Characterization of Aroma, Sensory Properties, and Consumer Acceptability of Honey from Capparis spinosa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. HS-SPME Conditions
2.3. GC-MS Analyses
2.4. Sensory Analysis
2.5. Time Intensity Analysis
2.6. Consumer’s Acceptability Test
2.7. Statistical Analysis
3. Results and Discussions
3.1. Volatile Aroma Profile
3.2. Qualitative Descriptive Analysis (QDA)
3.3. Consumer Acceptability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VOCs | Volatile organic compounds |
HS-SPME | Headspace solid-phase microextraction |
DVB/CAR/PDMS | Divinylbenzene/Carboxen/Polysimethylsiloxane |
GC-MS | Gas chromatography–mass spectrometry |
TIC | Total ion current |
EI | Electronic impact |
LRIs | Linear retention indices |
QDA | Qualitative descriptive analysis |
TI | Time Intensity Analysis |
ANOVA | One-way Analysis of Variance |
References
- Rahnavard, R.; Razavi, N. A review on the medical effects of Capparis spinosa L. Future Nat. Prod. 2017, 3, 44–53. [Google Scholar]
- Zarei, M.; Seyedi, N.; Maghsoudi, S.; Nejad, M.S.; Sheibani, H. Green synthesis of Ag nanoparticles on the modified graphene oxide using Capparis spinosa fruit extract for catalytic reduction of organic dyes. Inorg. Chem. Commun. 2021, 123, 108327. [Google Scholar] [CrossRef]
- Panico, A.M.; Cardile, V.; Garufi, F.; Puglia, C.; Bonina, F.; Ronsisvalle, G. Protective effect of Capparis spinosa on chondrocytes. Life Sci. 2005, 77, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Nowicka, P.; Grimalt, M.; Legua, P.; Almansa, M.S.; Amorós, A.; Carbonell-Barrachina, A.A.; Hernández, F. Polyphenol compounds and biological activity of caper (Capparis spinosa L.) flowers buds. Plants 2019, 8, 539. [Google Scholar] [CrossRef]
- Mazandarani, M.; Borhani, G.; Fathiazad, F. Phytochemical analysis, antioxidant activity and ecological requirements of Capparis spinosa L. in golestan and semnan provinces (north of Iran). Int. J. Med. Plants By-Prod. 2014, 1, 21–26. [Google Scholar]
- Kalantari, H.; Foruozandeh, H.; Khodayar, M.J.; Siahpoosh, A.; Saki, N.; Kheradmand, P. Antioxidant and hepatoprotective effects of Capparis spinosa L. fractions and Quercetin on tert-butyl hydroperoxide-induced acute liver damage in mice. J. Tradit. Complement. Med. 2018, 8, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Khan, M.; Asaf, S.; Lubna; Asif, S.; Kim, K.M. Bioactivity and therapeutic potential of kaempferol and quercetin: New insights for plant and human health. Plants 2022, 11, 2623. [Google Scholar] [CrossRef]
- Othman, A.S. Antibacterial activity of bee and Yemeni sidr honey against some pathogenic bacterial species. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 1015–1025. [Google Scholar]
- Ilyasov, R.; Gaifullina, L.; Saltykova, E.; Poskryakov, A.; Nikolenko, A. Review of the expression of antimicrobial peptide defensin in honey bees Apis mellifera L. J. Apic. Sci. 2012, 56, 115. [Google Scholar] [CrossRef]
- Mama, M.; Teshome, T.; Detamo, J. Antibacterial activity of honey against methicillin-resistant Staphylococcus aureus: A laboratory-based experimental study. Int. J. Microbiol. 2019, 2019, 7686130. [Google Scholar] [CrossRef]
- Ciriminna, R.; Angellotti, G.; Luque, R.; Pagliaro, M. The citrus economy in Sicily in the early bioeconomy era: A case study for bioeconomy practitioners. Biofuels Bioprod. Biorefining 2024, 18, 356–364. [Google Scholar] [CrossRef]
- Ouchemoukh, S.; Amessis-Ouchemoukh, N.; Gómez-Romero, M.; Aboud, F.; Giuseppe, A.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. LWT Food Sci. Technol. 2017, 85, 460–469. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Al-Waili, N.; Aazza, S.; Elamine, Y.; Zizi, S.; Al-Waili, T.; Al-Waili, A.; Lyoussi, B. Antioxidant and diuretic activity of co-administration of Capparis spinosa honey and propolis in comparison to furosemide. Asian Pac. J. Trop. Med. 2017, 10, 974–980. [Google Scholar] [CrossRef]
- Amer, A.M.; Abid-Alla, S.A. Antibacterial activity of Capparis spinosa honey against Staphylococcus aureus and Escherichia coli. DYSONA Life Sci. 2021, 2, 1–5. [Google Scholar] [CrossRef]
- Hegazi, A.G.; Al Guthami, F.M.; Al Gethami, A.F.; El Fadaly, H.A. Beneficial effects of Capparis spinosa honey on the immune response of rats infected with Toxoplasma gundii. J. Pharmacopunct. 2017, 20, 112. [Google Scholar] [CrossRef]
- Battino, M.; Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Zhang, J.; Manna, P.P.; Reboredo-Rodríguez, P.; Varela Lopez, A.; Quiles, J.L.; et al. Relevance of functional foods in the Mediterranean diet: The role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 893–920. [Google Scholar] [CrossRef]
- Guler, A.; Bakan, A.; Nisbet, C.; Yavuz, O. Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup. Food Chem. 2007, 105, 9–1125. [Google Scholar] [CrossRef]
- Gomes, S.; Dias, L.G.; Moreira, L.L.; Rodrigues, P.; Estevinho, L. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 2010, 48, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Al, M.L.; Daniel, D.; Moise, A.; Bobis, O.; Laslo, L.; Bogdanov, S. Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar] [CrossRef]
- Machado, A.M.; Miguel, M.G.; Vilas-Boas, M.; Figueiredo, A.C. Honey volatiles as a fingerprint for botanical origin—A review on their occurrence on monofloral honeys. Molecules 2020, 25, 374. [Google Scholar] [CrossRef]
- Merlino, M.; Tripodi, G.; Cincotta, F.; Prestia, O.; Miller, A.; Gattuso, A.; Verzera, A.; Condurso, C. Technological, nutritional, and sensory characteristics of gnocchi enriched with hemp seed flour. Foods 2022, 11, 2783. [Google Scholar] [CrossRef] [PubMed]
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. ISO: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/76667.html (accessed on 15 April 2025).
- Ferreira, E.L.; Lencioni, C.; Benassi, M.T.; Barth, M.O.; Bastos, D.H.M. Descriptive sensory analysis and acceptance of stingless bee honey. Food Sci. Technol. Int. 2009, 15, 251–258. [Google Scholar] [CrossRef]
- Sokolowsky, M.; Rosenberger, A.; Fischer, U. Sensory impact of skin contact on white wines characterized by descriptive analysis, time–intensity analysis and temporal dominance of sensations analysis. Food Qual. Prefer. 2015, 39, 285–297. [Google Scholar] [CrossRef]
- Wardencki, W.; Chmiel, T.; Dymerski, T.; Biernacka, P.; Plutowska, B. Application of gas chromatography, mass spectrometry and olfactometry for quality assessment of selected food products. Ecol. Chem. Eng. 2009, 16, 287–300. [Google Scholar]
- Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef]
- Tian, H.; Shen, Y.; Yu, H.; Chen, C. Aroma features of honey measured by sensory evaluation, gas chromatography-mass spectrometry, and electronic nose. International Int. J. Food Prop. 2018, 21, 1755–1768. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Kilic-Buyukkurt, O.; Fotouh, M.M.A.; Selli, S. Aroma active compounds of honey: Analysis with GC-MS, GC-O, and Molecular Sensory Techniques. J. Food Compost. Anal. 2024, 134, 106545. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z.; Song, M.; Jiang, A.; Lang, Y.; Chen, L. Aromatic profiles and enantiomeric distributions of volatile compounds during the ripening of Dendropanax dentiger honey. Food Res. Int. 2024, 175, 113677. [Google Scholar] [CrossRef]
- Sun, Z.; Lin, Y.; Yang, H.; Zhao, R.; Zhu, J.; Wang, F. Characterization of honey-like characteristic aroma compounds in Zunyi black tea and their molecular mechanisms of interaction with olfactory receptors using molecular docking. LWT 2024, 191, 115640. [Google Scholar] [CrossRef]
- da Costa, A.C.V.; Sousa, J.M.B.; da Silva, M.A.A.P.; dos Santos Garruti, D.; Madruga, M.S. Sensory and volatile profiles of monofloral honeys produced by native stingless bees of the brazilian semiarid region. Food Res. Int. 2018, 105, 110–120. [Google Scholar] [CrossRef]
- Cincotta, F.; Merlino, M.; Verzera, A.; Gugliandolo, E.; Condurso, C. Innovative process for dried caper (Capparis spinosa L.) powder production. Foods 2022, 11, 3765. [Google Scholar] [CrossRef]
- Merlino, M.; Condurso, C.; Cincotta, F.; Nalbone, L.; Ziino, G.; Verzera, A. Essential oil emulsion from caper (Capparis spinosa L.) leaves: Exploration of its antibacterial and antioxidant properties for possible application as a natural food preservative. Antioxidants 2024, 13, 718. [Google Scholar] [CrossRef]
- Condurso, C.; Mazzaglia, A.; Tripodi, G.; Cincotta, F.; Dima, G.; Maria Lanza, C.; Verzera, A. Sensory analysis and head-space aroma volatiles for the characterization of capers from different geographic origin. J. Essent. Oil Res. 2016, 28, 185–192. [Google Scholar] [CrossRef]
- Yu, P.; Yang, Y.; Sun, J.; Jia, X.; Zheng, C.; Zhou, Q.; Huang, F. Identification of volatile sulfur-containing compounds and the precursor of dimethyl sulfide in cold-pressed rapeseed oil by GC–SCD and UPLC–MS/MS. Food Chem. 2022, 367, 130741. [Google Scholar] [CrossRef] [PubMed]
- Alissandrakis, E.; Daferera, D.; Tarantilis, P.A.; Polissiou, M.; Harizanis, P.C. Ultrasound-assisted extraction of volatile compounds from citrus flowers and citrus honey. Food Chem. 2003, 82, 575–582. [Google Scholar] [CrossRef]
- Tedesco, R.; Scalabrin, E.; Malagnini, V.; Strojnik, L.; Ogrinc, N.; Capodaglio, G. Characterization of botanical origin of italian honey by carbohydrate composition and volatile organic compounds (VOCs). Foods 2022, 11, 2441. [Google Scholar] [CrossRef] [PubMed]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- da Costa, A.C.V.; Sousa, J.M.B.; Bezerra, T.K.A.; da Silva, F.L.H.; Pastore, G.M.; da Silva, M.A.A.P.; Madruga, M.S. Volatile profile of monofloral honeys produced in Brazilian semiarid region by stingless bees and key volatile compounds. LWT 2018, 94, 198–207. [Google Scholar] [CrossRef]
- Machado, A.M.; Antunes, M.; Miguel, M.G.; Vilas-Boas, M.; Figueiredo, A.C. Volatile profile of Portuguese monofloral honeys: Significance in botanical origin determination. Molecules 2021, 26, 4970. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Jerković, I.; Sarais, G.; Congiu, F.; Marijanović, Z.; Kuś, P.M. Color evaluation of seventeen European unifloral honey types by means of spectrophotometrically determined CIE L∗ Cab∗ hab∘ chromaticity coordinates. Food Chem. 2014, 145, 284–291. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Hu, Y.; Zhou, J.; Chen, L.; Lu, X. Systematic review of the characteristic markers in honey of various botanical, geographic, and entomological origins. ACS Food Sci. Technol. 2022, 2, 206–220. [Google Scholar] [CrossRef]
- Manickavasagam, G.; Saaid, M.; Lim, V. Impact of prolonged storage on quality assessment properties and constituents of honey: A systematic review. J. Food Sci. 2024, 89, 811–833. [Google Scholar] [CrossRef] [PubMed]
- Bhure, R.A.; Alam, M.; Nanda, V.; Pawar, V.M.; Saxena, S. Exploring the Impact of Thermal Processing on the Quality Attributes of Honey: A Comprehensive Review. J. Food Process Eng. 2025, 48, e70033. [Google Scholar] [CrossRef]
- Verzera, A.; Condurso, C. Sampling Techniques for the Determination of Volatile Fraction of Honey. In Comprehensive Sampling and Sample Preparation. Extraction Techniques and Applications: Food and Beverage; Elsevier: Amsterdam, The Netherlands; Academic Press: Oxford, UK, 2012; Volume 4, pp. 87–117. [Google Scholar]
- Escuredo, O.; Dobre, I.; Fernández-González, M.; Seijo, M.C. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem. 2014, 149, 84–90. [Google Scholar] [CrossRef]
- Alaerjani, W.M.A.; Abu-Melha, S.; Alshareef, R.M.H.; Al-Farhan, B.S.; Ghramh, H.A.; Al-Shehri, B.M.A.; Bajaber, M.A.; Khan, K.A.; Alrooqi, M.M.; Modawe, G.A.; et al. Biochemical reactions and their biological contributions in honey. Molecules 2022, 27, 4719. [Google Scholar] [CrossRef]
- Mulheron, H.; DuBois, A.; Mayhew, E.J. Quantifying the sweetness intensity and impact of aroma in honey from four floral sources. J. Food Sci. 2024, 89, 9732–9741. [Google Scholar] [CrossRef] [PubMed]
- Alissandrakis, E.; Tarantilis, P.A.; Pappas, C.; Harizanis, P.C.; Polissiou, M. Ultrasound-assisted extraction gas chromatography–mass spectrometry analysis of volatile compounds in unifloral thyme honey from Greece. Eur. Food Res. Technol. 2009, 229, 365–373. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Aroma composition and new chemical markers of Spanish citrus honeys. Food Chem. 2007, 103, 601–606. [Google Scholar] [CrossRef]
Compounds | LRI 1 | Area % | Odor Descriptors 2 |
---|---|---|---|
Acids | |||
Acetic acid | 1446 | 0.62 ± 0.01 | Vinegar-like |
2-Propenoic acid | 1627 | 5.02 ± 0.03 | Acid, Tart |
Hexanoic acid | 1834 | 1.11 ± 0.02 | Fatty, Green |
2-Ethyl-hexanoic acid | 1936 | 0.09 ± 0.01 | Sweet herbal, Musty |
Heptanoic acid | 1943 | 0.35 ± 0.01 | Plastic-like, Sweaty |
Octanoic acid | 2050 | 1.42 ± 0.02 | Soapy, Fatty |
Nonanoic acid | 2160 | 2.02 ± 0.02 | Soapy, Fatty |
Decanoic acid | 2272 | 0.45 ± 0.01 | Rancid, Fatty |
Dodecanoic acid | 2486 | 0.51 ± 0.02 | Rancid, Fatty |
Total | 11.59 ± 0.15 | ||
Alcohols | |||
Ethanol | 936 | 0.26 ± 0.01 | Alcohol |
1-Butanol | 1141 | 0.06 ± 0.01 | Medical, Phenolic |
2-Methyl-1-butanol | 1199 | 0.09 ± 0.01 | Woody, Camphor-like |
4-Methyl-1-pentanol | 1292 | 0.01 ± 0.01 | |
2-Heptanol | 1296 | 0.09 ± 0.01 | Chemical |
1-Hexanol | 1330 | 0.13 ± 0.01 | Balsamic, Aromatic herb |
1-Octen-3-ol | 1432 | 0.67 ± 0.03 | Mushroom-like |
1-Heptanol | 1438 | 0.19 ± 0.01 | Green |
2-Ethyl-hexanol | 1474 | 1.84 ± 0.03 | Floral |
1-Nonanol | 1647 | 0.34 ± 0.02 | Honey-like |
Phenylethyl Alcohol | 1900 | 0.11 ± 0.01 | Rosy |
1-Dodecanol | 1957 | 0.63 ± 0.03 | Fatty, Wax |
1-Tetradecanol | 2168 | 0.36 ± 0.02 | Coconut |
Total | 4.78 ± 0.21 | ||
Aldehydes | |||
2-Methyl-butanal | 918 | 0.05 ± 0.01 | Malty |
3-Methyl-butanal | 922 | 0.07 ± 0.02 | Malty |
Pentanal | 984 | 0.27 ± 0.02 | Almond, Malty, Pungent |
Hexanal | 1080 | 2.99 ± 0.03 | Herb |
(E)-2-Methyl-2-butenal | 1098 | 0.33 ± 0.03 | Green, Fruit |
Heptanal | 1177 | 0.28 ± 0.02 | Green, Potato-like |
2-Hexenal | 1213 | 0.05 ± 0.01 | Green, Leaf |
Octanal | 1272 | 1.43 ± 0.03 | Soapy, Citrus-like |
(E)-2-Heptenal | 1309 | 1.64 ± 0.03 | Soapy, Fatty, Almond -like |
Nonanal | 1379 | 3.09 ± 0.04 | Fatty, Citrus-like |
(E)-2-Octenal | 1419 | 0.60 ± 0.02 | Fatty, Soapy |
Decanal | 1488 | 2.11 ± 0.03 | Lemon-like, Soapy |
Dodecanal | 1703 | 0.15 ± 0.01 | Fruity |
Total | 13.06 ± 0.30 | ||
Ketones | |||
4-Methyl-3-penten-2-one | 1131 | 0.04 ± 0.01 | Sweet, Chemical |
2-Heptanone | 1175 | 0.11 ± 0.02 | Fruity |
6-Methyl-2-heptanone | 1225 | 0.02 ± 0.01 | |
2-Octanone | 1267 | 0.02 ± 0.01 | Soapy, Gasoline |
1-Octen-3-one | 1283 | 0.42 ± 0.03 | Mushroom |
2,5-Octanedione | 1303 | 0.11 ± 0.01 | |
6-Methyl-5-hepten-2-one | 1319 | 0.71 ± 0.03 | Fruity |
Total | 1.43 ± 0.12 | ||
Aromatic compounds | |||
Benzaldehyde | 1517 | 4.37 ± 0.04 | Almond-like |
Benzene acetaldehyde | 1638 | 0.95 ± 0.03 | Honey-like |
Toluene | 1042 | 0.08 ± 0.01 | Chemical |
1-Methyl-3-(1-methylethenyl)-benzene | 1426 | 0.07 ± 0.01 | |
Total | 5.47 ± 0.09 | ||
Furanoic compounds | |||
2-Furanmethanol | 1651 | 0.07 ± 0.01 | Sweet, Caramel, Burnt |
Furfural | 1456 | 2.41 ± 0.04 | Sweet, Bread-like |
1-(2-Furanyl)-ethanone | 1501 | 0.03 ± 0.01 | Candy, Caramel-like |
2,5-Dimethyl-furan | 956 | 0.06 ± 0.01 | |
2-Pentyl-furan | 1216 | 0.26 ± 0.03 | Green bean, Butter |
2-Acetyl-furan | 1499 | 0.08 ± 0.01 | Candy, Caramel-like |
Total | 2.91 ± 0.11 | ||
Sulfur compounds | |||
Dimethyl sulfide | 754 | 59.34 ± 0.05 | Sulfur, Vegetable, Boiled Cabbage |
Dimethyl disulfide | 1073 | 0.06 ± 0.01 | Sulfur, Vegetable, Boiled Cabbage |
Total | 59.40 ± 0.06 | ||
Terpenes | |||
cis-Linalool oxide | 1427 | 0.50 ± 0.03 | Fresh, Sweet, Floral |
Dihydromyrcenol | 1451 | 0.15 ± 0.01 | Lime, Citrus, Cologne |
α-Terpineol | 1683 | 0.10 ± 0.01 | Musty, Citrus |
Thymol | 2176 | 0.09 ± 0.01 | Thyme |
(E)-β-Damascenone | 1805 | 0.10 ± 0.01 | Honey-like |
trans-Anhydrolinalool | 1228 | 0.04 ± 0.01 | Fresh, Sweet, Floral |
p-Cymene | 1253 | 0.04 ± 0.01 | Solvent-like |
Tetrahydro-Linalool | 1413 | 0.04 ± 0.01 | Wood, Citrus, Camphor |
Linalool | 1532 | 0.30 ± 0.02 | Flowery, Sweet, Fruity |
Total | 1.36 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripodi, G.; Merlino, M.; Torre, M.; Condurso, C.; Verzera, A.; Cincotta, F. Characterization of Aroma, Sensory Properties, and Consumer Acceptability of Honey from Capparis spinosa L. Foods 2025, 14, 1978. https://doi.org/10.3390/foods14111978
Tripodi G, Merlino M, Torre M, Condurso C, Verzera A, Cincotta F. Characterization of Aroma, Sensory Properties, and Consumer Acceptability of Honey from Capparis spinosa L. Foods. 2025; 14(11):1978. https://doi.org/10.3390/foods14111978
Chicago/Turabian StyleTripodi, Gianluca, Maria Merlino, Marco Torre, Concetta Condurso, Antonella Verzera, and Fabrizio Cincotta. 2025. "Characterization of Aroma, Sensory Properties, and Consumer Acceptability of Honey from Capparis spinosa L." Foods 14, no. 11: 1978. https://doi.org/10.3390/foods14111978
APA StyleTripodi, G., Merlino, M., Torre, M., Condurso, C., Verzera, A., & Cincotta, F. (2025). Characterization of Aroma, Sensory Properties, and Consumer Acceptability of Honey from Capparis spinosa L. Foods, 14(11), 1978. https://doi.org/10.3390/foods14111978