Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = flood control capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1716 KiB  
Article
Research on the Comprehensive Evaluation Model of Risk in Flood Disaster Environments
by Yan Yu and Tianhua Zhou
Water 2025, 17(15), 2178; https://doi.org/10.3390/w17152178 - 22 Jul 2025
Abstract
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster [...] Read more.
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. Full article
Show Figures

Figure 1

23 pages, 5120 KiB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 163
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

14 pages, 2100 KiB  
Article
Response of Han River Estuary Discharge to Hydrological Process Changes in the Tributary–Mainstem Confluence Zone
by Shuo Ouyang, Changjiang Xu, Weifeng Xu, Junhong Zhang, Weiya Huang, Cuiping Yang and Yao Yue
Sustainability 2025, 17(14), 6507; https://doi.org/10.3390/su17146507 - 16 Jul 2025
Viewed by 204
Abstract
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of [...] Read more.
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of riverbed scouring (mean annual incision rate: 0.12 m) and Three Gorges Dam (TGD) operation through four orthogonal scenarios. Key findings reveal: (1) Riverbed incision dominates discharge variation (annual mean contribution >84%), enhancing flood conveyance efficiency with a peak flow increase of 21.3 m3/s during July–September; (2) TGD regulation exhibits spatiotemporal intermittency, contributing 25–36% during impoundment periods (September–October) by reducing Yangtze backwater effects; (3) Nonlinear interactions between drivers reconfigure flow paths—antagonism occurs at low confluence ratios (R < 0.15, e.g., Cd increases to 45 under TGD but decreases to 8 under incision), while synergy at high ratios (R > 0.25) reduces Hanchuan Station flow by 13.84 m3/s; (4) The 180–265 km confluence-proximal zone is identified as a sensitive area, where coupled drivers amplify water surface gradients to −1.41 × 10−3 m/km (2.3× upstream) and velocity increments to 0.0027 m/s. The proposed “Natural/Anthropogenic Dual-Stressor Framework” elucidates estuary discharge mechanisms under intensive human interference, providing critical insights for flood control and trans-basin water resource management in tide-free estuaries globally. Full article
(This article belongs to the Special Issue Sediment Movement, Sustainable Water Conservancy and Water Transport)
Show Figures

Figure 1

18 pages, 677 KiB  
Article
Optimizing Hydrodynamic Regulation in Coastal Plain River Networks in Eastern China: A MIKE11-Based Partitioned Water Allocation Framework for Flood Control and Water Quality Enhancement
by Haijing Gao, Qian Wang, Zheng Zhou, Wan Wu, Weiying Wang, Yan Li, Jianyong Hu, Puxi Li, Yongpeng Zhang and Wenjing Hu
Water 2025, 17(12), 1829; https://doi.org/10.3390/w17121829 - 19 Jun 2025
Viewed by 314
Abstract
The effective management of river networks in coastal plains is crucial to flood control, water quality improvement, and sustainable flow distribution. This study aims to optimize the hydrodynamic performance of a plain river network in eastern China through water diversion and circulation scheduling, [...] Read more.
The effective management of river networks in coastal plains is crucial to flood control, water quality improvement, and sustainable flow distribution. This study aims to optimize the hydrodynamic performance of a plain river network in eastern China through water diversion and circulation scheduling, addressing challenges such as channel narrowing and sedimentation. This research study utilized a partitioned water allocation approach modeled in MIKE11 to simulate the effects of various diversion projects, including locks and connecting rivers, on the primary conveyance channel and supporting rivers. The simulation results indicated that flow velocities exceeded 0.1 m/s in most rivers, with significant improvements in flood discharge and water quality in the main conveyance channel and one supporting river. However, some sections of the network showed poor hydrodynamic performance due to narrow channels, encroachment, and sedimentation, and smaller rivers exhibited inadequate flow capacity. The findings provide critical insights for optimizing hydrodynamic regulation in coastal plain river systems, emphasizing the need to address specific issues to enhance overall network performance and flood resilience. Full article
Show Figures

Figure 1

22 pages, 8042 KiB  
Article
Assessing Flood Risks of Small Reservoirs in Huangshan, Anhui Province, China
by Ning Yang, Gang Wang, Minglei Ren, Qingqing Sun, Rong Tang, Liping Zhao, Jintang Zhang and Yawei Ning
Water 2025, 17(12), 1786; https://doi.org/10.3390/w17121786 - 14 Jun 2025
Viewed by 512
Abstract
Based on the regional disaster system theory, this study constructed a comprehensive flood risk indicator system for small reservoirs, covering the entire flood disaster process from three dimensions: hazard, vulnerability, and exposure. The analytic hierarchy process (AHP) and entropy weight method (EW) were [...] Read more.
Based on the regional disaster system theory, this study constructed a comprehensive flood risk indicator system for small reservoirs, covering the entire flood disaster process from three dimensions: hazard, vulnerability, and exposure. The analytic hierarchy process (AHP) and entropy weight method (EW) were used to determine indicator weights, and a risk assessment was conducted for small reservoirs in Huangshan City, Anhui Province, China. The results indicate that most reservoirs exhibit medium–low overall risk, yet distinct localized high-risk zones exist. High-economic-density areas such as Tunxi District, the central–eastern parts of Huangshan District, and the central and eastern parts of Qimen County have become high-risk clusters due to prominent exposure indicators (numbers of villages and medical facilities). Reservoirs in western and northern regions exhibit higher hazard levels, primarily driven by rainfall and catchment areas. Dam height and reservoir capacity are the main factors affecting vulnerability, with no significant spatial clustering for high-vulnerability reservoirs. Through the decoupling of three-dimensional indicators, this study reveals the differentiated driving mechanisms of “hazard–vulnerability–exposure,” providing a scientific basis for optimizing flood control engineering (e.g., reservoir capacity expansion, dam reinforcement) and risk zoning management (e.g., emergency evacuation planning in high-exposure areas) for small reservoirs. Full article
(This article belongs to the Special Issue Flood Risk Assessment on Reservoirs)
Show Figures

Figure 1

24 pages, 5214 KiB  
Article
Assessing Large-Scale Flood Risks: A Multi-Source Data Approach
by Mengyao Wang, Hong Zhu, Jiaqi Yao, Liuru Hu, Haojie Kang and An Qian
Sustainability 2025, 17(11), 5133; https://doi.org/10.3390/su17115133 - 3 Jun 2025
Viewed by 442
Abstract
Flood hazards caused by intense short-term precipitation have led to significant social and economic losses and pose serious threats to human life and property. Accurate disaster risk assessment plays a critical role in verifying disaster statistics and supporting disaster recovery and reconstruction processes. [...] Read more.
Flood hazards caused by intense short-term precipitation have led to significant social and economic losses and pose serious threats to human life and property. Accurate disaster risk assessment plays a critical role in verifying disaster statistics and supporting disaster recovery and reconstruction processes. In this study, a novel Large-Scale Flood Risk Assessment Model (LS-FRAM) is proposed, incorporating the dimensions of hazard, exposure, vulnerability, and coping capacity. Multi-source heterogeneous data are utilized for evaluating the flood risks. Soil erosion modeling is incorporated into the assessment framework to better understand the interactions between flood intensity and land surface degradation. An index system comprising 12 secondary indicators is constructed and screened using Pearson correlation analysis to minimize redundancy. Subsequently, the Analytic Hierarchy Process (AHP) is utilized to determine the weights of the primary-level indicators, while the entropy weight method, Fuzzy Analytic Hierarchy Process (FAHP), and an integrated weighting approach are combined to calculate the weights of the secondary-level indicators. This model addresses the complexity of large-scale flood risk assessment and management by incorporating multiple perspectives and leveraging diverse data sources. The experimental results demonstrate that the flood risk assessment model, utilizing multi-source data, achieves an overall accuracy of 88.49%. Specifically, the proportions of areas classified as high and very high flood risk are 54.11% in Henan, 31.74% in Shaanxi, and 18.2% in Shanxi. These results provide valuable scientific support for enhancing flood control, disaster relief capabilities, and risk management in the middle and lower reaches of the Yellow River. Furthermore, they can furnish the necessary data support for post-disaster reconstruction efforts in impacted areas. Full article
(This article belongs to the Special Issue Sustainable Water Management in Rapid Urbanization)
Show Figures

Figure 1

12 pages, 2188 KiB  
Article
Creating Forested Wetlands for Improving Ecosystem Services and Their Potential Benefits for Rural Residents in Metropolitan Areas
by Zhuhong Huang, Yanwei Sun, Rong Sheng, Kun He, Taoyu Wang, Yingying Huang and Xuechu Chen
Water 2025, 17(11), 1682; https://doi.org/10.3390/w17111682 - 2 Jun 2025
Viewed by 435
Abstract
Intensive farming in urban suburbs often causes habitat loss, soil erosion, wastewater discharge, and agricultural productivity decline, threatening long-term benefits for the local community. We developed a nature-based solution for sustainable land restoration by establishing “Green Treasure Island” (GTI). The aim of this [...] Read more.
Intensive farming in urban suburbs often causes habitat loss, soil erosion, wastewater discharge, and agricultural productivity decline, threatening long-term benefits for the local community. We developed a nature-based solution for sustainable land restoration by establishing “Green Treasure Island” (GTI). The aim of this study is to evaluate the ecological restoration effectiveness of GTI and explore its feasibility and replicability for future applications. The core eco-functional zone of GTI—a 7 hm2 forested wetland—embedded a closed-loop framework that integrates land consolidation, ecological restoration, and sustainable land utilization. The forested wetland efficiently removed 65% and 74% of dissolved inorganic nitrogen and phosphorus from agricultural runoff, raised flood control capacity by 22%, and attracted 48 bird species. Additionally, this biophilic recreational space attracted over 3400 visitors in 2022, created green jobs, and promoted local green agricultural product sales. Through adaptive management and nature education activities, GTI evolved into a landmark that represents local natural–social characteristics and serves as a publicly accessible natural park for both rural and urban residents. This study demonstrates the feasibility of creating GTI for improving ecosystem services, providing a practical, low-cost template that governments and local managers can replicate in metropolitan rural areas worldwide to meet both ecological and development goals. Full article
Show Figures

Figure 1

20 pages, 1345 KiB  
Article
Evaluating the Impact of Bridge Construction on Flood Control Capacity in the Eastern Coastal Regions of China Based on Hydrodynamic Modeling
by Haijing Gao, Jianyong Hu, Hai Zhao, Dajiang He, Sai Zhang, Dongmei Shi, Puxi Li, Zhen Zhang and Jingyuan Cui
Water 2025, 17(11), 1675; https://doi.org/10.3390/w17111675 - 31 May 2025
Viewed by 542
Abstract
Constructions located in rivers play a critical role in mitigating flood risks and supporting sustainable economic development. However, the specific impacts of bridge construction on local flood dynamics have not been thoroughly examined. This study addresses this research gap using hydrodynamic modeling with [...] Read more.
Constructions located in rivers play a critical role in mitigating flood risks and supporting sustainable economic development. However, the specific impacts of bridge construction on local flood dynamics have not been thoroughly examined. This study addresses this research gap using hydrodynamic modeling with the one-dimensional MIKE11 module in MIKE Zero. A case study of the Nanyang (NY) Road Bridge in Zhejiang Province analyzed backwater effects at critical locations, including the Shili (SL) River outlet and Chengqing (CQ) Harbor. Unsteady flow simulations quantified changes in backwater height and backwater length upstream and downstream of the bridge, assessing their influence on flood conveyance capacity. The results indicate a narrowing of the river channel by approximately 4.8 m at the bridge location. Additionally, under flood conditions corresponding to 5-year, 10-year, and 20-year return periods, upstream water levels increased by 1 cm (6.53 m), 4 cm (7.15 m), and 5 cm (7.75 m), respectively. This research provides valuable insights and a scientific basis for developing flood control strategies, optimizing bridge design, and planning infrastructure projects, thereby enhancing regional flood safety and supporting sustainable economic development. Full article
Show Figures

Figure 1

20 pages, 2372 KiB  
Article
Flooding Tolerance and Recovery Capacity of Carya illinoinensis
by Xue Chen, Haibo Hu, Chaoming Wu and Li Zhu
Horticulturae 2025, 11(6), 590; https://doi.org/10.3390/horticulturae11060590 - 26 May 2025
Cited by 1 | Viewed by 290
Abstract
Carya illinoinensis is a relatively water-tolerant species widely planted in areas with high flood risk. Evaluating its adaptation strategies and tolerance thresholds is crucial for ecological restoration in the context of climate change. In this study, five treatments were applied to 1-year-old C. [...] Read more.
Carya illinoinensis is a relatively water-tolerant species widely planted in areas with high flood risk. Evaluating its adaptation strategies and tolerance thresholds is crucial for ecological restoration in the context of climate change. In this study, five treatments were applied to 1-year-old C. illinoinensis seedlings in a potting simulation experiment: T1 (field capacity: 75%), T2 (5 cm below the root collar), T3 (up to the root collar), T4 (10 cm above the root collar), and T5 (30 cm above the root collar). The flooding episode lasted for 4 months and was followed by a recovery period of 6 months. The results show that, at the end of flooding, total biomass (TB), stem-mass ratio (SMR), malondialdehyde (MDA), soluble protein (SP), superoxide dismutase (SOD), and catalase (CAT) were significantly increased in all the flooded groups (T2–T5) compared to the control (T1), while the root-to-shoot ratio (RSR), root-to-mass ratio (RMR), leaf-to-mass ratio (LMR), and leaf-mass fraction (LMF) were significantly decreased. Although survival in the high stress group (T5) temporarily decreased to 83.3% (T1–T4 remained 100%), survival in all treatment groups fully recovered (100%) after recovery. Significant decreases (p < 0.001) were observed when comparing post-recovery to end-flooding levels within each flooded group (T2–T5), with reductions ranging: LMR (21.0–30.8%), REL (14.0–26.7%), MDA (16.1–25.3%), SP (42.2–67.3%), SOD (27.6–49.8%), and CAT (47.0–61.3%) across treatments. At this time, T5 showed lower TB and higher MDA, soluble sugars (SS), and SP compared to T1. PCA analysis indicated that the damage ranked as T5 > T4 > T3 > T2 > T1 at the end of flooding, and as T5 > T1 > T4 > T3 > T2 at the end of recovery. Therefore, it could be concluded that 1-year-old C. illinoinensis exhibits high flooding tolerance, with self-recovery thresholds below the T5 treatment, making it suitable for ecological restoration in flood-prone areas. Full article
Show Figures

Figure 1

21 pages, 2943 KiB  
Article
Microstructure and Microorganisms Alternation of Paddy Soil: Interplay of Biochar and Water-Saving Irrigation
by Jiazhen Hu, Shihong Yang, Wim M. Cornelis, Mairan Zhang, Qian Huang, Haonan Qiu, Suting Qi, Zewei Jiang, Yi Xu and Lili Zhu
Plants 2025, 14(10), 1498; https://doi.org/10.3390/plants14101498 - 16 May 2025
Viewed by 371
Abstract
Biochar application and controlled irrigation (CI) enhance water conservation, lower emissions, and increase crop yields. However, the synergistic effects on the relationship between paddy soil microstructure and microbiome remain poorly understood. This study investigates the impact of different irrigation regimes and biochar applications [...] Read more.
Biochar application and controlled irrigation (CI) enhance water conservation, lower emissions, and increase crop yields. However, the synergistic effects on the relationship between paddy soil microstructure and microbiome remain poorly understood. This study investigates the impact of different irrigation regimes and biochar applications on soil physicochemical properties, soil microstructure, and the composition and functions of soil microorganisms in paddy soil. The CA treatment (CI with 60 t/hm2 biochar) showed higher abundances of Mycobacteriaceae, Streptomycetaceae, Comamonadaceae, and Nocardioidaceae than the CK treatment (CI without biochar), which was attributed to two main factors. First, CA increased the pore throat equivalent radius (EqR), throat surface area (SAR), total throat number (TTN), volume fraction (VF), and connected porosity (CP) by 1.47–9.61%, 7.50–25.21%, 41.55–45.99%, 61.12–73.04%, and 46.36–93.75%, respectively, thereby expanding microbial habitats and providing refuges for microorganisms. Second, CA increased the cation exchange capacity (CEC), mean weight diameter (MWD), soil organic carbon (SOC), and total nitrogen (TN) by 22.14–25.06%, 42.24–56.61%, 22.98–56.5%, and 9.41–87.83%, respectively, reinforcing soil structural stability and carbon storage, which promoted microbial community diversity. FK (flood irrigation without biochar) showed no significant correlations with these environmental factors. Compared to CK soil metabolites at Level 2 and Level 3, FK exhibited higher levels of the citrate cycle, indicating that changes in water and oxygen environments due to CI reduced soil organic matter decomposition and carbon cycle. CA and CK strongly correlated with the soil microstructure (VF, CP, TTN, SAR, EqR), and CA notably enhanced soil metabolites related to the synthesis and degradation of ketone bodies, suggesting that biochar can mitigate the adverse metabolomic effects of CI. These results indicate that biochar application in CI paddy fields highlights the critical role of soil microstructure in microbial composition and function and better supports soil sustainability. Full article
Show Figures

Figure 1

18 pages, 5027 KiB  
Article
Investigation of Foam Mobility Control Mechanisms in Parallel Fractures
by Xiongwei Liu, Yibo Feng, Bo Wang, Jianhai Wang, Yan Xin, Binfei Li and Zhengxiao Xu
Processes 2025, 13(5), 1527; https://doi.org/10.3390/pr13051527 - 15 May 2025
Viewed by 328
Abstract
Fractured vuggy reservoirs exhibit intricate fracture networks, where large fractures impose significant shielding effects on smaller ones, posing formidable challenges for efficient exploitation. A systematic evaluation of foaming volume, drainage half-life, decay behavior, and viscosity under varying temperatures and salinities was conducted for [...] Read more.
Fractured vuggy reservoirs exhibit intricate fracture networks, where large fractures impose significant shielding effects on smaller ones, posing formidable challenges for efficient exploitation. A systematic evaluation of foaming volume, drainage half-life, decay behavior, and viscosity under varying temperatures and salinities was conducted for conventional foam, polymer-enhanced foam, and gel foam. The results yield the following conclusions: Compared to conventional foam, polymer-enhanced foam exhibits markedly improved stability. In contrast, gel foam, cross-linked with chemical agents, maintains stability for over one week at elevated temperatures, albeit at the expense of reduced foaming capacity. The three-dimensional network structure formed post-gelation enables gel foam to retain a thicker liquid film, exhibiting exceptional foam stability. As salinity increases, the base liquid viscosity of conventional foam remains largely unaffected, whereas polymer foam shows marked viscosity reduction. Gel foam displays a non-monotonic viscosity response—initially increasing due to ionic cross-linking and subsequently declining from excessive charge screening. All three systems exhibit significant viscosity decreases under high-temperature conditions. Visualized plate fracture model experiments revealed distinct flow patterns and mobility control performance; narrow fractures exacerbate bubble coalescence under shear stress, leading to enlarged bubble sizes and diminished plugging efficiency. Among the three systems, gel foam exhibited superior mobility control characteristics, with uniform bubble size distribution and enhanced stability. Integrating the findings from the foam mobility control experiments in parallel fracture systems with the diversion outcomes of mobility control and flooding, distinct performance trends emerge. It can be seen that the stronger the foam stability, the stronger the mobility control ability, and the easier it is to start the shielding effect. Combined with the stability of different foam systems, understanding the mobility control ability of a foam system is the key to increasing the sweep coefficient of a complex fracture network and improve oil-washing efficiency. Full article
Show Figures

Figure 1

21 pages, 8781 KiB  
Article
Optimizing the Mobile Pump and Its Equipment to Reduce the Risk of Pluvial Flooding
by Horas Yosua, Muhammad Syahril Badri Kusuma, Joko Nugroho, Eka Oktariyanto Nugroho and Deni Septiadi
Fluids 2025, 10(5), 119; https://doi.org/10.3390/fluids10050119 - 7 May 2025
Cited by 1 | Viewed by 524
Abstract
Pluvial flooding in South Jakarta poses significant economic disruptions, requiring efficient mitigation strategies. This study focuses on optimizing mobile pump deployment as a non-structural flood control measure. Despite the use of mobile pumps in flood response, there is limited research on their systematic [...] Read more.
Pluvial flooding in South Jakarta poses significant economic disruptions, requiring efficient mitigation strategies. This study focuses on optimizing mobile pump deployment as a non-structural flood control measure. Despite the use of mobile pumps in flood response, there is limited research on their systematic optimization for pluvial flood mitigation. This study presents a transferable framework for deploying mobile pumps to mitigate pluvial flood risks in urban areas, demonstrated through a case study in South Jakarta, Indonesia. The findings indicate that flood depths of 75 cm have a 20–50% probability of occurrence, and rainfall in South Jakarta follows a distinct hourly distribution, with 56.6% of the rainfall occurring in the first hour and 43.4% in the second. Radar imagery from the BMKG is used here as the main tool for real-time rainfall detection. The optimization framework considers channel capacity, flood frequency, impact severity, accessibility, and operational protocols. Among 29 flood-prone locations analyzed, 8 of them require mobile pump intervention. Seven locations benefit from integration with weather prediction tools and SCADA systems, while three require dedicated operational procedures (SOPs). Simulation results indicate that placing mobile pumps near the upstream section of the flooded area yields the most effective flood reduction. A minimum pump capacity of 0.5 m3/s is recommended for optimal performance. This study demonstrates that strategic mobile pump deployment, coupled with predictive tools, significantly reduces pluvial flood risks in South Jakarta and offers a transferable framework for other urban areas. Full article
Show Figures

Figure 1

15 pages, 2759 KiB  
Article
Quantitative Approach to the Early Evaluation of Agricultural Reservoir Overflow Risk
by Kyuhyun Shim, Youngkyu Jin, Dongwoo Ko and Joon Heo
Hydrology 2025, 12(5), 110; https://doi.org/10.3390/hydrology12050110 - 5 May 2025
Viewed by 526
Abstract
Climate change has intensified extreme rainfall events, increasing the risk of overflow in agricultural reservoirs originally designed without flood control. This study presents a practical approach for assessing the overflow risk by incorporating both hydrological and structural factors. The key evaluation indicators used [...] Read more.
Climate change has intensified extreme rainfall events, increasing the risk of overflow in agricultural reservoirs originally designed without flood control. This study presents a practical approach for assessing the overflow risk by incorporating both hydrological and structural factors. The key evaluation indicators used for analysis were freeboard (height from the flood level to the embankment level), height from the full water level to the embankment level, inflow–outflow relationship, and flood management capacity relative to the watershed area. Based on the design standards, reservoirs in Jeollanam-do were selected for assessment, and those with a high overflow risk were identified. Rainfall runoff simulations were conducted to evaluate the reservoirs, and the results indicated that considering all four indicators allowed an effective assessment of overflow risk. Multiple regression analysis yielded an R2 value of 0.79, suggesting that the relationships among the selected indicators were suitable and had high explanatory power. The findings of this study are expected to provide a practical method for rapidly assessing reservoir overflow risks and developing effective flood response strategies. Full article
Show Figures

Figure 1

19 pages, 12457 KiB  
Article
Experimental Study on Strength Characteristics of Overconsolidated Gassy Clay
by Tao Liu, Longfei Zhu, Yan Zhang, Chengrong Qing, Yuanzhe Zhan, Chaonan Zhu and Jiayang Jia
J. Mar. Sci. Eng. 2025, 13(5), 904; https://doi.org/10.3390/jmse13050904 - 30 Apr 2025
Viewed by 415
Abstract
Gassy clay, commonly encountered in coastal areas as overconsolidated deposits, demonstrates distinct mechanical properties posing risks for submarine geohazards and engineering stability. Consolidated undrained triaxial tests combined with cyclic simple shear tests were performed on specimens with varying overconsolidation ratios (OCRs) and initial [...] Read more.
Gassy clay, commonly encountered in coastal areas as overconsolidated deposits, demonstrates distinct mechanical properties posing risks for submarine geohazards and engineering stability. Consolidated undrained triaxial tests combined with cyclic simple shear tests were performed on specimens with varying overconsolidation ratios (OCRs) and initial pore pressures, supplemented by SEM microstructural analysis. Triaxial results indicate that OCR controls the transitions between shear contraction and dilatancy, which govern both stress–strain responses and excess pore pressure development. Higher OCR with lower initial pore pressure increases stress path slope, raises undrained shear strength (su), reduces pore pressure generation, and induces negative pore pressure at elevated OCR. These effects originate from compressed gas bubbles and limited bubble flooding under overconsolidation, intensifying dilatancy during shear. Cyclic tests reveal gassy clay’s superior cyclic strength, slower pore pressure accumulation, reduced stiffness softening, and enhanced deformation resistance relative to saturated soils. Cyclic pore pressure amplitude increases with OCR, while peak cyclic strength and anti-softening capacity occur at OCR = 2, implying gas bubble interactions. Full article
(This article belongs to the Special Issue Advances in Marine Geological and Geotechnical Hazards)
Show Figures

Figure 1

16 pages, 3837 KiB  
Article
Optimizing the Coordinated Regulation of Storage and Discharge Across Regions in Plain City Under Extreme Rainfall Scenarios
by Liangrui Yang, Zhiming Zhang, Qianting Liu and Zhe Wang
Water 2025, 17(9), 1272; https://doi.org/10.3390/w17091272 - 24 Apr 2025
Viewed by 349
Abstract
Under excessive rainfall conditions, achieving Coordinated Regulation of Storage and Discharge (CRSD) across different regions can effectively reduce the overall risk of urban flooding. This study proposes three water gate control modes: no control, unified control, and independent control, taking the Lingang New [...] Read more.
Under excessive rainfall conditions, achieving Coordinated Regulation of Storage and Discharge (CRSD) across different regions can effectively reduce the overall risk of urban flooding. This study proposes three water gate control modes: no control, unified control, and independent control, taking the Lingang New Area as a case study, based on the differences in regional storage and discharge capacities, and evaluating the effectiveness of the three control modes through the model. The results show that both the unified control and independent control models significantly outperform the no control model in terms of total overflow volume control. When compared to each other, the unified control model is more suitable for overall drainage coordination across the system, while the independent control model is better suited for prioritizing the protection of specific regions, emphasizing the importance of identifying gate response thresholds. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

Back to TopTop