. Food Microbiol. 2022, 103, 103958. [Google Scholar] [CrossRef] [PubMed]
- Abbott, E.; Villegas, D.; van Zandycke, S.; Fischbor, T. Strain specifi c performance of active dry yeast for fermentation of very high gravity wort. Brew. Sci. 2019, 72, 89–93. [Google Scholar] [CrossRef]
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.d.C.; Padilha, F.F. Beer Molecules and Its Sensory and Biological Properties: A Review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int. J. Food Microbiol. 2018, 284, 22–30. [Google Scholar] [CrossRef]
- Tocci, N.; Riccio, G.M.; Ramu Ganesan, A.; Hoellrigl, P.; Robatscher, P.; Conterno, L. The Impact of Rye and Barley Malt and Different Strains of Saccharomyces cerevisiae on Beer Volatilome. Beverages 2023, 9, 93. [Google Scholar] [CrossRef]
- Coelho, E.; Magalhães, J.; Pereira, F.B.; Macieira, F.; Domingues, L.; Oliveira, J.M. Volatile fingerprinting differentiates diverse-aged craft beers. LWT 2019, 108, 129–136. [Google Scholar] [CrossRef]
- Alves, V.; Gonçalves, J.; Figueira, J.A.; Ornelas, L.P.; Branco, R.N.; Câmara, J.S.; Pereira, J.A.M. Beer volatile fingerprinting at different brewing steps. Food Chem. 2020, 326, 126856. [Google Scholar] [CrossRef]
- Połeć, K.; Broniatowski, M.; Wydro, P.; Hąc-Wydro, K. The impact of β-myrcene—The main component of the hop essential oil—On the lipid films. J. Mol. Liq. 2020, 308, 113028. [Google Scholar] [CrossRef]
- Campos, O.P.; Leme, F.M.; Fortuna, G.C.; de Oliveira Gomes, J.A.; Neves, C.S.; do Carmo de Oliveira Arruda, R.; Bonfim, F.P.G. Morphological characteristics, trichomes, and phytochemistry of inflorescences of Humulus lupulus L.: Comparison of cropping systems and varieties. Aust. J. Crop Sci. 2023, 17, 263–274. [Google Scholar] [CrossRef]
- Svedlund, N.; Evering, S.; Gibson, B.; Krogerus, K. Fruits of their labour: Biotransformation reactions of yeasts during brewery fermentation. Appl. Microbiol. Biotechnol. 2022, 106, 4929–4944. [Google Scholar] [CrossRef] [PubMed]
- Takoi, K.; Itoga, Y.; Koie, K.; Kosugi, T.; Shimase, M.; Katayama, Y.; Nakayama, Y.; Watari, J. The Contribution of Geraniol Metabolism to the Citrus Flavour of Beer: Synergy of Geraniol and β-Citronellol Under Coexistence with Excess Linalool. J. Inst. Brew. 2010, 116, 251–260. [Google Scholar] [CrossRef]
- Praet, T.; Van Opstaele, F.; Jaskula-Goiris, B.; Aerts, G.; De Cooman, L. Biotransformations of hop-derived aroma compounds by Saccharomyces cerevisiae upon fermentation. Cerevisia 2012, 36, 125–132. [Google Scholar] [CrossRef]
- Steyer, D.; Tristram, P.; Leitao, C.; Heitz, F.; Laugel, B. Yeast strains and hop varieties synergy on beer volatile compounds. Brew. Sci. 2017, 70, 131–141. [Google Scholar]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging—A critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Tusha, K.; Nešpor, J.; Jelínek, L.; Vodičková, H.; Kinčl, T.; Dostálek, P. Effect of Czech Hop Varieties on Aroma of Dry-Hopped Lager Beer. Foods 2022, 11, 2520. [Google Scholar] [CrossRef]
- Harsch, M.J.; Benkwitz, F.; Frost, A.; Colonna-Ceccaldi, B.; Gardner, R.C.; Salmon, J.M. New precursor of 3-mercaptohexan-1-ol in grape juice: Thiol-forming potential and kinetics during early stages of must fermentation. J. Agric. Food Chem. 2013, 61, 3703–3713. [Google Scholar] [CrossRef]
- Roland, A.; Delpech, S.; Dagan, L.; Ducasse, M.A.; Cavelier, F.; Schneider, R. Innovative analysis of 3-mercaptohexan-1-ol, 3-mercaptohexylacetate and their corresponding disulfides in wine by stable isotope dilution assay and nano-liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1468, 154–163. [Google Scholar] [CrossRef]
- Dagan, L.; Reillon, F.; Roland, A.; Schneider, R. Development of a routine analysis of 4-mercapto-4-methylpentan-2-one in wine by stable isotope dilution assay and mass tandem spectrometry. Anal. Chim. Acta 2014, 821, 48–53. [Google Scholar] [CrossRef]
- Nance, M.R.; Setzer, W.N. Volatile components of aroma hops (Humulus lupulus L.) commonly used in beer brewing. J. Brew. Distill. 2011, 2, 16–22. [Google Scholar]
- Molitor, R.W.; Fischborn, T.; Dagan, L.; Shellhammer, T.H. Examining How the Fermentation Medium Influences Thiol Expression and Its Perceived Aroma in Commercial Brewing Yeast Strains. J. Agric. Food Chem. 2023, 71, 2493–2502. [Google Scholar] [CrossRef]
Yeast | Hop 1 | Code |
---|---|---|
ISE77 CREA-CMVE | M | 77Mo |
Commercial | M | RoMo |
ISE77 CREA-CMVE | HM | 77Ha |
Commercial | HM | RoHa |
Yeast ISE | β-Lyase | Yeast ISE | β-Lyase | Yeast ISE | β-Lyase | Commercial | β-Lyase |
---|---|---|---|---|---|---|---|
2 | S | 102 | S | 579 | S | FTH | L |
4 | S | 118 | H | 610 | S | TXL | H |
9 | S | 120 | S | 652 | S | STR | H |
14 | H | 125 | S | 666 | S | ||
18 | S | 130 | S | 672 | S | ||
24 | S | 159 | S | 684 | S | ||
27 | S | 165 | H | 689 | S | ||
36 | S | 167 | H | 694 | S | ||
38 | H | 169 | H | 726 | S | ||
56 | L | 170 | S | 1085 | S | ||
60 | L | 173 | S | 1101 | S | ||
66 | L | 196 | L | 1216 | S | ||
77 | L | 200 | L | 1450 | L | ||
81 | L | 204 | S | 1480 | S | ||
90 | L | 400 | S | 1487 | S | ||
92 | L | 411 | L | 1490 | H | ||
95 | H | 418 | H | 1515 | S | ||
96 | H | 549 | S | 1521 | L | ||
99 | S | 562 | S | 1567 | H |
Sample | Alcohol Content (% v/v) | Volatile Acidity g/L | Total Acidity g/L | pH |
---|---|---|---|---|
RoHa | 4.177 ± 0.068 a | 0.323 ± 0.025 | 1.633 ± 0.058 b | 4.250 ± 0.010 a |
RoMo | 4.110 ± 0.017 a | 0.340 ± 0.053 | 1.650 ± 0.050 b | 4.243 ± 0.006 a |
77Mo | 3.633 ± 0.068 b | 0.360 ± 0.036 | 1.730 ± 0.000 ab | 4.217 ± 0.015 b |
77Ha | 3.583 ± 0.076 b | 0.373 ±0.032 | 1.777 ± 0.040 a | 4.177 ± 0.006 c |
RT (min) | § LRI* | §§ LRI | §§§ MQ% | 77—Mo | RO—Mo | 77—Ha | RO–Ha | |
---|---|---|---|---|---|---|---|---|
Ethyl acetate | 2.40 | 589 | nc | 90 | 357 ± 88 | 491 ± 59 | 563 ± 20 | 416 ± 46 |
2-methylpropanol | 2.54 | 645 | nc | 90 | 100 ± 48 | 173 ± 42 | 218 ± 42 | 186 ± 15 |
Isoamyl alcohol | 4.33 | 744 | 751 | 90 | 2599 ± 372 | 2104 ± 259 | 2271 ± 319 | 1966 ± 152 |
Isobutylacetate | 4.40 | 750 | 778 | 90 | 88 ± 1 a | 45 ± 4 b | 93 ± 10 a | 50 ± 5 b |
Ethylbutanoate | 6.51 | 799 | 798 | 95 | 45 ± 2 ab | 67 ± 8 a | 39 ± 3 b | 64 ± 6 ab |
Isoamylacetate | 10.36 | 866 | 874 | 90 | 3191 ± 157 b | 2176 ± 156 c | 3999 ± 71 a | 2737 ± 37 b |
Isobutylisobutyrate | 12.58 | 899 | 911 | 90 | 141 ± 4 a | 118 ± 15 a | 16 ± 2 b | 12 ± 3 b |
Camphene | 14.40 | 954 | 949 | 81 | 27 ± 1 a | 21 ± 2 a | 4 ± 0 b | 2 ± 0 b |
b-Myrcene | 17.94 | 991 | 986 | 96 | 13,230 ± 2078 a | 9214 ± 795 a | 861 ± 78 b | 555 ± 99 b |
Ethylhexanoate | 18.46 | 998 | 999 | 98 | 1094 ± 117 | 922 ± 77 | 916 ± 51 | 787 ± 80 |
Limonene | 20.12 | 1032 | 1021 | 99 | 524 ± 70 a | 414 ± 47 a | 78 ± 13 b | 51 ± 5 b |
trans-b-Ocimene | 21.03 | 1045 | 1034 | 86 | 61 ± 28 a | 69 ± 18 a | 23 ± 9 b | 14 ± 4 b |
cis-b-Ocimene | 21.74 | 1050 | 1045 | 97 | 157 ± 52 a | 160 ± 33 a | 39 ± 14 b | 25 ± 7 b |
g-Terpinene | 22.31 | 1058 | 1044 | 86 | 41 ± 6 a | 33 ± 5 a | 7 ± 1 b | 4 ± 0 b |
2-nonanone | 24.94 | 1091 | 1087 | 95 | 555 ± 62 a | 386 ± 25 a | 197 ± 21 b | 130 ± 25 b |
Linalool | 25.55 | 1103 | 1099 | 97 | 1752 ± 144 a | 1273 ± 142 a | 725 ± 60 b | 596 ± 111 b |
2-nonanol | 25.69 | 1108 | 1150 | 83 | 233 ± 29 | 227 ± 29 | 355 ± 215 | 282 ± 138 |
Phenylethylalcohol | 26.55 | 1116 | 1110 | 94 | 2595 ± 364 a | 1534 ± 158 b | 2084 ± 135 ab | 1367 ± 138 b |
2-decanone | 32.12 | 1172 | 1188 | 94 | 432 ± 41 a | 295 ± 31 ab | 234 ± 37 b | 181 ± 32 b |
Ethyloctanoate | 32.77 | 1190 | 1196 | 97 | 7913 ± 1077 | 6401 ± 795 | 6270 ± 294 | 5008 ± 819 |
2-decanol | 32.85 | 1197 | 1260 | 83 | 155 ± 18 | 141 ± 14 | 166 ± 17 | 133 ± 28 |
Citronellol | 34.64 | 1228 | 1254 | 98 | 182 ± 12 a | 75 ± 18 b | 6 ± 0 c | 4 ± 2 c |
2-phenylethyl acetate | 36.30 | 1270 | 1257 | 80 | 398 ± 172 | 153 ± 121 | 289 ± 117 | 117 ± 91 |
Vinylguaiacol | 39.17 | 1295 | 1274 | 91 | 576 ± 218 | 162 ± 71 | 529 ± 220 | 189 ± 83 |
Methyl geraniate | 39.75 | 1319 | 1323 | 97 | 2770 ± 129 a | 2103 ± 293 a | 330 ± 37 b | 165 ± 32 b |
n.i terpenoid | 40.87 | - | 1404 | - | 100 ± 11 a | 35 ± 1 b | 29 ± 6 b | 10 ± 5 b |
a-Ylangene | 41.42 | 1372 | 1368 | 99 | 30 ± 6 | 27 ± 10 | 49 ± 15 | 23 ± 5 |
a-Copaene | 41.60 | 1380 | 1375 | 99 | 55 ± 20 | 43 ± 8 | 76 ± 18 | 53 ± 14 |
ethyl-trans-4-decenoate | 41.88 | 1395 | 1381 | 95 | 1111 ± 194 a | 657 ± 108 ab | 360 ± 8 b | 148 ± 51 b |
ethyl-9-decenoate | 42.16 | 1387 | 1389 | 99 | 465 ± 107 | 558 ± 44 | 605 ± 172 | 470 ± 82 |
Ethyldecanoate | 42.51 | 1391 | 1396 | 99 | 3708 ± 747 | 1593 ± 229 | 2180 ± 808 | 1046 ± 379 |
Caryophyllene | 43.14 | 1420 | 1416 | 99 | 1138 ± 336 | 850 ± 205 | 1060 ± 245 | 729 ± 163 |
Humulene | 44.29 | 1456 | 1453 | 97 | 3797 ± 1230 | 2662 ± 543 | 4758 ± 1020 | 3430 ± 698 |
g-muurolene | 44.95 | 1481 | 1480 | 98 | 115 ± 48 | 83 ± 20 | 234 ± 47 | 205 ± 54 |
Geranylisobutyrate | 45.34 | 1495 | 1495 | 98 | 115 ± 34 | 60 ± 12 | 87 ± 45 | 66 ± 27 |
a-muurolene | 45.60 | 1499 | 1509 | 93 | 67 ± 23 b | 91 ± 38 ab | 227 ± 43 a | 77 ± 32 ab |
Cubenene | 46.54 | 1532 | 1552 | 99 | 27 ± 9 | 22 ± 2 | 32 ± 4 | 17 ± 3 |
a-calacorene | 46.83 | 1538 | 1547 | 98 | 46 ± 13 ab | 22 ± 1 b | 98 ± 15 a | 70 ± 10 ab |
ethyl dodecanoate | 48.12 | 1582 | 1596 | 99 | 746 ± 178 a | 260 ± 23 b | 847 ± 41 a | 229 ± 40 b |
4-MMP 1 | 3-MH 2 | 3-MHA 3 | |
---|---|---|---|
77Mo | 54 ± 6 ab | 655 ± 51 b | 192 ± 10 a |
RoMo | 73 ± 16 a | 696 ± 4 b | 211 ± 10 a |
77Ha | 26 ± 2 b | 1721 ± 162 a | 88 ± 6 b |
RoHa | 29 ± 5 b | 1539 ± 156 a | 76 ± 6 b |
Attributes | Assessor | Beer Sample | Session | Assessor × Session | Assessor × Beer Sample | Beer Sample × Session |
---|---|---|---|---|---|---|
Floral (orange blossom) | *** | *** | ns | ns | ns | ns |
Spicy (cloves) | *** | ** | ns | ns | ns | ns |
Citrus (grapefruit) | *** | *** | ns | ns | ns | ns |
Exotic (tropical) fruits | *** | *** | ns | ns | ns | ns |
Caramel | *** | ** | ns | ns | ns | * |
Honey | *** | *** | ns | ns | ns | ns |
Aromatic herbs (sage) | *** | *** | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantini, A.; Petrozziello, M.; Tsolakis, C.; Asproudi, A.; Vaudano, E.; Pulcini, L.; Bonello, F.; Carbone, K.; Cravero, M.C. Exploring the Influence of Different Saccharomyces cerevisiae Strains and Hop Varieties on Beer Composition and Sensory Profiles. Foods 2025, 14, 2357. https://doi.org/10.3390/foods14132357
Costantini A, Petrozziello M, Tsolakis C, Asproudi A, Vaudano E, Pulcini L, Bonello F, Carbone K, Cravero MC. Exploring the Influence of Different Saccharomyces cerevisiae Strains and Hop Varieties on Beer Composition and Sensory Profiles. Foods. 2025; 14(13):2357. https://doi.org/10.3390/foods14132357
Chicago/Turabian StyleCostantini, Antonella, Maurizio Petrozziello, Christos Tsolakis, Andriani Asproudi, Enrico Vaudano, Laura Pulcini, Federica Bonello, Katya Carbone, and Maria Carla Cravero. 2025. "Exploring the Influence of Different Saccharomyces cerevisiae Strains and Hop Varieties on Beer Composition and Sensory Profiles" Foods 14, no. 13: 2357. https://doi.org/10.3390/foods14132357
APA StyleCostantini, A., Petrozziello, M., Tsolakis, C., Asproudi, A., Vaudano, E., Pulcini, L., Bonello, F., Carbone, K., & Cravero, M. C. (2025). Exploring the Influence of Different Saccharomyces cerevisiae Strains and Hop Varieties on Beer Composition and Sensory Profiles. Foods, 14(13), 2357. https://doi.org/10.3390/foods14132357